JP3624743B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP3624743B2
JP3624743B2 JP14283999A JP14283999A JP3624743B2 JP 3624743 B2 JP3624743 B2 JP 3624743B2 JP 14283999 A JP14283999 A JP 14283999A JP 14283999 A JP14283999 A JP 14283999A JP 3624743 B2 JP3624743 B2 JP 3624743B2
Authority
JP
Japan
Prior art keywords
propagation time
ultrasonic
sound speed
measurement
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14283999A
Other languages
Japanese (ja)
Other versions
JP2000329597A5 (en
JP2000329597A (en
Inventor
裕治 中林
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP14283999A priority Critical patent/JP3624743B2/en
Publication of JP2000329597A publication Critical patent/JP2000329597A/en
Publication of JP2000329597A5 publication Critical patent/JP2000329597A5/ja
Application granted granted Critical
Publication of JP3624743B2 publication Critical patent/JP3624743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関するものである。
【0002】
【従来の技術】
従来の超音波流量計は、図5に示すようなものが一般的であった。この装置は流体の流れる測定流路1に設置した超音波振動子2と、超音波振動子2を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、超音波の伝播時間を測定する伝搬時間測定部5と、伝搬時間測定部5から測定データを受け取る演算部6と、超音波振動子2から送信した超音波を受ける超音波振動子7と、超音波振動子7の出力を増幅するアンプ8と、アンプ8の出力と基準電圧とを比較し大小関係が反転したときに伝搬時間測定部5を停止させる受信検知回路9とを有していた。
【0003】
そして、上記超音波流量計は、制御部4からスタート信号を受けた駆動回路3が超音波振動子2を一定時間パルス駆動を行うと同時に伝搬時間測定部5は制御部4からの信号によってに時間計測始める。パルス駆動された超音波振動子2からは超音波が送信される。超音波振動子2から送信した超音波は被測定流体中を伝搬し超音波振動子6で受信される。超音波振動子7の受信出力は、アンプ8において制御部4が設定した増幅率によって増幅される。そしてアンプ8の出力を受けた受信検知回路9で超音波の受信を判定し伝搬時間測定部5を停止させる。そして制御部4では伝搬時間測定部5から得た時間情報tから(式1)によって流速を求める(但し、伝搬時間測定部5から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする)。
【0004】
v=(L/t)−c ・・・(式1)
受信信号は、緩やかに立ち上がる波形となっており、超音波振動子の温度特性や、流速によって受信信号のレベルは変化する。前記基準電圧と受信信号のレベルの関係が適正でないと受信検知回路9の動作は安定せず測定精度が悪くなる。
【0005】
また、他の測定方法として受信検知回路9の判定結果を伝搬時間測定部5ではなく、帰還回路によって駆動回路3に返し、再度送信を行う場合もあった。このような繰り返し動作を予め設定した回数行いその時間を測定し、その測定時間を元に(式2)の計算によって流速を求める方法もあった(但し、繰り返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL,音速をc、被測定流体の流速をvとする)。
【0006】
v=L/(ts/n)−c・・・(式2)
この方法によれば(式1)の方法に比べn倍分解度を高くして測定することができる。
【0007】
また、超音波振動子2と超音波振動子7とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める方法もある(但し、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする)。
【0008】
v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。
【0009】
【発明が解決しようとする課題】
しかしながら従来の超音波流量計では、流量変動による波形や振幅の変化、あるいはノイズなどの影響によって受信検知しているタイミングがずれるため、正確な流量計測ができない場合があった。また測定流量が多くなると超音波の伝播経路に渦などの乱れが発生し、受信信号が短い時間で大きく変動するようになる。この場合受信タイミングがずれ誤測定をしてしまうが、それを誤測定と判定することができなかった。
【0010】
本発明は正常測定と誤測定とを判別し、誤測定による測定精度の低下を排除することを課題とするものである。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決するため誤測定判定手段が音速出力手段より得た被測定流体の音速と実際に流量測定のために測定した伝搬時間とを比較し、誤測定判定手段からの信号に基づいて流量を調節するとともに、誤測定判定手段が誤測定と判定したときに流量をより少なくなるように調節し、前記伝搬時間を再測定するようしたものである。
【0012】
上記本発明によれば音速と伝搬時間は逆比例の関係にあるため、求めた伝搬時間を音速出力手段より得た音速で誤測定かどうか確認することができ、誤測定判定手段が誤測定と 判定したときに流量調節手段を動作させ流量をより少なくなるように調節し伝搬時間を再測定するため、流量が大きくなったために発生した乱流や渦を押さえるので確実に正しい流量測定を行なうことができる。
【0013】
【発明の実施の形態】
第1の発明は、超音波信号を送信する第1の超音波振動子と、前記第1の超音波振動子から送信され流体を伝搬した超音波信号を受信する第2の超音波振動子と、前記超音波の伝搬時間を計測する伝搬時間計測部と、前記伝搬時間から演算によって流量を求める演算部と、前記流体の音速を出力する音速出力手段と、前記音速と前記伝搬時間から求めた音速とを比較し正常な測定かどうかを判定する誤測定判定手段とを備えている。上記発明によれば音速と伝搬時間は逆比例の関係にあるため、求めた伝搬時間を音速出力手段より得た音速で誤測定かどうかを確認することができる。
【0014】
第2の発明は、第1の発明において、誤測定判定手段が、超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との逆数和から求めた音速と前記音速出力手段で出力した音速とを比較し正常な測定かどうかを判定する。超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との逆数和は、流体の流速に関係なく被測定流体の流速0の時の音速に比例するので、2つの伝搬時間が正しければ前記逆数和に定数をかけることによって正確に音速を求めることができる。この演算によって求めた音速と音速出力手段によって求めた音速とを比較するので、正確に正常な伝搬時間の測定かどうかを確認することができる。
【0015】
