JPS61120015A - Ultrasonic flow meter - Google Patents
Ultrasonic flow meterInfo
- Publication number
- JPS61120015A JPS61120015A JP59240574A JP24057484A JPS61120015A JP S61120015 A JPS61120015 A JP S61120015A JP 59240574 A JP59240574 A JP 59240574A JP 24057484 A JP24057484 A JP 24057484A JP S61120015 A JPS61120015 A JP S61120015A
- Authority
- JP
- Japan
- Prior art keywords
- propagation time
- fluid
- temperature
- flow rate
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は超音波流量計に関するものであり、さらに詳
しくは、流体の流れに所定の角度をもって超音波を順方
向および逆方向にそれぞれ送受波したときの各伝搬時間
の差ΔTおよび両者の平均伝搬時間Toから、所定の演
算式を用いて流体の流量を測定するとともに、この測定
直から音速の平均伝搬時間および温度による測定誤差を
除去するようにした超音波流量針に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an ultrasonic flowmeter, and more specifically, it transmits and receives ultrasonic waves in the forward and reverse directions at a predetermined angle to the flow of fluid. The flow rate of the fluid is measured using a predetermined calculation formula from the difference ΔT between the respective propagation times when The present invention relates to an ultrasonic flow needle.
かかる超音波流量計について、出願人は既に以下の如き
ものを提案している(特願昭58−204886号)。Regarding such an ultrasonic flowmeter, the applicant has already proposed the following (Japanese Patent Application No. 58-204886).
第4図は提案済み(以下、これを従来例という。)の超
音波流量計を示す構成図である。FIG. 4 is a configuration diagram showing a proposed ultrasonic flowmeter (hereinafter referred to as a conventional example).
この例では、超音波振動子1および1′がクサビ部材2
および2′にそれぞれ図示の如く取り付けられ、クサビ
部材2および2′は、流体6が流れる管をこの振動子の
一万から発せられる超音波が所定の角度θをもって横切
り、管4の内壁で反射した後他方の振動子に受信される
よう、管4の外側に略同−線上に並べて取り付けられ、
これによって超音波振動子1.クサビ部材2.管4の内
壁、流体6.管4の内壁、クサビ部材2′および超音波
振動子1′が互いに音響的に結合される。In this example, ultrasonic transducers 1 and 1' are connected to wedge member 2.
and 2' as shown in the figure, and the wedge members 2 and 2' allow the ultrasonic waves emitted from the 10,000 transducers to cross the tube through which the fluid 6 flows at a predetermined angle θ, and are reflected on the inner wall of the tube 4. They are installed on the outside of the tube 4 in a manner that they are lined up approximately on the same line so that they can be received by the other transducer after the
As a result, the ultrasonic transducer 1. Wedge member 2. Inner wall of tube 4, fluid 6. The inner wall of the tube 4, the wedge member 2' and the ultrasonic transducer 1' are acoustically coupled to each other.
すなわち、超音波振動子1は、発信部5から実線位置に
ある切替スイッチ部6aを介して入力される電気信号を
超音波に変換し、これを他方の超音波振動子1′に向け
て発振する。振動子1′では、受信した超音波を電気信
号に変換して出力する。受信及び時間計測回路7は、発
信部5からの発信々号と実線位置にある切替スイッチ部
6bを介して受信した振動子1′からの受信々号とくよ
って、超音波の伝搬時間T1を計測する。この計測時間
T1は、実線位置にある切替スイッチ部6Cを介して記
憶回路8に与えられ、記憶される。次にスイッチ6a
、6bおよび6Cを破線位置へと切り替え、振動子1′
を発信側、同じ(1を受信側とすることにより、上記と
は逆方向に超音波の発、受信を行ない、このときの超音
波の伝搬時間T2を測定し、もつ一方の記憶回路9に記
憶させる。That is, the ultrasonic transducer 1 converts an electric signal inputted from the transmitting section 5 through the changeover switch section 6a located at the solid line position into an ultrasonic wave, and oscillates it toward the other ultrasonic transducer 1'. do. The transducer 1' converts the received ultrasonic waves into electrical signals and outputs them. The reception and time measurement circuit 7 measures the propagation time T1 of the ultrasonic wave by combining the transmission signal from the transmitting section 5 and the reception signal from the transducer 1' received via the changeover switch section 6b located at the solid line position. do. This measured time T1 is given to the storage circuit 8 via the changeover switch section 6C located at the solid line position and is stored. Next, switch 6a
, 6b and 6C to the dashed line position, and vibrator 1'
By setting 1 to the transmitting side and 1 to the receiving side, ultrasonic waves are emitted and received in the opposite direction to the above, the propagation time T2 of the ultrasonic waves at this time is measured, and one of the memory circuits 9 is stored. Make me remember.