第3の発明は、第1の発明において、誤測定判定手段が超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との平均値の逆数から求めた音速と前記音速出力手段で出力した音速とを比較し正常な測定かどうかを判定する。超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との平均値は、流体の流速が音速に比べて十分小さい範囲では被測定流体の流速0の時の音速の逆数に比例するので、逆数に定数をかけることによって2つの伝搬時間から音速を求めることができる。逆数和を求めるに比べ平均を求めることは容易であり、演算処理の負荷を低減しつつ正常な伝搬時間の測定かどうかを確認することができる。
【0016】
第4の発明は、前記第1の発明乃至第3の発明において、前記音速出力手段が、前記流体に接し流量の影響を受けない状況下において超音波を送受信する超音波振動子と、前記超音波の伝搬時間を測定するタイマを含み、前記流体に接し流量の影響を受けない状況下での伝搬時間から求めた音速を出力する。音速出力手段では流体の流速に影響しない音速を出力できるので、安定した音速を得ることができ、流量測定が誤計測か否かを判定することができる。
【0017】
第5の発明は、前記第1の発明乃至第3の発明において、前記音速出力手段は、被測定流体の温度を検知する温度センサと、前記温度センサにより検知された温度における音速を演算する音速変換部とを備え、前記演算された音速を出力する。被測定流体が決まっている場合、その流体の温度が決まれば流速0の時の音速は求まるので、温度センサが被測定流体の温度を測定し、測定した温度から被測定流体の流速0の時の音速を演算により求める。音波を伝搬させずに音速を測定するため超音波による流量計測が音波の干渉の影響を受けず音速測定を任意のタイミングで行なうことができる。また、流量測定と音速測定を同時に行なうことができるので、流量測定が正常な測定であったかどうかの判定基準の精度が向上し測定の正誤判定を精度よくできる。
【0018】
第6の発明は、第1の発明乃至第3の発明において、前記音速出力手段は、以前に測定した超音波の伝搬時間を記憶する伝搬時間記憶部を備え、前記伝搬時間記憶部に記憶された伝搬時間から求めた音速を出力する。伝播時間記憶部に記憶している超音波の伝搬時間から求めた音速と、新たに測定した伝搬時間から求めた音速とを比較し、大きく異なっていた場合この測定結果を誤測定と判定する。2つの音速がほぼ同じ値であれば正常な伝搬時間であったと判断すると同時に、記憶部に記憶している値を更新し次の判定に使用する。このため、音速測定のためのセンサを新たに付加する必要がないので流量計の構成を簡単にすることができる。
【0019】
第7の発明は、第1の発明乃至第6の発明において、前記誤測定判定手段からの信号に基づいて流量を調節する流量調節手段をさらに備え、前記誤測定判定手段が誤測定と判定したときに流量をより少なくなるように調節し、前記伝搬時間を再測定する。前記誤測定判定手段が誤測定と判定したときに前記流量調節手段を動作させ流量をより少なくなるように調節し伝搬時間を再測定するため、流量が大きくなったために発生した乱流や渦を押さえるので確実に正しい流量測定を行なうことができる。
【0020】
第8の発明は、第1の発明乃至第7の発明において、予め設定した回数前記第2の超音波振動子の出力を前記第1の超音波振動子に帰還し再度超音波信号を出力させる帰還回路をさらに備え、前記誤測定判定手段が誤測定と判定したときには前記帰還回路の帰還回数を少なくなるように設定し伝搬時間を再測定する。つまり測定に誤りが発生する機会を少なくして再測定するので、より正しい流量を求めることができる。
【0021】
第9の発明は、超音波信号を送信し、流体を伝搬した前記超音波信号を受信し、前記超音波の伝搬時間を計測し、前記伝搬時間から演算によって流量を求め、前記流体の音速と前記伝搬時間から求めた音速とを比較し正常な測定かどうかを判定する。
【0022】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0023】
(実施例1)
図1は本発明の実施例1の超音波流量計を示すブロック図である。
【0024】
図1において、10は被測定流体が流れる流路、流路10に設置した超音波振動子11と16、超音波振動子11を駆動する駆動回路12と、駆動回路12にスタート信号を出力する制御部13と、超音波の伝播時間を測定する伝搬時間測定部14と、伝搬時間測定部14から測定データを受け取る演算部15と、超音波振動子11から送信した超音波を受ける超音波振動子16と、超音波振動子16の出力を増幅するアンプ17と、アンプ17の出力波形から受信を検知し伝搬時間測定部14を停止させる受信検知回路18と、流量の影響を受けない同一流体に接した超音波振動子20と送受信回路21と超音波振動子20が超音波を送信してから受信するまでの時間を測定するタイマからなる音速出力手段19と、音速出力手段19によって求めた音速と伝搬時間とを比較し正常な測定かどうか判定する誤測定判定手段22と、超音波振動子11と16の接続を制御部13の出力によって入れ替える切替スイッチ23とを有している。
【0025】
次に動作、作用について説明すると、制御部13からスタート信号を受けた駆動回路12が超音波振動子11を駆動すると同時に伝搬時間測定部14は制御部13は時間計測を始める。また駆動回路12によって駆動された超音波振動子11は超音波を送信する。超音波振動子11が送信した超音波は被測定流体中を伝搬し超音波振動子16で受信される。超音波振動子16で受信した超音波信号を受けたアンプ17は増幅し受信検知回路18に出力する。受信検知回路18は超音波の受信を判定し伝搬時間測定部14を停止させる。この時の伝播時間をt1とする。次に制御回路は切替スイッチ23を動作させ駆動回路12と超音波振動子16、超音波振動子11とアンプ17をそれぞれ接続させる。その後上記と同様の動作を行いt1と逆方向の伝搬時間、つまり超音波センサ16から送信し超音波センサ11で受信した場合の超音波の伝搬時間t2を測定する。演算部13はt1、t2より(式3)によって流速を求めさらに流量を演算によって求める。
【0026】
音速出力手段19では、送受信回路21が超音波振動子20から超音波を送信し壁で反射した超音波を超音波振動子20で受信するまでの時間を誤測定判定手段22に出力する。誤測定判定手段22は音速出力手段によって求めた音速に流体の流速の最大値に相当する幅を持たせ、t1、t2より求めた音速と比較する。t1、t2が幅の中にあれば正しい測定結果と判断し、測定結果を採用する。t1、t2が幅の外にあれば異常測定と判断し測定結果を破棄する。
【0027】
この実施例の構成によれば、流体の流速による影響を受けずに音速出力手段19が音速を検知できるので、安定した音速を得ることができ、正しい測定が異常測定かを判断することができる。
【0028】
また、上記方法と別に、t1、t2の逆数和と音速出力手段19によって求めた音速とを比較することによって正常測定か異常測定かを判定することもできる。逆数和は(式4)のようになる。
【0029】
となりt1、t2の逆数和に定数をかけたものが音速なので、音速出力手段によって求めた音速と比較する場合流速を考慮する必要がなく、考慮する場合であってもわずかの流量相当であるので、より正確に異常測定を判断することができる。
【0030】
また、上記方法とは別に、t1、t2の平均値の逆数と音速出力手段19によって求めた音速とを比較することによって異常測定を判定することもできる。平均値の逆数は(式6)のようになる。
【0031】
となりt1、t2の平均の逆数に定数をかけたものがほぼ音速となる。このとき音速出力手段によって求めた音速と比較する場合に流速を考慮する必要がなく、考慮する場合であってもわずかの流量相当であるので、より確実に異常測定か否かを判断することができると同時に、逆数和を求める場合の計算と比較し、計算量を低減することができる。
【0032】
(実施例2)
図2は本発明の実施例2の超音波流量計を示す図である。
【0033】
本実施例2において、実施例1と異なる点は音速出力手段19が温度センサ24と音速変換部25で構成している点である。
【0034】
なお、実施例1と同一符号のものは同一構成要素とし、説明は省略する。
【0035】
次に動作、作用を説明する。被測定流体が決まっている場合、その流体の温度が決まれば流速0の時の音速は求まる。温度センサが被測定流体の温度を測定し、音速変換部25が被測定流体の温度から流速0の音速を演算により求める。この方法によれば音波を伝搬させずに音速を測定するため、音速測定は流量計測に音波の干渉を与えることなく任意のタイミングでできる。また、流量測定と音速測定を同時に行なうことができ、流量測定が正常な測定であったかどうかの判定基準の精度をよくすることができる。