ところで、振動子1から1′までの、流れに対する順方
向の超音波伝搬時間T1および振動子1′から1までの
逆方向の超音波伝搬時間T2は、流体中の伝搬時間をそ
れぞれt、、i2とし、流体以外のクサビ部材や管壁に
おける伝搬時間をTとすると、次式で表わすことができ
る。By the way, the ultrasonic propagation time T1 in the forward direction of the flow from the transducers 1 to 1' and the ultrasonic propagation time T2 in the reverse direction from the transducers 1' to 1 are the propagation times in the fluid, t,... If i2 is the propagation time in the wedge member or pipe wall other than the fluid, then it can be expressed by the following equation.
T 1= t 1+τ ・・・・・
・(1)T2 = t2+τ ・・
・・・・(2)したがって、その伝搬時間差ΔTは次式
の如(求めることができる。T 1=t 1+τ・・・・・・
・(1) T2 = t2+τ ・・
(2) Therefore, the propagation time difference ΔT can be calculated as follows.
ΔT −T2− T。ΔT −T2−T.
−(1十τ)−(1,十τ)
−12−1,・・・・・・(5)
いま、管4の内径をり、流体中の音速(超音波の伝搬速
度)をC1超音波の入射角をθ、管内の流速iVとする
と、上記伝搬時間t1 + t2 h一般に次式の如く
表わされることが知られている。-(10τ) -(1,10τ) -12-1,...(5) Now, calculate the inner diameter of the tube 4 and set the sound velocity (propagation speed of ultrasonic waves) in the fluid to exceed C1. It is known that the above propagation time t1 + t2 h is generally expressed as the following equation, where the incident angle of the sound wave is θ and the flow velocity in the pipe is iV.
したがって、ΔTは次の如(なる。Therefore, ΔT is as follows.
こ−で、流体中の音速Cと管内の流速■とを比較すると
、流体が水の場合、Cは一般に1.000〜1.600
m、/Sの範囲にあるのに対し、Vはjom/El以下
である。したがって、
C” >> V”sin”θ
となり、ΔTは次の如(近代1することができる。Comparing the sound velocity C in the fluid and the flow velocity in the pipe, if the fluid is water, C is generally 1.000 to 1.600.
m, /S, while V is less than jom/El. Therefore, C">>V"sin"θ, and ΔT can be expressed as follows (Modern 1).
流体中の超音波音速Cが一定であれば、sinθ/C”
CO5θ
なる量は一定となり、ΔTは流速■に比例する。If the ultrasonic sound speed C in the fluid is constant, sin θ/C"
The amount of CO5θ is constant, and ΔT is proportional to the flow rate ■.
したがって、ΔTを計測することによって、流速Vおよ
びこれと所定の比例関係にある流量を計測することがで
きる。Therefore, by measuring ΔT, it is possible to measure the flow velocity V and the flow rate having a predetermined proportional relationship thereto.
ところで、上記(7)式においては、流体の音速Cが変
化しないときは、
ΔTαV
の関係が成り立つが、流体中の音速Cは流体の温度また
は圧力が変わることによって変化する。また、音速Cが
変化することにより反射・屈折に関するスネルの法則に
したがって角度θも変化するため、音速Cが変化すると
流速Vの計測値に誤差が生じる。特に、流体が常温から
高温(3aa℃位ンまで変化するとか、管の厚みが大き
い場合には、音速Cの変化による影響も大きくなり、計
測誤差が大となる。そこで、上記(7)式を次式の如く
変形する。By the way, in the above equation (7), when the sound speed C of the fluid does not change, the relationship ΔTαV holds true, but the sound speed C in the fluid changes as the temperature or pressure of the fluid changes. Further, as the sound speed C changes, the angle θ also changes according to Snell's law regarding reflection and refraction. Therefore, when the sound speed C changes, an error occurs in the measured value of the flow velocity V. In particular, when the temperature of the fluid changes from room temperature to high temperature (approximately 3aa°C) or when the thickness of the pipe is large, the influence of changes in the sound speed C becomes large and the measurement error becomes large. Therefore, the above equation (7) Transform as shown below.
いま、流体が静止しているもの(V−0)とすると、上
記(4)および(5)式より、となり、1.=12とな
る。そこで
TI = T2 ””r。Now, assuming that the fluid is stationary (V-0), from equations (4) and (5) above, we get 1. =12. Therefore, TI = T2 ""r.
とお(と、先の(1) 、 (2)式より、となり、こ
れを変形すると、
が得られる。この(11)式を(7)式に代入すると、
5ia2θ
−−(T o−7戸・■ ・・・・・・(12)とな
り、
が得られる。こ〜で、流体が流れているときには、とし
て近似的にToを求めることができ、上記(13)式は
V←0のときも成立する。つまり、この(13)式にお
いて、ΔT、’roはさておき、角度θおよびτを計測
できれば所定の演算装置を用いて流速Vを求めることが
できるが、この角度θおよび流体以外の部分における伝
搬時間τをそれぞれ独立に計測することは、必ずしも容
易ではない。From equations (1) and (2) above, we get, and by transforming this, we obtain. Substituting equation (11) into equation (7), we get
5ia2θ −−(T o−7 doors・■ ・・・・・・(12), and the following is obtained. Here, when the fluid is flowing, To can be approximately obtained as ( Equation 13) also holds true when V←0.In other words, in Equation (13), apart from ΔT and 'ro, if the angles θ and τ can be measured, the flow velocity V can be determined using a predetermined calculation device. However, it is not necessarily easy to independently measure this angle θ and the propagation time τ in parts other than the fluid.
しかしながら、Toと1/5in2θおよび1/(su
2θ・(To−τ)1〕との間にはそれぞれ第5図およ
び第6図の如き関係が成立し、これは温度、圧力等の条
件にか〜わりなく成立することが確かめられている。し
たがって、第4図の如く、演算部10にて伝搬時間差Δ
Tを求める一方、演算部11にて平均伝搬時間Toを求
め、この演算11LToから関数発生器やROM等を用
いて1/(sia2θ・(To−丁)1〕の値を求め、
演算部121Cおいてこの[!にΔTを乗算した後、演
算部13にて所定のスケールファクタ(換算係数)を考
慮することにより、流体の流速■または流量Qを求める
ことができる。However, To and 1/5in2θ and 1/(su
2θ·(To−τ)1] as shown in FIGS. 5 and 6, respectively, and it has been confirmed that this holds regardless of conditions such as temperature and pressure. Therefore, as shown in FIG. 4, the calculation unit 10 calculates the propagation time difference Δ
While calculating T, the average propagation time To is calculated in the calculation unit 11, and from this calculation 11LTo, the value of 1/(sia2θ・(To−Di)1) is calculated using a function generator, ROM, etc.
In the calculation unit 121C, this [! After multiplying ΔT by ΔT, the calculation unit 13 takes into account a predetermined scale factor (conversion coefficient), thereby determining the fluid flow velocity ■ or the flow rate Q.
上述の如き従来方式にも、以下の如き問題点がある。 The conventional method as described above also has the following problems.