【0036】
(実施例3)
図3は本発明の実施例3の超音波流量計を示す図である。
【0037】
本実施例3において、実施例1と異なる点は音速出力手段19が以前に測定した超音波の伝搬時間を記憶する伝搬時間記憶部26で構成している点である。
【0038】
なお、実施例1と同一符号のものは同一構成要素とし、説明は省略する。
【0039】
次に動作、作用を説明すると、伝搬時間記憶部26に記憶している超音波の伝搬時間から求めた音速と、新たに測定した伝搬時間から式(5)あるいは式(7)によって求めた音速とを比較し、あらかじめ設定した値以上異なっていた場合この測定結果を誤測定と判定する。2つの音速がほぼ同じ値であれば正常な伝搬時間であったと判断すると同時に、記憶部に記憶している値を更新し次の判定に使用する。
【0040】
一定条件のもとで音速は大きく変化することはないので、測定間隔の間に予測される音速変化を見込んだ値を音速変化の許容値として設定し、その範囲内であれば正しい測定であると判断することができる。
【0041】
このため、音速測定のためのセンサを新たに付加する必要がないので流量計の構成を簡単にすることができる。
【0042】
(実施例4)
図4は本発明の実施例3の超音波流量計を示す図である。
【0043】
なお、実施例1と同一符号のものは同一構成要素とし、説明は省略する。
【0044】
本実施例4において、実施例1と異なる点は誤測定判定手段22が設定した回数受信検知回路18の出力を駆動回路12に帰還し再度超音波信号を出力させる帰還回路28と、誤測定判定手段22からの指令信号によって流量を調節する流量調節手段27とを有する点である。
【0045】
次に動作、作用を説明すると、誤測定判定手段が誤測定と判定したときに流量調節手段27を動作させ流量をより少なくなるように調節し伝搬時間を再測定するため、流量が大きくなったために発生した乱流や渦を押さえるので確実に正しい流量測定を行なうことができる。
【0046】
このため、回路やその他の機能異常のため流量測定ができなくなったのか、過大流量のため超音波の伝搬が乱れ流量測定ができなくなったのかを判断することができる。
【0047】
また、誤測定判定手段22が誤測定と判定したときに帰還回路28の帰還回数を少なく設定し伝搬時間を再測定する。つまり測定に誤りが発生する機会を少なくして再測定するので、より正しい流量を求めることができる。
【0048】
以上の説明から明らかのように、本発明の各実施の形態における超音波流量計によれば次の効果を奏する。
【0049】
(1)誤測定判定手段が音速出力手段より得た被測定流体の音速と実際に流量測定のために測定した伝搬時間から求めた音速とを比較する。音速と伝搬時間は逆比例の関係にあるため、求めた伝搬時間を音速出力手段より得た音速で誤測定かどうか確認することができ、誤測定を測定結果に反映することがなく、正確な流量計を実現することができる。
【0050】
(2)超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との逆数和から求めた音速と音速出力手段から出力された音速とを比較し判定するので、2つの伝搬時間から容易に正確な音速を求め誤測定かどうかを判断するとができる。
【0051】
(3)超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との平均値の逆数から求めた音速と音速出力手段から出力された音速とを比較し判定する。超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との平均値は、流体の流速が音速に比べて十分小さい範囲では被測定流体の流速0の時の音速の逆数に比例するので、逆数に定数をかけることによって2つの伝搬時間から音速を求めることができる。よって逆数和を求めのるに比べ平均を求めることは容易であり、演算処理の負荷を低減しつつ正常な伝搬時間の測定かどうかを確認することができる。
【0052】
(4)前記流体に接し流量の影響を受けない状況下での超音波の伝搬時間から求めた音速を出力し、この音速と流量測定のために測定した伝搬時間から求めた音速とを比較する。このため、流体の流速に影響しない安定した音速と流量測定のために測定した伝搬時間から求めた音速とを比較することができ、流量測定が誤計測か否かを判定することができる。
【0053】
(5)被測定流体の温度を検知する温度センサと音速変換部よりなる音速出力手段を有している。被測定流体が決まっている場合、その流体の温度が決まれば流速0の時の音速は求まるので、温度センサが被測定流体の温度を測定し、測定した温度から被測定流体の流速0の時の音速を演算により求める。よって音波を伝搬させずに音速を測定するため超音波による流量計測が音波の干渉の影響を受けず音速測定を任意のタイミングで行なうことができると共に、流量測定と音速測定を同時に行なうことができるので、流量測定が正常な測定であったかどうかの判定基準の精度が向上し、その結果測定の正誤判定を精度よく行うことができる。
【0054】
(6)音速出力手段が以前に測定した超音波の伝搬時間を記憶する伝搬時間記憶部を有し、伝搬時間記憶部に記憶している超音波の伝搬時間から求めた音速と、新たに測定した伝搬時間から求めた音速とを比較し、大きく異なっていた場合この測定結果を誤測定と判定する。2つの音速がほぼ同じ値であれば正常な伝搬時間であったと判断すると同時に、記憶部に記憶している値を更新し次の判定に使用する。このため、音速測定のためのセンサを新たに付加する必要がないので流量計の構成を簡単にすることができる。
【0055】
(7)誤測定判定手段が誤測定と判定したときに流量調節手段を動作させ流量をより少なくなるように調節し伝搬時間を再測定するため、流量が大きくなったために発生した乱流や渦を押さえるので確実に正しい流量測定を行なうことができる。このため、回路やその他の機能異常のため流量測定ができなくなったのか、過大流量のため超音波の伝搬が乱れ流量測定ができなくなったのかを判断することができる。
【0056】
(8)予め設定した回数超音波振動子の出力を第1の超音波振動子に帰還し再度超音波信号を出力させる帰還回路と、計測した伝搬時間が適正かどうかを判定する誤測定判定手段とを有し、誤測定判定手段が誤測定と判定したときに帰還回路の帰還回数を少なく設定し伝搬時間を再測定する。このため測定に誤りが発生する機会を少なくして再測定するので、より正しい流量測定を行うことができる。
【0057】
(9)超音波信号を送信し、流体を伝搬した前記超音波信号を受信し、前記超音波の伝搬時間を計測し、前記伝搬時間から演算によって流量を求め、前記流体の音速と前記伝搬時間から求めた音速とを比較し正常な測定かどうかを判定する。音速と伝搬時間は逆比例の関係にあるため、求めた伝搬時間を音速出力手段より得た音速で誤測定かどうかを確認することができる。
【0058】
【発明の効果】
本発明の超音波流量計によれば、誤測定判定手段が音速出力手段より得た被測定流体の音速と実際に流量測定のために測定した伝搬時間から求めた音速とを比較する。音速と伝搬時間は逆比例の関係にあるため、求めた伝搬時間を音速出力手段より得た音速で誤測定かどうか確認することができ、誤測定判定手段が誤測定と判定したときに流量調節手段を動作させ流量をより少なくなるように調節し伝搬時間を再測定するため、流量が大きくなったために発生した乱流や渦を押さえるので確実に正しい流量測定を行なうことができる。
【図面の簡単な説明】
【図1】本発明の実施例1における超音波流量計のブロック図
【図2】本発明の実施例2における超音波流量計のブロック図
【図3】本発明の実施例3における超音波流量計のブロック図
【図4】本発明の実施例4における超音波流量計のブロック図
【図5】従来の超音波流量計のブロック図
【符号の説明】
11 超音波振動子
15 演算部
16 超音波振動子
19 音速出力手段
22 誤測定判定手段
24 温度センサ
26 伝搬時間記憶部
27 流量調節手段
28 帰還回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flowmeter.