すなわち、水中の超音波の伝搬速度Cは、水温が約70
℃のとき最も速く、水温がそれより高(ても低くても音
速Cは第7図の如く遅くなる。このため、伝搬時間T1
* T2および平均伝搬時間Toは、水温70℃付近で
最小となる。したがって、流体の圧力が一定のもとて流
体の水温が決定すれば伝搬時間Toを一義的に決めるこ
とができるが、逆に平均伝搬時間Toが決まったとして
も、これと対応する水温は第8図のa、bの如く2ケ所
あるため、水温を一義的に決定することができない。つ
まり、上述の如く第5図および第6図の如き特性曲線を
用いて音速Cの補正を行なう場合、Toの成る1点に対
して補正係数(X、Y)が2点となる領域(第5図のR
1および第6図のR2参照)が存在するため、いずれの
値を用いて補正すべきかを判断することができないとい
う問題が残されていることになる。このことは、超音波
流量計を常温から高温域(300℃位)の広い範囲で使
用する場合の障害ともなることから、しかるべき手当て
をしておくことが望ましい。In other words, the propagation speed C of ultrasonic waves in water is approximately 70°C when the water temperature is approximately 70°C.
The speed of sound C is fastest when the water temperature is higher (or lower) than that, as shown in Figure 7. Therefore, the propagation time T1
*T2 and average propagation time To are minimum at a water temperature of around 70°C. Therefore, if the water temperature of the fluid is determined with the pressure of the fluid constant, the propagation time To can be determined uniquely, but conversely, even if the average propagation time To is determined, the corresponding water temperature is Since there are two locations as shown in a and b in Figure 8, the water temperature cannot be uniquely determined. In other words, when correcting the sound speed C using the characteristic curves shown in FIGS. 5 and 6 as described above, the area (the R in Figure 5
1 and R2 in FIG. 6), the problem remains that it is not possible to determine which value should be used for correction. This becomes an obstacle when using the ultrasonic flowmeter in a wide range from room temperature to high temperature (approximately 300° C.), so it is desirable to take appropriate precautions.
〔問題点を解決するための手段および作用〕流体の音速
は温度によっても変化することから、超音波の管材中の
伝搬時間から間接的に流体の温度を求める手段を設け、
この温度情報から音速補正回路の出力を選択することに
より、流体温度が常温から高温(300℃位)まで変化
しても、流速、流量を正確に計測しうるようにしたもの
である。[Means and actions for solving the problem] Since the sound speed of a fluid changes depending on the temperature, a means is provided to indirectly determine the temperature of the fluid from the propagation time of the ultrasonic wave in the pipe material.
By selecting the output of the sound velocity correction circuit based on this temperature information, the flow velocity and flow rate can be accurately measured even when the fluid temperature changes from room temperature to high temperature (approximately 300° C.).
第1図はこの発明の実施例を示す構成図であり、第5図
と同じものについては同一の符号を付して示している。FIG. 1 is a block diagram showing an embodiment of the present invention, and the same parts as in FIG. 5 are designated by the same reference numerals.
第1図からも明らかなよ5に、この実施例は管材4中を
図示の如き経路tで伝搬する超音波の伝搬時間Tpを計
測する計測回路14を設けた点が特徴である。この場合
、クサビや超音波振動子は新たに設ける必要はなく、従
来からおるものをそのま〜使用して管材中を伝搬する超
音波信号の伝搬時間T−′を求めることができる。なお
、かかる超音波信号はこれ迄はノイズとして処理されて
いたものであるが、こ−ではこれを積極的に利用するよ
うにする。また、上記伝搬時間T、の計測を受信及び時
間計測回路7によって行なうことにより省略することが
できる。−万、管材すなわちバイブ4としては鉄まだは
塩ビ等が用いられ、鉄材中の音速C3は第2図の如く、
温度の上昇によって下降する特性をもつことが知られて
いる。そして、この管材中の音速は圧力の変化による影
響を受けないことから、管材中の超音波の伝搬時間T。As is clear from FIG. 1, this embodiment is characterized in that it is provided with a measuring circuit 14 for measuring the propagation time Tp of the ultrasonic waves propagating through the tube 4 along the path t as shown. In this case, there is no need to newly provide a wedge or an ultrasonic transducer, and the propagation time T-' of the ultrasonic signal propagating through the pipe can be determined by using the existing ones as they are. It should be noted that such ultrasonic signals have hitherto been processed as noise, but in this case they will be actively utilized. Further, the measurement of the propagation time T can be omitted by being performed by the reception and time measurement circuit 7. - The pipe material, vibrator 4, is made of PVC instead of iron, and the sound velocity C3 in the iron material is as shown in Figure 2.