[0002]
[Prior art]
Conventional ultrasonic flowmeters are generally as shown in FIG. This apparatus includes an ultrasonic transducer 2 installed in a measurement flow path 1 through which a fluid flows, a drive circuit 3 that drives the ultrasonic transducer 2, a control unit 4 that outputs a start signal to the drive circuit 3, an ultrasonic wave Propagation time measurement unit 5 that measures propagation time, calculation unit 6 that receives measurement data from propagation time measurement unit 5, ultrasonic transducer 7 that receives ultrasonic waves transmitted from ultrasonic transducer 2, and ultrasonic transducer 7 and the reception detection circuit 9 that compares the output of the amplifier 8 with the reference voltage and stops the propagation time measurement unit 5 when the magnitude relationship is inverted.
[0003]
In the ultrasonic flow meter, the drive circuit 3 that has received the start signal from the control unit 4 performs pulse driving of the ultrasonic transducer 2 for a predetermined time, and at the same time, the propagation time measurement unit 5 receives the signal from the control unit 4. Start measuring time. Ultrasound is transmitted from the pulse-driven ultrasonic transducer 2. The ultrasonic wave transmitted from the ultrasonic transducer 2 propagates through the fluid to be measured and is received by the ultrasonic transducer 6. The reception output of the ultrasonic transducer 7 is amplified by the amplification factor set by the control unit 4 in the amplifier 8. Then, the reception detection circuit 9 receiving the output of the amplifier 8 determines reception of the ultrasonic wave and stops the propagation time measuring unit 5. Then, the control unit 4 obtains the flow velocity from the time information t obtained from the propagation time measuring unit 5 by (Equation 1) (however, the measurement time obtained from the propagation time measuring unit 5 is t and the flow direction between the ultrasonic transducers is determined. The effective distance is L, the speed of sound is c, and the flow velocity of the fluid to be measured is v).
[0004]
v = (L / t) -c (Formula 1)
The received signal has a waveform that rises gently, and the level of the received signal changes depending on the temperature characteristics of the ultrasonic transducer and the flow velocity. If the relationship between the reference voltage and the level of the received signal is not appropriate, the operation of the reception detection circuit 9 is not stable and the measurement accuracy is deteriorated.
[0005]
As another measurement method, the determination result of the reception detection circuit 9 may be returned to the drive circuit 3 by the feedback circuit instead of the propagation time measurement unit 5 and transmitted again. There is a method in which such a repeated operation is performed a predetermined number of times and the time is measured, and the flow velocity is obtained by calculation of (Equation 2) based on the measurement time (however, the number of repetitions is n and the measurement time is ts). The effective distance in the flow direction between the ultrasonic transducers is L, the speed of sound is c, and the flow velocity of the fluid to be measured is v).
[0006]
v = L / (ts / n) -c (Formula 2)
According to this method, it is possible to measure with a higher n-fold resolution than the method of (Equation 1).
[0007]
There is also a method of switching the ultrasonic transducer 2 and the ultrasonic transducer 7 and measuring the respective propagation times from upstream to downstream and downstream to upstream of the fluid to be measured, and obtaining the velocity v from (Equation 3). (However, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.)
[0008]
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like.
[0009]
[Problems to be solved by the invention]
However, in the conventional ultrasonic flowmeter, since the timing of reception detection is shifted due to a change in waveform or amplitude due to flow rate fluctuation or noise, there are cases where accurate flow rate measurement cannot be performed. In addition, when the measurement flow rate increases, turbulence such as vortices occurs in the propagation path of the ultrasonic wave, and the received signal greatly fluctuates in a short time. In this case, the reception timing is shifted and erroneous measurement is performed, but it cannot be determined as erroneous measurement.
[0010]
An object of the present invention is to discriminate between normal measurement and erroneous measurement and to eliminate a decrease in measurement accuracy due to erroneous measurement.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention compares the sound speed of the fluid to be measured obtained by the erroneous measurement determination means from the sound speed output means with the propagation time actually measured for measuring the flow rate, and generates a signal from the erroneous measurement determination means. The flow rate is adjusted based on this, and the flow rate is adjusted to be smaller when the erroneous measurement determination means determines that the measurement is erroneous, and the propagation time is remeasured .
[0012]
According to the present invention, since the sound speed and the propagation time are in an inversely proportional relationship, it is possible to confirm whether the obtained propagation time is an erroneous measurement with the sound speed obtained from the sound speed output means , and the erroneous measurement determination means is an erroneous measurement. When the judgment is made, the flow rate adjustment means is operated to adjust the flow rate to be smaller and the propagation time is re-measured, so that the turbulent flow and vortex generated due to the increased flow rate are suppressed so that the correct flow rate can be measured. It is Ru can.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The first invention includes a first ultrasonic transducer that transmits an ultrasonic signal, a second ultrasonic transducer that receives an ultrasonic signal transmitted from the first ultrasonic transducer and propagated through a fluid, and A propagation time measurement unit that measures the propagation time of the ultrasonic wave, a calculation unit that obtains a flow rate by calculation from the propagation time, a sonic speed output means that outputs a sound speed of the fluid, and a speed of sound obtained from the sound speed and the propagation time. Erroneous measurement determination means for comparing the speed of sound and determining whether or not the measurement is normal. According to the above invention, since the sound speed and the propagation time are in an inversely proportional relationship, it is possible to confirm whether the obtained propagation time is erroneously measured with the sound speed obtained from the sound speed output means.
[0014]
According to a second invention, in the first invention , the erroneous measurement determination means outputs the sound speed obtained from the reciprocal sum of the propagation time in the ultrasonic flow direction and the propagation time in the backward flow direction and the sound speed output means. Compare with the speed of sound to determine whether the measurement is normal. The reciprocal sum of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction is proportional to the speed of sound when the flow velocity of the fluid to be measured is 0 regardless of the flow velocity of the fluid. By multiplying the reciprocal sum by a constant, the speed of sound can be obtained accurately. Since the sound speed obtained by this calculation is compared with the sound speed obtained by the sound speed output means, it can be confirmed whether or not the normal propagation time is correctly measured.
[0015]
According to a third invention, in the first invention , the erroneous measurement determining means outputs the sound speed obtained from the reciprocal of the average value of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction and the sound speed output means. The sound speed is compared to determine whether the measurement is normal. Since the average value of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction is proportional to the reciprocal of the sound speed when the fluid flow velocity is sufficiently smaller than the sound velocity, the flow velocity of the fluid to be measured is zero. By multiplying the reciprocal by a constant, the sound speed can be obtained from the two propagation times. It is easier to obtain the average than to obtain the reciprocal sum, and it is possible to confirm whether or not the normal propagation time is measured while reducing the processing load.
[0016]
According to a fourth aspect of the present invention, in the first to third aspects of the invention , the sonic velocity output means transmits and receives an ultrasonic wave in a state where it is in contact with the fluid and is not affected by the flow rate, and the supersonic wave It includes a timer for measuring the propagation time of the sound wave, and outputs the speed of sound obtained from the propagation time in a state where it is in contact with the fluid and is not affected by the flow rate. Since the sonic velocity output means can output a sonic velocity that does not affect the flow velocity of the fluid, a stable sonic velocity can be obtained, and it can be determined whether or not the flow measurement is an erroneous measurement.
[0017]
According to a fifth invention, in the first to third inventions , the sound velocity output means is a temperature sensor that detects a temperature of a fluid to be measured, and a sound velocity that calculates a sound velocity at a temperature detected by the temperature sensor. A converter, and outputs the calculated sound speed. If the fluid to be measured is determined, the sound velocity at the flow velocity of 0 can be obtained if the temperature of the fluid is determined. Therefore, the temperature sensor measures the temperature of the fluid to be measured, and when the flow velocity of the fluid to be measured is 0 from the measured temperature. Is obtained by calculation. Since the sound velocity is measured without propagating the sound wave, the flow rate measurement by the ultrasonic wave is not affected by the interference of the sound wave, and the sound velocity measurement can be performed at an arbitrary timing. Further, since the flow rate measurement and the sound velocity measurement can be performed at the same time, the accuracy of the determination criterion as to whether or not the flow rate measurement is normal is improved, and the correctness / incorrectness of the measurement can be accurately determined.
[0018]
According to a sixth invention, in the first to third inventions , the sound velocity output means includes a propagation time storage unit that stores a previously measured ultrasonic propagation time, and is stored in the propagation time storage unit. The speed of sound obtained from the propagation time is output. The speed of sound obtained from the propagation time of the ultrasonic wave stored in the propagation time storage unit is compared with the speed of sound obtained from the newly measured propagation time, and if there is a large difference, the measurement result is determined as an erroneous measurement. If the two sound velocities are approximately the same value, it is determined that the propagation time is normal, and at the same time, the value stored in the storage unit is updated and used for the next determination. For this reason, since it is not necessary to newly add a sensor for measuring the speed of sound, the configuration of the flow meter can be simplified.
[0019]
According to a seventh invention, in the first invention to the sixth invention , further comprising a flow rate adjusting means for adjusting a flow rate based on a signal from the erroneous measurement determination means, wherein the erroneous measurement determination means has determined an erroneous measurement. Sometimes the flow rate is adjusted to be lower and the propagation time is re-measured. When the erroneous measurement determination means determines that the measurement is incorrect, the flow rate adjusting means is operated to adjust the flow rate to be smaller and re-measure the propagation time. Since it is held down, the correct flow rate can be measured reliably.
[0020]
In an eighth aspect based on the first to seventh aspects, the output of the second ultrasonic transducer is fed back to the first ultrasonic transducer a predetermined number of times and an ultrasonic signal is output again. A feedback circuit is further provided, and when the erroneous measurement determination means determines that an erroneous measurement is made, the number of feedbacks of the feedback circuit is set to be reduced, and the propagation time is measured again. In other words, since the measurement is performed again with fewer opportunities for error, a more accurate flow rate can be obtained.
[0021]
The ninth invention transmits an ultrasonic signal, receives the ultrasonic signal propagated through the fluid, measures the propagation time of the ultrasonic wave, obtains a flow rate by calculation from the propagation time, The sound speed obtained from the propagation time is compared to determine whether the measurement is normal.
[0022]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0023]
(Example 1)
FIG. 1 is a block diagram showing an ultrasonic flowmeter according to a first embodiment of the present invention.
[0024]
In FIG. 1, reference numeral 10 denotes a flow path through which a fluid to be measured flows, ultrasonic vibrators 11 and 16 installed in the flow path 10, a drive circuit 12 that drives the ultrasonic vibrator 11, and a start signal to the drive circuit 12. The control unit 13, the propagation time measurement unit 14 that measures the propagation time of the ultrasonic wave, the calculation unit 15 that receives the measurement data from the propagation time measurement unit 14, and the ultrasonic vibration that receives the ultrasonic wave transmitted from the ultrasonic transducer 11 A receiver 16, an amplifier 17 for amplifying the output of the ultrasonic transducer 16, a reception detection circuit 18 for detecting reception from the output waveform of the amplifier 17 and stopping the propagation time measuring unit 14, and the same fluid not affected by the flow rate A sound velocity output means 19 comprising a timer for measuring a time from when the ultrasonic transducer 20 in contact with the transmitter / receiver circuit 21 and the ultrasonic transducer 20 transmit an ultrasonic wave to receiving the ultrasonic wave; Erroneous measurement determination means 22 that compares the speed of sound and propagation time obtained in this way to determine whether the measurement is normal, and a selector switch 23 that switches the connection of the ultrasonic transducers 11 and 16 with the output of the control unit 13. Yes.
[0025]
Next, the operation and action will be described. At the same time as the drive circuit 12 receiving the start signal from the control unit 13 drives the ultrasonic transducer 11, the propagation time measurement unit 14 starts the time measurement by the control unit 13. The ultrasonic transducer 11 driven by the drive circuit 12 transmits ultrasonic waves. The ultrasonic wave transmitted by the ultrasonic transducer 11 propagates through the fluid to be measured and is received by the ultrasonic transducer 16. Upon receiving the ultrasonic signal received by the ultrasonic transducer 16, the amplifier 17 amplifies and outputs the amplified signal to the reception detection circuit 18. The reception detection circuit 18 determines reception of the ultrasonic wave and stops the propagation time measurement unit 14. The propagation time at this time is assumed to be t1. Next, the control circuit operates the changeover switch 23 to connect the drive circuit 12 and the ultrasonic transducer 16, and the ultrasonic transducer 11 and the amplifier 17, respectively. Thereafter, the same operation as described above is performed to measure the propagation time in the direction opposite to t1, that is, the propagation time t2 of the ultrasonic wave transmitted from the ultrasonic sensor 16 and received by the ultrasonic sensor 11. The calculation unit 13 obtains the flow rate from (Equation 3) from t1 and t2, and further obtains the flow rate by calculation.