It is known that the temperature decreases as the temperature increases. Since the speed of sound in this tube is not affected by changes in pressure, the propagation time T of the ultrasonic wave in the tube.
を計測することによって、その音速がわかり、この音速
から第2図の如き関係にある温度を一義的に求めること
が可能となる。このようにして温度がわかれば、先の第
5図、第6図の補正カーブについて、■〜@、@〜θと
Φ〜G、θ〜■のいずれを用いるかを決定することがで
きる。例えば、流体温度が0〜70°Cの範囲では■〜
o、eb〜θが、また、70〜300℃の範囲では(9
〜θ、e〜■のカーブがそれぞれ用いられることになる
。By measuring the sound speed, the speed of sound can be determined, and from this speed of sound, it is possible to uniquely determine the temperature having the relationship shown in FIG. If the temperature is known in this way, it can be determined which of the correction curves ①~@, @~θ, Φ~G, and θ~■ should be used for the correction curves shown in FIGS. 5 and 6. For example, if the fluid temperature is in the range of 0 to 70°C,
o, eb~θ is also (9
The curves ~θ and e~■ will be used, respectively.
なお、第5図または第6図の如き特性を関数発生器また
は半固定メモ!J (FLOM )等を用いて取り出す
タイプのものであれば、これらの出力を温度および平均
伝搬時間Toの関数として選択し得るようにしておくこ
とにより、容易に取り出すことができる。Note that the characteristics shown in Figure 5 or 6 can be used as a function generator or as a semi-fixed memo! J(FLOM) or the like, it can be easily extracted by making these outputs selectable as a function of temperature and average propagation time To.
このように、管材中を伝搬する超音波の伝搬時間Tpを
計測することにより、新たに流体温度計測用の素子を設
げることなく流体の温度を求めることが可能でちり、し
たがって、流体温度の賀化によって音速が変化しても、
流速、流−3kを正しく計測することができる。In this way, by measuring the propagation time Tp of the ultrasonic waves propagating in the pipe material, it is possible to determine the temperature of the fluid without installing a new element for fluid temperature measurement. Even if the speed of sound changes due to the
Flow velocity and flow-3k can be measured correctly.
以上では、超音波の反射を利用するようにしたが、次の
如くすることも可能である。In the above, reflection of ultrasonic waves is used, but the following method is also possible.
第3図はこの発明の他の実施例を示す構成図である。こ
れは、超音波を直接送受信し計測する系を2系統(A、
Bブロック)設げた、いわゆる2測線計測する例である
。基本的には第1図に示すものと同じであるが、各基(
人、B7′ロツクンの出力を平均する平均値演算部15
を設けることによって、より高精度の計測を可能とする
ものであり、場合によってはもう1つ別の系を付加する
こともできる。この場合の伝搬時間Tpの計測は振動子
1aと1bまたは1 a/と1b’の間で行なわれ、こ
れらの点を除けば第1図と同様であるので、これ以上の
説明は省略する。FIG. 3 is a block diagram showing another embodiment of the present invention. This system consists of two systems (A,
This is an example of measuring the so-called two survey lines set up in Block B). It is basically the same as shown in Figure 1, but each group (
Average value calculation unit 15 that averages the outputs of the B7' locks
By providing this system, more accurate measurement is possible, and in some cases, another system may be added. The measurement of the propagation time Tp in this case is carried out between the transducers 1a and 1b or 1a/1b', and is the same as that in FIG. 1 except for these points, so further explanation will be omitted.
この発明によれば、以下の如き利点または効果を期待す
ることができる。According to this invention, the following advantages or effects can be expected.
1)温度、圧力を別個のセンサで計測して補正する方法
も考えられるが、この場合は検出時間のズレによる誤差
が生じ、特に急激な温度変化に対しては誤差が大きくな
る。これに対し、この発明では流量の基本となる伝搬時
間差ΔTと、補正のための基本となる平均伝搬時間TO
および管材中の伝搬時間Tr)とが常に同時に計測され
るため、検出時間のズレによる誤差は生じない。1) A method of measuring temperature and pressure with separate sensors and correcting them may be considered, but in this case, an error occurs due to a difference in detection time, and the error becomes particularly large in response to a sudden temperature change. In contrast, in this invention, the propagation time difference ΔT, which is the basis of the flow rate, and the average propagation time TO, which is the basis for correction.
and the propagation time Tr) in the tube material are always measured simultaneously, so no error occurs due to a difference in detection time.