[0026]
In the sonic output means 19, the transmission / reception circuit 21 transmits the ultrasonic wave from the ultrasonic vibrator 20 and outputs the ultrasonic wave reflected by the wall to the erroneous measurement determining means 22. The erroneous measurement determination means 22 gives a width corresponding to the maximum value of the fluid flow velocity to the sound speed obtained by the sound speed output means, and compares it with the sound speed obtained from t1 and t2. If t1 and t2 are within the width, it is determined that the measurement result is correct, and the measurement result is adopted. If t1 and t2 are outside the width, it is determined that the measurement is abnormal, and the measurement result is discarded.
[0027]
According to the configuration of this embodiment, since the sound speed output means 19 can detect the sound speed without being affected by the flow velocity of the fluid, a stable sound speed can be obtained, and it can be determined whether the correct measurement is an abnormal measurement. .
[0028]
In addition to the above method, it is also possible to determine whether the measurement is normal or abnormal by comparing the reciprocal sum of t1 and t2 with the sound speed obtained by the sound speed output means 19. The reciprocal sum is as shown in (Formula 4).
[0029]
Since the sound speed is obtained by multiplying the reciprocal sum of t1 and t2 by a constant, it is not necessary to consider the flow velocity when compared with the sound velocity obtained by the sound velocity output means, and even if it is considered, it corresponds to a slight flow rate. Therefore, it is possible to determine an abnormal measurement more accurately.
[0030]
In addition to the above method, the abnormal measurement can be determined by comparing the reciprocal of the average value of t1 and t2 with the sound speed obtained by the sound speed output means 19. The reciprocal of the average value is as shown in (Equation 6).
[0031]
The sound speed is almost equal to the average reciprocal of t1 and t2 multiplied by a constant. At this time, it is not necessary to consider the flow velocity when comparing with the sound velocity obtained by the sound velocity output means, and even if it is considered, it corresponds to a slight flow rate, so it is possible to more reliably determine whether or not abnormal measurement is performed. At the same time, the amount of calculation can be reduced compared with the calculation for obtaining the reciprocal sum.
[0032]
(Example 2)
FIG. 2 is a diagram showing an ultrasonic flowmeter according to a second embodiment of the present invention.
[0033]
The second embodiment is different from the first embodiment in that the sound speed output means 19 includes a temperature sensor 24 and a sound speed conversion unit 25.
[0034]
In addition, the thing of the same code | symbol as Example 1 is made into the same component, and description is abbreviate | omitted.
[0035]
Next, the operation and action will be described. If the fluid to be measured is determined, the sound velocity at a flow velocity of 0 can be obtained if the temperature of the fluid is determined. The temperature sensor measures the temperature of the fluid to be measured, and the sound velocity conversion unit 25 obtains the sound velocity at a flow velocity of 0 from the temperature of the fluid to be measured by calculation. According to this method, since the sound speed is measured without propagating the sound wave, the sound speed measurement can be performed at an arbitrary timing without giving the sound wave interference to the flow rate measurement. Further, the flow rate measurement and the sound velocity measurement can be performed at the same time, and the accuracy of the criterion for determining whether or not the flow rate measurement is a normal measurement can be improved.
[0036]
(Example 3)
FIG. 3 is a diagram showing an ultrasonic flowmeter according to a third embodiment of the present invention.
[0037]
The third embodiment is different from the first embodiment in that the sound speed output unit 19 is configured by a propagation time storage unit 26 that stores the propagation time of the ultrasonic wave measured previously.
[0038]
In addition, the thing of the same code | symbol as Example 1 is made into the same component, and description is abbreviate | omitted.
[0039]
Next, the operation and action will be described. The sound speed obtained from the propagation time of the ultrasonic wave stored in the propagation time storage unit 26 and the sound speed obtained from the newly measured propagation time by the equation (5) or the equation (7). And if the difference is more than a preset value, this measurement result is determined to be erroneous measurement. If the two sound velocities are approximately the same value, it is determined that the propagation time is normal, and at the same time, the value stored in the storage unit is updated and used for the next determination.
[0040]
Since the sound speed does not change significantly under certain conditions, a value that allows for the expected change in sound speed during the measurement interval is set as an allowable value for the sound speed change, and if it is within that range, the sound is measured correctly. It can be judged.
[0041]
For this reason, since it is not necessary to newly add a sensor for measuring the speed of sound, the configuration of the flow meter can be simplified.
[0042]
(Example 4)
FIG. 4 is a diagram showing an ultrasonic flowmeter according to the third embodiment of the present invention.
[0043]
In addition, the thing of the same code | symbol as Example 1 is made into the same component, and description is abbreviate | omitted.
[0044]
The fourth embodiment is different from the first embodiment in that a feedback circuit 28 that feeds back the output of the number of times reception detection circuit 18 set by the erroneous measurement determination means 22 to the drive circuit 12 and outputs an ultrasonic signal again, and erroneous measurement determination The flow rate adjusting means 27 for adjusting the flow rate according to a command signal from the means 22 is provided.
[0045]
Next, the operation and action will be described. Since the flow rate adjustment means 27 is operated to adjust the flow rate to be smaller and the propagation time is remeasured when the erroneous measurement determination unit determines that the measurement is erroneous, the flow rate is increased. Since the turbulent flow and vortices generated in the chamber are suppressed, the correct flow rate can be measured reliably.
[0046]
For this reason, it is possible to determine whether the flow measurement cannot be performed due to an abnormal circuit or other function, or whether the ultrasonic wave propagation is disturbed due to the excessive flow and the flow measurement cannot be performed.
[0047]
Further, when the erroneous measurement determination means 22 determines that there is an erroneous measurement, the number of feedbacks of the feedback circuit 28 is set to be small and the propagation time is remeasured. In other words, since the measurement is performed again with fewer opportunities for error, a more accurate flow rate can be obtained.
[0048]
As is apparent from the above description, the ultrasonic flowmeter according to each embodiment of the present invention has the following effects.
[0049]
(1) The erroneous measurement determination means compares the sound speed of the fluid to be measured obtained from the sound speed output means with the sound speed obtained from the propagation time actually measured for flow rate measurement. Since the speed of sound and the propagation time are inversely proportional, it is possible to check whether the obtained propagation time is an erroneous measurement using the sound speed obtained from the sound speed output means. A flow meter can be realized.
[0050]
(2) Since the sound speed obtained from the reciprocal sum of the propagation time in the flow direction of the ultrasonic wave and the propagation time in the backward flow direction is compared with the sound speed output from the sound speed output means, determination is made easily from the two propagation times. It is possible to determine whether it is an erroneous measurement by obtaining an accurate sound speed.
[0051]
(3) The sound speed obtained from the reciprocal of the average value of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction is compared with the sound speed output from the sound speed output means. Since the average value of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction is proportional to the reciprocal of the sound speed when the fluid flow velocity is sufficiently smaller than the sound velocity, the flow velocity of the fluid to be measured is zero. By multiplying the reciprocal by a constant, the sound speed can be obtained from the two propagation times. Accordingly, it is easier to obtain the average than to obtain the reciprocal sum, and it is possible to confirm whether or not the normal propagation time is measured while reducing the processing load.
[0052]
(4) Outputs the speed of sound obtained from the propagation time of the ultrasonic wave in a state where it is in contact with the fluid and is not affected by the flow rate, and compares this sound speed with the speed of sound obtained from the propagation time measured for measuring the flow rate. . For this reason, it is possible to compare a stable sound velocity that does not affect the flow velocity of the fluid and a sound velocity obtained from the propagation time measured for the flow rate measurement, and to determine whether or not the flow rate measurement is an erroneous measurement.
[0053]
(5) It has a sonic velocity output means comprising a temperature sensor for detecting the temperature of the fluid to be measured and a sonic velocity conversion unit. If the fluid to be measured is determined, the sound velocity at the flow velocity of 0 can be obtained if the temperature of the fluid is determined. Therefore, the temperature sensor measures the temperature of the fluid to be measured, and when the flow velocity of the fluid to be measured is 0 from the measured temperature. Is obtained by calculation. Therefore, since the sound velocity is measured without propagating the sound wave, the flow rate measurement by the ultrasonic wave is not affected by the interference of the sound wave, and the sound velocity measurement can be performed at an arbitrary timing, and the flow rate measurement and the sound velocity measurement can be simultaneously performed. Therefore, the accuracy of the criterion for determining whether or not the flow rate measurement is normal is improved, and as a result, whether the measurement is correct or incorrect can be accurately performed.
[0054]
(6) The sound speed output means has a propagation time storage unit for storing the propagation time of the ultrasonic wave measured previously, and the sound speed obtained from the propagation time of the ultrasonic wave stored in the propagation time storage unit is newly measured. The sound speed obtained from the propagation time measured is compared, and if there is a large difference, this measurement result is determined as an erroneous measurement. If the two sound velocities are approximately the same value, it is determined that the propagation time is normal, and at the same time, the value stored in the storage unit is updated and used for the next determination. For this reason, since it is not necessary to newly add a sensor for measuring the speed of sound, the configuration of the flow meter can be simplified.
[0055]
(7) When the erroneous measurement determination means determines that there is an erroneous measurement, the flow rate adjustment means is operated to adjust the flow rate to be smaller and the propagation time is remeasured. Therefore, the correct flow rate can be measured reliably. For this reason, it is possible to determine whether the flow measurement cannot be performed due to an abnormal circuit or other function, or whether the ultrasonic wave propagation is disturbed due to the excessive flow and the flow measurement cannot be performed.
[0056]
(8) A feedback circuit for returning the output of the ultrasonic transducer to the first ultrasonic transducer for a preset number of times and outputting the ultrasonic signal again, and erroneous measurement determination means for determining whether the measured propagation time is appropriate When the erroneous measurement determination means determines that the measurement is incorrect, the number of feedbacks of the feedback circuit is set to be small and the propagation time is remeasured. For this reason, since the measurement is performed again with fewer opportunities for error, more accurate flow rate measurement can be performed.
[0057]
(9) An ultrasonic signal is transmitted, the ultrasonic signal propagated through the fluid is received, a propagation time of the ultrasonic wave is measured, a flow rate is obtained by calculation from the propagation time, and a sound speed and the propagation time of the fluid are calculated. The sound speed obtained from the above is compared to determine whether the measurement is normal. Since the sound speed and the propagation time are in an inversely proportional relationship, it is possible to confirm whether the obtained propagation time is erroneously measured with the sound speed obtained from the sound speed output means.
[0058]
【The invention's effect】
According to the ultrasonic flowmeter of the present invention, the erroneous measurement determination means compares the sound speed of the fluid to be measured obtained from the sound speed output means with the sound speed obtained from the propagation time actually measured for flow measurement. Since the acoustic velocity and the propagation time in inverse proportion relationship, determined propagation time to be able to determine whether erroneous measurement at the speed of sound obtained from the sound velocity output means is, flow rate control when the erroneous measurement determining means determines that erroneous measurement Since the means is operated to adjust the flow rate to be smaller and the propagation time is measured again, the turbulent flow and vortex generated due to the increased flow rate are suppressed, so that the correct flow rate can be measured reliably .
[Brief description of the drawings]
FIG. 1 is a block diagram of an ultrasonic flowmeter according to Embodiment 1 of the present invention. FIG. 2 is a block diagram of an ultrasonic flowmeter according to Embodiment 2 of the present invention. FIG. 4 is a block diagram of an ultrasonic flowmeter in Embodiment 4 of the present invention. FIG. 5 is a block diagram of a conventional ultrasonic flowmeter.