2)温度計をわざわざ設けなくても、流体の温度計測が
可能である。2) It is possible to measure the temperature of the fluid without having to take the trouble to provide a thermometer.
5)精度は余り期待できないが、圧力信号を取り出すこ
とができる。5) Pressure signals can be extracted, although the accuracy cannot be expected to be very high.
4)この発明の他の実、施例に示す如き2測線計測を行
なうことにより、管内流体の偏流による計測誤差を啄め
て小さくすることができる。4) In another embodiment of the present invention, by performing two-line measurement as shown in the embodiment, it is possible to reduce the measurement error due to the uneven flow of the fluid in the pipe.
第1図はこの発明の実施例を示す構成図 第2図は流体
温度と鉄中の音速との関係を示すグラフ、第3図はこの
発明の他の実施例を示す構成図、第4図は超音波流量計
の従来例を示す構成図、第5図は平均伝搬時間Toと1
/sin 2θとの関係を示すグラフ、第6図は平均
伝搬時間TOと補正係数との関係を示すグラフ、第7図
は水温と水中音速との関係を示すグラフ、第8図は水温
と平均伝搬時間Toとの関係を示すグラフでちる。
符号説明
1.1’ + iat 1a’ 、1b+ jb’
”・・”超音波振動子、2 + 2’ r 2a r
2a’ 、 2b 、 2b’・・・・・・クサビ部材
、3・・・・・・流体、4・・・・・・管材()(イブ
)、5・・・・・・発信部、6a j 6b 、6C・
・・・・・切替スイッチ部、7・・・・・・受信及び時
間計測部、8,9・・・・・・記憶回路、10・・・・
・・時間差(ΔT)演算部、11・・・・・・平均伝搬
時間(TO)演算部、12・・・・・・音速補正演算部
、13・・・・・・スケールファクタ演算部、14・・
・・・・管材伝搬時間計測回路、15・・・・・・平均
値演算部。
M1図
冨 22
第 3 図
第 4 図
@ 5 図
薯8図
水清Fig. 1 is a block diagram showing an embodiment of this invention. Fig. 2 is a graph showing the relationship between fluid temperature and sound velocity in iron. Fig. 3 is a block diagram showing another embodiment of this invention. Fig. 4. is a configuration diagram showing a conventional example of an ultrasonic flowmeter, and Fig. 5 shows the average propagation time To and 1
/sin 2θ. Figure 6 is a graph showing the relationship between average propagation time TO and correction coefficient. Figure 7 is a graph showing the relationship between water temperature and underwater sound velocity. Figure 8 is water temperature and average. A graph showing the relationship with the propagation time To is shown. Code explanation 1.1' + iat 1a', 1b + jb'
"..." Ultrasonic transducer, 2 + 2' r 2a r
2a', 2b, 2b'... Wedge member, 3... Fluid, 4... Tube material () (Eve), 5... Transmitting part, 6a j 6b, 6C・
. . . Selector switch section, 7 . . . Reception and time measurement section, 8, 9 . . . Memory circuit, 10 . . .
... Time difference (ΔT) calculation section, 11 ... Average propagation time (TO) calculation section, 12 ... Sound speed correction calculation section, 13 ... Scale factor calculation section, 14・・・
... Pipe material propagation time measurement circuit, 15 ... Average value calculation section. M1 Figure 22 Figure 3 Figure 4 Figure @ 5 Figure 8 Mizuki
Claims (1)
逆方向にそれぞれ送受波することによりその伝搬時間の
差および両者の平均伝搬時間ならびに該平均伝搬時間と
所定の関数関係にある補正量を求め、伝搬時間差を用い
て演算される流量を該補正量にて補正して流量を計測す
る超音波流量計であつて、超音波の流体の流れを経由せ
ずに伝搬する伝搬時間から流体の温度を計測する温度計
測手段を備え、該温度により前記補正量を決定して流量
を計測することを特徴とする超音波流量計。By transmitting and receiving ultrasonic waves in the forward and reverse directions at a predetermined angle to the fluid flow, the difference in propagation time, the average propagation time of both, and a correction amount that has a predetermined functional relationship with the average propagation time This is an ultrasonic flowmeter that calculates the flow rate by correcting the flow rate calculated using the propagation time difference with the correction amount, and measures the flow rate based on the propagation time of ultrasonic waves that propagate without passing through the flow of the fluid. 1. An ultrasonic flowmeter comprising a temperature measuring means for measuring the temperature of the ultrasonic flowmeter, the correction amount being determined based on the temperature, and the flow rate being measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59240574A JPS61120015A (en) | 1984-11-16 | 1984-11-16 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59240574A JPS61120015A (en) | 1984-11-16 | 1984-11-16 | Ultrasonic flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61120015A true JPS61120015A (en) | 1986-06-07 |
Family
ID=17061544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59240574A Pending JPS61120015A (en) | 1984-11-16 | 1984-11-16 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61120015A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0598720A1 (en) * | 1991-08-14 | 1994-06-01 | Rockwell International Corp | Nonintrusive flow sensing system. |
JP2004264252A (en) * | 2003-03-04 | 2004-09-24 | Fuji Electric Retail Systems Co Ltd | Ultrasonic flow rate and temperature meter, and beverage discharging apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5374458A (en) * | 1976-12-14 | 1978-07-01 | Hitachi Ltd | Ultrasonic flow meter |
JPS5570715A (en) * | 1978-11-22 | 1980-05-28 | Fuji Electric Co Ltd | Ultrasonic wave flow meter |
-
1984
- 1984-11-16 JP JP59240574A patent/JPS61120015A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5374458A (en) * | 1976-12-14 | 1978-07-01 | Hitachi Ltd | Ultrasonic flow meter |
JPS5570715A (en) * | 1978-11-22 | 1980-05-28 | Fuji Electric Co Ltd | Ultrasonic wave flow meter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0598720A1 (en) * | 1991-08-14 | 1994-06-01 | Rockwell International Corp | Nonintrusive flow sensing system. |
EP0598720A4 (en) * | 1991-08-14 | 1994-06-29 | Rockwell International Corp | Nonintrusive flow sensing system. |
JP2004264252A (en) * | 2003-03-04 | 2004-09-24 | Fuji Electric Retail Systems Co Ltd | Ultrasonic flow rate and temperature meter, and beverage discharging apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4397194A (en) | Ultrasonic flowmeter including means to measure pipe geometry | |
CN107076602B (en) | Method and arrangement for clamp-on ultrasonic flow measurement and circuit arrangement for controlling clamp-on ultrasonic flow measurement | |
WO1988008516A1 (en) | Ultrasonic fluid flowmeter | |
JPS6098313A (en) | Ultrasonic flowmeter | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
JP2002340644A (en) | Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method | |
JP5141613B2 (en) | Ultrasonic flow meter | |
US7806003B2 (en) | Doppler type ultrasonic flow meter | |
JPS61120015A (en) | Ultrasonic flow meter | |
JP5965292B2 (en) | Ultrasonic flow meter | |
JP2011038870A (en) | Ultrasonic flow meter and flow rate measuring method using the same | |
JP3469405B2 (en) | Temperature measurement device | |
JP2001249039A (en) | Ultrasonic gas flow-velocity measuring method | |
JPH11351928A (en) | Flowmetr and flow rate measuring method | |
JP2956805B2 (en) | Ultrasonic flow meter | |
JPH0791996A (en) | Ultrasonic flowmeter | |
KR20110060536A (en) | Flux measurement method | |
JPH07139982A (en) | Ultrasonic flowmeter | |
JP4561071B2 (en) | Flow measuring device | |
JPH0554609B2 (en) | ||
JPS6254112A (en) | Thickness measuring method for scale in pipe | |
JP2853508B2 (en) | Gas flow meter | |
JPS6040916A (en) | Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter | |
JP3672997B2 (en) | Correlation flowmeter and vortex flowmeter | |
JPS638515A (en) | Ultrasonic flow rate measuring instrument |