DESCRIPTION OF SYMBOLS 11 Ultrasonic vibrator 15 Calculation part 16 Ultrasonic vibrator 19 Sonic output means 22 Error measurement judgment means 24 Temperature sensor 26 Propagation time memory | storage part 27 Flow volume adjustment means 28 Feedback circuit

Claims (7)

超音波信号を送信する第1の超音波振動子と、前記第1の超音波振動子から送信され流体を伝搬した超音波信号を受信する第2の超音波振動子と、前記超音波の伝搬時間を計測する伝搬時間計測部と、前記伝搬時間から演算によって流量を求める演算部と、前記流体の音速を出力する音速出力手段と、前記音速と前記伝搬時間から求めた音速とを比較し正常な測定かどうかを判定する誤測定判定手段と、前記誤測定判定手段からの信号に基づいて流量を調節する流量調節手段と、を備え、前記誤測定判定手段が誤測定と判定したときに流量をより少なくなるように調節し、前記伝搬時間を再測定する超音波流量計。A first ultrasonic transducer for transmitting an ultrasonic signal, a second ultrasonic transducer for receiving an ultrasonic signal transmitted from the first ultrasonic transducer and propagated through a fluid, and propagation of the ultrasonic wave Comparison is normally made between the propagation time measurement unit that measures time, the calculation unit that calculates the flow rate from the propagation time, the sound speed output means that outputs the sound speed of the fluid, and the sound speed and the sound speed determined from the propagation time. An erroneous measurement determination means for determining whether or not the measurement is incorrect, and a flow rate adjustment means for adjusting a flow rate based on a signal from the erroneous measurement determination means, and the flow rate when the erroneous measurement determination means determines that the measurement is erroneous. The ultrasonic flowmeter which adjusts so that it may become less, and re-measures the said propagation time . 超音波信号を送信する第1の超音波振動子と、前記第1の超音波振動子から送信され流体を伝搬した超音波信号を受信する第2の超音波振動子と、前記超音波の伝搬時間を計測する伝搬時間計測部と、前記伝搬時間から演算によって流量を求める演算部と、前記流体の音速を出力する音速出力手段と、前記音速と前記伝搬時間から求めた音速とを比較し正常な測定かどうかを判定する誤測定判定手段と、予め設定した回数前記第2の超音波振動子の出力を前記第1の超音波振動子に帰還し再度超音波信号を出力させる帰還回路と、を備え、前記誤測定判定手段が誤測定と判定したときには前記帰還回路の帰還回数を少なくなるように設定し伝搬時間を再測定する超音波流量計。 A first ultrasonic transducer for transmitting an ultrasonic signal, a second ultrasonic transducer for receiving an ultrasonic signal transmitted from the first ultrasonic transducer and propagated through a fluid, and propagation of the ultrasonic wave Comparison is normally made between the propagation time measurement unit that measures time, the calculation unit that calculates the flow rate from the propagation time, the sound speed output means that outputs the sound speed of the fluid, and the sound speed and the sound speed determined from the propagation time. An erroneous measurement determination means for determining whether or not the measurement is performed, a feedback circuit for returning the output of the second ultrasonic transducer to the first ultrasonic transducer a predetermined number of times and outputting an ultrasonic signal again; An ultrasonic flowmeter that sets the number of feedbacks of the feedback circuit to be reduced and re-measures the propagation time when the erroneous measurement determination means determines that there is an erroneous measurement . 誤測定判定手段は、超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との逆数和から求めた音速と前記音速出力手段で出力した音速とを比較し正常な測定かどうかを判定する請求項1または2記載の超音波流量計。The erroneous measurement determination means compares the sound speed obtained from the reciprocal sum of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction with the sound speed output from the sound speed output means to determine whether the measurement is normal. The ultrasonic flowmeter according to claim 1 or 2 . 誤測定判定手段は、超音波の流れ方向への伝搬時間と逆流方向への伝搬時間との平均値の逆数から求めた音速と前記音速出力手段で出力した音速とを比較し正常な測定かどうかを判定する請求項1または2記載の超音波流量計。Whether the erroneous measurement determination means is a normal measurement by comparing the sound speed obtained from the reciprocal of the average value of the propagation time in the ultrasonic flow direction and the propagation time in the reverse flow direction with the sound speed output by the sound speed output means. The ultrasonic flowmeter according to claim 1 or 2, wherein: 前記音速出力手段は、前記流体に接し流量の影響を受けない状況下において超音波を送受信する超音波振動子と、前記超音波の伝搬時間を測定するタイマを含み、前記流体に接し流量の影響を受けない状況下での伝搬時間から求めた音速を出力することを特徴とする請求項1乃至請求項の何れか1項記載の超音波流量計。The sonic output means includes an ultrasonic transducer that transmits and receives ultrasonic waves under a condition that is in contact with the fluid and is not affected by the flow rate, and a timer that measures the propagation time of the ultrasonic wave, and is in contact with the fluid and is affected by the flow rate. The ultrasonic flowmeter according to any one of claims 1 to 4 , wherein a sound velocity obtained from a propagation time under a condition where no vibration is received is output. 前記音速出力手段は、被測定流体の温度を検知する温度センサと、前記温度センサにより検知された温度における音速を演算する音速変換部とを備え、前記演算された音速を出力する請求項1乃至請求項の何れか1項記載の超音波流量計。The sound speed output means includes a temperature sensor that detects a temperature of a fluid to be measured, and a sound speed converter that calculates a sound speed at a temperature detected by the temperature sensor, and outputs the calculated sound speed. The ultrasonic flowmeter according to claim 4 . 前記音速出力手段は、以前に測定した超音波の伝搬時間を記憶する伝搬時間記憶部を備え、前記伝搬時間記憶部に記憶された伝搬時間から求めた音速を出力する請求項1乃至請求項の何れか1項記載の超音波流量計。The speed of sound output means, according to claim 1 to claim 4 previously provided with a propagation time storage unit for storing a propagation time of the ultrasonic wave is measured, and outputs a sound velocity obtained from the propagation propagation time stored in the time storage unit The ultrasonic flowmeter according to any one of the above.
JP14283999A 1999-05-24 1999-05-24 Ultrasonic flow meter Expired - Fee Related JP3624743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14283999A JP3624743B2 (en) 1999-05-24 1999-05-24 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14283999A JP3624743B2 (en) 1999-05-24 1999-05-24 Ultrasonic flow meter

Publications (3)

Publication Number Publication Date
JP2000329597A JP2000329597A (en) 2000-11-30
JP2000329597A5 JP2000329597A5 (en) 2005-02-17
JP3624743B2 true JP3624743B2 (en) 2005-03-02

Family

ID=15324822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14283999A Expired - Fee Related JP3624743B2 (en) 1999-05-24 1999-05-24 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3624743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051913A (en) * 2005-08-17 2007-03-01 Tokyo Keiso Co Ltd Correction method for ultrasonic flowmeter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783989B2 (en) * 2001-03-16 2011-09-28 パナソニック株式会社 Flowmeter
KR100519481B1 (en) * 2003-05-17 2005-10-06 (주)씨엠엔텍 Apparatus for measuring the speed of sound and Methode of measuring delayed time in ultrasonic flowmeter by using the apparatus and Methode of measuring distance between ultrasonic transducers in fluid by using the apparatus
JP5141613B2 (en) * 2009-03-25 2013-02-13 パナソニック株式会社 Ultrasonic flow meter
JP5309188B2 (en) * 2011-05-31 2013-10-09 株式会社オーバル Ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051913A (en) * 2005-08-17 2007-03-01 Tokyo Keiso Co Ltd Correction method for ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2000329597A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
JP3716274B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
WO2011074248A1 (en) Flow rate measuring device
JP2007187506A (en) Ultrasonic flowmeter
WO2014006881A1 (en) Flow quantity measuring apparatus
JP4561088B2 (en) Ultrasonic flow meter
JP3624743B2 (en) Ultrasonic flow meter
JP5141613B2 (en) Ultrasonic flow meter
JP5965292B2 (en) Ultrasonic flow meter
JP3766728B2 (en) Ultrasonic flow meter
JP2005300244A (en) Ultrasonic flow meter
JP2000329597A5 (en)
JP4292620B2 (en) Flow measuring device
JP4075526B2 (en) Ultrasonic flow meter
JP3622613B2 (en) Ultrasonic flow meter
JP6767628B2 (en) Flow measuring device
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP4409838B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP4140095B2 (en) Ultrasonic current meter
JP4284738B2 (en) Ultrasonic flow meter
JP4236479B2 (en) Ultrasonic transceiver
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP3883093B2 (en) Ultrasonic flow meter
JP2001183195A5 (en)
JP5092413B2 (en) Flow velocity or flow rate measuring device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees