JP5965292B2 - Ultrasonic flow meter - Google Patents
Ultrasonic flow meter Download PDFInfo
- Publication number
- JP5965292B2 JP5965292B2 JP2012243373A JP2012243373A JP5965292B2 JP 5965292 B2 JP5965292 B2 JP 5965292B2 JP 2012243373 A JP2012243373 A JP 2012243373A JP 2012243373 A JP2012243373 A JP 2012243373A JP 5965292 B2 JP5965292 B2 JP 5965292B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- measured
- fluid
- flow
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims description 230
- 239000012530 fluid Substances 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 66
- 230000005540 biological transmission Effects 0.000 claims description 55
- 230000003321 amplification Effects 0.000 claims description 44
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 44
- 230000002441 reversible effect Effects 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 33
- 230000002123 temporal effect Effects 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 description 58
- 238000012545 processing Methods 0.000 description 48
- 238000012790 confirmation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、被測定流体が流れる流路に被測定流体の流れ方向に沿って設けた一対の超音波送受信器間で、送信側と受信側とを双方で変更して被測定流体の流れを横切るようにして超音波ビームの送受信を行い、双方の超音波の伝搬状態の相違を基に被測定流体の流量を計測する超音波流量計に関する。 The present invention changes the flow of the fluid under measurement by changing both the transmission side and the reception side between a pair of ultrasonic transmitters / receivers provided along the flow direction of the fluid under measurement in the flow path through which the fluid under measurement flows. The present invention relates to an ultrasonic flowmeter that transmits and receives an ultrasonic beam so as to cross and measures the flow rate of a fluid to be measured based on the difference in the propagation state of both ultrasonic waves.
例えば、都市ガス等のような被測定流体の流量測定は、被測定流体が流れる測定管の管壁に上流側と下流側とで互いの位置をずらして超音波送受信器(トランスデューサ)からなる超音波センサを配置し、この一対の上流側及び下流側の超音波送受信器間で送信側と受信側とを双方で変更して被測定流体の流れを横切るようにして超音波ビームの送受信を行うことによって、一対の超音波送受信器間での被測定流体の流れに沿った順方向での超音波ビームの伝搬時間と被測定流体の流れに逆らった逆方向での超音波ビームの伝搬時間とをそれぞれ計測し、双方の伝搬時間の差分から被測定流体の流速を求め、さらに求めた流速と測定管の流路断面積とから流体の体積流量を求めることによって行われている(例えば、特許文献1参照)。 For example, the flow rate of a fluid to be measured such as city gas is measured by an ultrasonic transmitter / receiver (transducer) that is displaced from the upstream and downstream sides of the tube wall of the measurement tube through which the fluid to be measured flows. An ultrasonic sensor is arranged, and an ultrasonic beam is transmitted and received by crossing the flow of the fluid to be measured between the pair of upstream and downstream ultrasonic transmitters by changing both the transmitting side and the receiving side. The propagation time of the ultrasonic beam in the forward direction along the flow of the fluid to be measured between the pair of ultrasonic transceivers and the propagation time of the ultrasonic beam in the opposite direction against the flow of the fluid to be measured Is measured by calculating the flow velocity of the fluid to be measured from the difference between the propagation times of both, and by determining the volume flow rate of the fluid from the calculated flow velocity and the cross-sectional area of the flow channel of the measurement tube (for example, patents) Reference 1).
このため、超音波流量計では、一対の超音波送受信器間で送信側の超音波送受信器から発信された超音波ビームが被測定流体を介して受信側の超音波送受信器によって受信されるまでの、被測定流体の流れ方向に対しての順方向及び逆方向それぞれの超音波ビームの伝搬時間の計測精度が高ければ高い程、被測定流体のより正確な流量計測が行える。 Therefore, in the ultrasonic flowmeter, until the ultrasonic beam transmitted from the transmission-side ultrasonic transmitter / receiver between the pair of ultrasonic transmitter / receivers is received by the reception-side ultrasonic transmitter / receiver via the fluid to be measured. The higher the measurement accuracy of the propagation time of the ultrasonic beam in each of the forward direction and the reverse direction with respect to the flow direction of the fluid to be measured, the higher the flow rate of the fluid to be measured can be measured.
図6は、超音波流量計の受信側の超音波送受信器で受信された超音波ビームの受信信号の説明図である。
同図において、縦軸は、受信側の超音波送受信器の受信出力である電圧Vを、横軸は、送信側の超音波送受信器による超音波ビームの発信時点を原点O(V=0,t=0)とした時間経過tを表わしている。
FIG. 6 is an explanatory diagram of the received signal of the ultrasonic beam received by the ultrasonic transceiver on the receiving side of the ultrasonic flowmeter.
In the figure, the vertical axis represents the voltage V, which is the reception output of the reception-side ultrasonic transceiver, and the horizontal axis represents the transmission point of the ultrasonic beam by the transmission-side ultrasonic transmitter / receiver at the origin O (V = 0, It represents a time lapse t with t = 0).
図6(A)に示すように、受信側の超音波送受信器で受信された超音波ビームの受信信号Sgrには、駆動信号の入力によって駆動された送信側の超音波送受信器の、超音波振動子の固有周波数に基づいた所定の周期振動が生じている。 As shown in FIG. 6 (A), the ultrasonic beam received signal Sgr received by the ultrasonic transmitter / receiver on the reception side includes the ultrasonic wave of the ultrasonic transmitter / receiver on the transmission side driven by the input of the drive signal. A predetermined periodic vibration based on the natural frequency of the vibrator is generated.
図示の例では、送信側での超音波送受信器での超音波ビームの発信時点、すなわち駆動信号の入力による送信側の超音波送受信器の駆動開始時点を時点t=0とすると、受信側の超音波送受信器への超音波ビームの到達時点は、時点t=t0になる。そして、この時点t0を受信側の超音波送受信器の受信出力から直接検出することは、受信側の超音波送受信器の受信出力において、それ以前の超音波ビームが未だ到達していない状態(t0≦t<t0)に対しての超音波ビーム到達による出力変化開始時点を検出することに該当する。しかしながら、通常、超音波ビームが到達状態にない受信側の超音波送受信器の受信出力には、例えば流路内の音響的残響等による雑音も含まれているため、受信側の超音波送受信器の受信出力から超音波ビームの受信側への到達時点t=t0を直接検出することはS/N比の関係から実際的に困難である。 In the example shown in the figure, when the transmission time of the ultrasonic beam in the ultrasonic transmitter / receiver on the transmission side, that is, the driving start point of the transmission / reception ultrasonic transmitter / receiver by the input of the drive signal is time t = 0, The arrival time of the ultrasonic beam to the ultrasonic transceiver is time t = t0. The direct detection of the time t0 from the reception output of the reception-side ultrasonic transmitter / receiver means that the previous ultrasonic beam has not yet reached the reception output of the reception-side ultrasonic transmitter / receiver (t0). This corresponds to detection of the output change start time due to arrival of the ultrasonic beam with respect to ≦ t <t0). However, since the reception output of the reception-side ultrasonic transmitter / receiver in which the ultrasonic beam is not reached normally includes noise due to, for example, acoustic reverberation in the flow path, the reception-side ultrasonic transmitter / receiver It is actually difficult to directly detect the arrival time t = t0 from the received output of the ultrasonic beam to the receiving side of the ultrasonic beam because of the S / N ratio.
そこで、受信側の超音波送受信器における超音波ビームの受信信号Sgrは、送信側の超音波送受信器による超音波ビームの発信に伴う超音波振動子の振動を反映して、図6(A)に示すように、1波,2波,3波,・・・といった周期毎の信号波のピーク電圧が、始めは次第に大きくなり、最大値Vp(図中、×印で示す時点)になった後は次第に小さくなる波形で受信出力されることから、従来は、受信信号の第2波以降の、ピーク電圧がS/N比の関係から識別可能な電圧値になるn波目(図では2波目)の終了時点のゼロクロスポイント(図中、■印で示す時点tz)を検出して、超音波ビームの受信側への到達を本来の到達時点t0に対する所定の周期遅れΔT(図では、3/2周期遅れ)で検出する構成になっている。その際、n波目の検出は、例えば、受信側の超音波送受信器の出力がn波目のピーク電圧値とn-1波目のピーク電圧値との間になるように予め設定された電圧閾値Vthに対して、受信側の超音波送受信器の受信出力が超音波ビームの発信時点t=0から最初に到達した時点(図中、□印で示す時点tn)を検出することによって行っている。そのため、超音波ビームの受信側への到達時点t=t0(図中、●印で示す時点)は、時点tzがn波目の終了時点のゼロクロスポイントであることに誤りさえなければ、t0=tz−ΔTを演算することによって求めることができる。 Therefore, the reception signal Sgr of the ultrasonic beam in the reception-side ultrasonic transmitter / receiver reflects the vibration of the ultrasonic transducer associated with the transmission of the ultrasonic beam by the transmission-side ultrasonic transmitter / receiver. As shown in the graph, the peak voltage of the signal wave for each period such as 1 wave, 2 waves, 3 waves,... Gradually increases and reaches the maximum value Vp (at the time indicated by x in the figure). After that, since it is received and output in a gradually decreasing waveform, conventionally, the nth wave (2 in the figure) in which the peak voltage becomes a voltage value that can be identified from the relationship of the S / N ratio after the second wave of the received signal. A zero cross point (time point tz indicated by a mark ■ in the figure) at the end time of the wave wave is detected, and the arrival of the ultrasonic beam on the receiving side is delayed by a predetermined cycle delay ΔT (in the figure, relative to the original arrival time point t0). 3/2 period delay). At that time, the detection of the n-th wave is set in advance so that the output of the ultrasonic transceiver on the receiving side is between the peak voltage value of the n-th wave and the peak voltage value of the n-1 wave, for example. This is performed by detecting the time point (the time point tn indicated by □ in the figure) when the reception output of the ultrasonic transmitter / receiver on the reception side first reaches the ultrasonic wave beam transmission time point t = 0 with respect to the voltage threshold Vth. ing. Therefore, the arrival time t = t0 of the ultrasonic beam to the receiving side (the time indicated by the mark ● in the figure) is t0 = if there is no mistake that the time tz is the zero cross point at the end of the nth wave. It can be obtained by calculating tz−ΔT.
その際、超音波流量計では、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク時(図中、○印で示す時点)の電圧値Vpnが所定のゲイン調整用出力値Vajとなるように、例えば、今回の超音波ビームの受信信号Sgrのn波目(図では2波目)のピーク電圧値Vpnの、ゲイン調整用出力値Vajに対するずれを基に、この受信側の超音波送受信器が次回に受信側として再び作動する際の受信出力の増幅ゲイン(増幅率)を演算しておき、次回に受信側として再び作動する際には、当該演算された増幅率でこの受信側の超音波送受信器の受信出力を増幅するゲイン調整が行われる。 At that time, in the ultrasonic flowmeter, the voltage value Vpn at the peak time (at the time indicated by a circle in the figure) of the predetermined n-th wave (second wave in the figure) of the received signal Sgr of the received ultrasonic beam is predetermined. For example, the deviation of the peak voltage value Vpn of the nth wave (the second wave in the figure) of the received signal Sgr of the ultrasonic beam from the gain adjustment output value Vaj so that the gain adjustment output value Vaj Based on this, when the receiving side ultrasonic transceiver is operated again as the receiving side next time, the amplification gain (amplification factor) of the reception output is calculated, and when the receiving side is operated again as the receiving side next time, Gain adjustment is performed to amplify the reception output of the reception-side ultrasonic transceiver with the calculated amplification factor.
しかしながら、例えば、流量計測中に、被測定流体の流速や、被測定流体の密度に関係する被測定流体の圧力等といった、被測定流体の時間的或いは物理的な変動が生じた場合は、受信側の超音波送受信器における超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnがゲイン調整用出力値Vajとなるように、上述した受信器側の超音波送受信器に係る受信出力のゲイン調整を行っていても、超音波ビームの受信信号Sgrが大きく変化してしまい、上述したゲイン調整で得られた増幅率で増幅された超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnが、図6(B),図6(C)に示すように、ゲイン調整用出力値Vajと大きく乖離してしまうことが起こり得る。そして、このような場合には、次のような問題が生じる。 However, if there is a temporal or physical change in the fluid under measurement, such as the flow velocity of the fluid under measurement or the pressure of the fluid under measurement related to the density of the fluid under measurement during flow rate measurement, The above-mentioned receiver side so that the peak voltage value Vpn of the predetermined n-th wave (second wave in the figure) of the reception signal Sgr of the ultrasonic beam in the ultrasonic transmitter / receiver on the side becomes the gain adjustment output value Vaj. Even if the gain adjustment of the reception output related to the ultrasonic transmitter / receiver is performed, the reception signal Sgr of the ultrasonic beam changes greatly, and the reception of the ultrasonic beam amplified with the amplification factor obtained by the gain adjustment described above is received. The peak voltage value Vpn of the predetermined n-th wave (second wave in the figure) of the signal Sgr is greatly deviated from the gain adjustment output value Vaj as shown in FIGS. 6 (B) and 6 (C). Can happen. In such a case, the following problem occurs.
例えば、図6(B)に示すように、本来、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnがゲイン調整用出力値Vajとなるようにゲイン調整によって演算された増幅率で、受信側の超音波送受信器の受信出力が増幅されている場合であっても、被測定流体の流速又は圧力等の変動によって、受信信号Sgrのn波目(図では2波目)のピーク電圧Vpnが受信ゲイン調整電圧値Vajに達せず、さらにはn波目(図では2波目)のピーク電圧値とn−1波目(図では1波目)のピーク電圧値との間になるように予め設定された電圧閾値Vthよりも低くなってしまい、次のn+1波目(図中、○印で示す3波目)のピーク電圧Vpn+1で電圧閾値Vthに達するようになってしまうことがある。この場合は、このn+1波目(図では3波目)を受信信号Sgrのn波目(図では2波目)であると検出してしまう結果、超音波流量計では、実際の伝搬時間tzよりもΔt分加算された伝搬時間値tz'=tz+Δtが、伝搬時間tzとして演算されてしまう。すなわち、超音波ビームの受信側への到達時点を、本来のt=t0に対して、t=t0'で誤って検出してしまう。 For example, as shown in FIG. 6B, the peak voltage value Vpn of the predetermined n-th wave (second wave in the figure) of the received signal Sgr of the received ultrasonic beam is essentially the gain adjustment output value Vaj. Thus, even when the reception output of the ultrasonic transmitter / receiver on the receiving side is amplified with the amplification factor calculated by the gain adjustment, the n of the received signal Sgr is changed due to fluctuations in the flow velocity or pressure of the fluid to be measured. The peak voltage Vpn of the wave (second wave in the figure) does not reach the reception gain adjustment voltage value Vaj, and further, the peak voltage value of the nth wave (second wave in the figure) and the n-1 wave (1 in the figure). The peak voltage Vpn + of the next n + 1 wave (the third wave indicated by a circle in the figure) becomes lower than a preset voltage threshold Vth so as to be between the peak voltage values of the wave). 1 may reach the voltage threshold Vth. In this case, as a result of detecting this n + 1-th wave (the third wave in the figure) as the n-th wave (the second wave in the figure) of the reception signal Sgr, the ultrasonic flowmeter has an actual propagation time tz. Therefore, the propagation time value tz ′ = tz + Δt added by Δt is calculated as the propagation time tz. That is, the time when the ultrasonic beam reaches the receiving side is erroneously detected at t = t0 ′ with respect to the original t = t0.
また、図6(C)に示すように、本来、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnがゲイン調整用出力値Vajとなるようにゲイン調整によって演算された増幅率で、受信側の超音波送受信器の受信出力が増幅されている場合であっても、被測定流体の流速又は圧力等の変動によって、受信信号Sgrのn−1波目(図中、○印で示す1波目)のピーク電圧Vpn-1が、n波目(図では2波目)のピーク電圧値とn−1波目(図では1波目)のピーク電圧値との間になるように予め設定された電圧閾値Vthよりも高くなってしまい、それ以前のn−1波目のピーク電圧Vpn-1で電圧閾値Vthに達するようになってしまうこともある。この場合は、このn−1波目(図では1波目)を受信信号Sgrのn波目(図では2波目)であると検出してしまう結果、超音波流量計では、実際の伝達時間tzよりもΔt分減算された値tz'=tz−Δtが、伝搬時間tzとして演算されてしまう。すなわち、超音波ビームの受信側への到達時点を、本来のt=t0に対して、t=t0'で誤って検出してしまう。 Further, as shown in FIG. 6C, the peak voltage value Vpn of the predetermined nth wave (second wave in the figure) of the received signal Sgr of the received ultrasonic beam is essentially the gain adjustment output value Vaj. Thus, even when the reception output of the ultrasonic transmitter / receiver on the receiving side is amplified with the amplification factor calculated by the gain adjustment, the n of the received signal Sgr is changed due to fluctuations in the flow velocity or pressure of the fluid to be measured. The peak voltage Vpn-1 of the −1st wave (the first wave indicated by a circle in the figure) is the peak voltage value of the nth wave (the 2nd wave in the figure) and the n−1th wave (the 1st wave in the figure). ) Becomes higher than a preset voltage threshold value Vth so as to be between the peak voltage values of (1) and reaches the voltage threshold value Vth at the peak voltage Vpn-1 of the (n-1) th wave before that. Sometimes it ends up. In this case, as a result of detecting this n-1 wave (1st wave in the figure) as the nth wave (2nd wave in the figure) of the received signal Sgr, the ultrasonic flowmeter actually transmits the wave. A value tz ′ = tz−Δt obtained by subtracting Δt from the time tz is calculated as the propagation time tz. That is, the time when the ultrasonic beam reaches the receiving side is erroneously detected at t = t0 ′ with respect to the original t = t0.
このように、従来の超音波流量計では、被測定流体の時間的或いは物理的な変動が生じている場合は、受信器側の超音波送受信器において超音波ビームの到達時点t=t0を正確に計測することができなくなり、その演算された伝搬時間tzは、受信信号Sgrにおける周期毎の信号波の中、本来検出すべきn波目(図では2波目)に対し、ずれた信号波個数分のΔtの誤差を含むものとなり、超音波ビームの伝搬時間、延いては被測定流体の流量を正確に計測することができなくなってしまうという問題があった。 As described above, in the conventional ultrasonic flowmeter, when temporal or physical fluctuation of the fluid to be measured occurs, the ultrasonic beam arrival time t = t0 is accurately determined in the ultrasonic transmitter / receiver on the receiver side. The calculated propagation time tz is a signal wave that deviates from the n-th wave (second wave in the figure) that should be detected in the signal wave for each period in the received signal Sgr. There is an error of Δt corresponding to the number, and there has been a problem that it is impossible to accurately measure the propagation time of the ultrasonic beam and thus the flow rate of the fluid to be measured.
さらに、このような超音波ビームの受信側への到達、すなわち伝搬時間tzの誤計測が生じてしまった場合は、上述したゲイン調整では、この伝搬時間tzの誤計測を生じさせた超音波ビームの受信信号Sgrのn波目以外の信号波のピーク電圧の、ゲイン調整用出力値Vajに対するずれを基に、この受信側の超音波送受信器が次回に受信側として再び作動する際の受信出力の増幅ゲイン(増幅率)を演算してしまう。そのため、次回に受信側として再び作動する際には、当該演算された増幅率でこの受信側の超音波送受信器の受信出力を増幅するゲイン調整が行われるので、その後も引き続き同様な伝搬時間tzの誤計測がなされたままになってしまうという問題があった。 Further, when such arrival of the ultrasonic beam at the receiving side, that is, erroneous measurement of the propagation time tz has occurred, the above-described gain adjustment causes the ultrasonic beam that caused the erroneous measurement of the propagation time tz to occur. Of the received signal Sgr other than the n-th wave of the received signal Sgr with respect to the gain adjustment output value Vaj, the received output when the receiving side ultrasonic transmitter / receiver again operates as the receiving side next time The amplification gain (amplification factor) is calculated. Therefore, when the receiver is operated again as the receiver next time, gain adjustment for amplifying the reception output of the ultrasonic transmitter / receiver on the receiver side is performed with the calculated amplification factor. There was a problem that the wrong measurement was left.
本発明は、上述した問題点を鑑み、被測定流体の圧力や流速等、被測定流体の時間的或いは物理的な変動が生じた場合であっても、伝搬時間の誤計測を防止し、被測定流体の正確な流量を計測できる超音波流量計を提供することを目的とする。 In view of the above-described problems, the present invention prevents erroneous measurement of the propagation time even when there is a temporal or physical variation in the fluid under measurement such as the pressure or flow velocity of the fluid under measurement. An object of the present invention is to provide an ultrasonic flowmeter capable of measuring an accurate flow rate of a measurement fluid.
上述した課題を達成するために、本発明に係る超音波流量計は、受信側の超音波送受信器において超音波ビームの受信側への到達を所定の周期遅れで検出するために使用される超音波ビームの受信信号における所定番目の信号波に係り、被測定流体の流速や圧力等、被測定流体の時間的或いは物理的な状態が大きく変動することによって、通常の流量計測中に行われるゲイン調整によって演算された超音波ビームの受信信号における所定番目の信号波のピーク電圧をゲイン調整用電圧値に一致させるための増幅率が、実際に受信された超音波ビームの受信信号における所定番目の信号波のピーク電圧をゲイン調整用電圧値に一致させるための増幅率と異なる可能性がある場合は、これを検出して、受信側の超音波送受信器の受信出力の増幅率の演算を、通常の流量計測中に行われるゲイン調整の手順とは別の、被測定流体の時間的或いは物理的な状態が大きく変動した場合の手順によって行わせることを特徴とする。 In order to achieve the above-described problem, an ultrasonic flowmeter according to the present invention is an ultrasonic flowmeter that is used to detect arrival of an ultrasonic beam at a reception side with a predetermined period delay in an ultrasonic transmitter / receiver on the reception side. Gain performed during normal flow measurement due to large fluctuations in the temporal or physical state of the fluid under measurement, such as the flow velocity or pressure of the fluid under measurement, in relation to the predetermined signal wave in the received signal of the sound beam The amplification factor for matching the peak voltage of the predetermined signal wave in the received signal of the ultrasonic beam calculated by the adjustment to the voltage value for gain adjustment is the predetermined gain in the received signal of the ultrasonic beam actually received. If there is a possibility that the peak voltage of the signal wave is different from the gain used to match the gain adjustment voltage value, this is detected and the received output gain of the ultrasonic transmitter / receiver is amplified. Calculates, separate from the normal gain adjustment performed in the flow rate measurement procedure, characterized in that to perform the procedure for the temporal or the physical state of the fluid to be measured greatly changes.
本発明に係る超音波流量計は、被測定流体が流れる測定流路に被測定流体の流れ方向に沿って互いの位置をずらして設けられた一対の超音波送受信器と、一対の超音波送受信器の中の送信側の超音波送受信器より送信され受信側の超音波送受信器により受信される超音波ビームの受信信号における所定の波のピーク電圧が予め定められた所定電圧となるように、当該受信信号の増幅率を演算する増幅率演算手段と、増幅率演算手段により演算された増幅率で受信側の超音波送受信器による受信信号を増幅する増幅手段と、一対の超音波送受信器間で送信側と受信側とを双方で変更して被測定流体の流れの方向に対して順方向及び逆方向のそれぞれで超音波ビームの送受信を行わせるとともに、一対の超音波送受信器間での送信側と受信側との双方変更に応じて受信側になった超音波送受信器により受信され、増幅手段によって増幅された超音波ビームの受信信号における所定の波を検出して、被測定流体の流れの方向に対して順方向及び逆方向それぞれの伝搬時間を計測し、当該両伝搬時間から被測定流体の流量を演算する流量演算手段と、被測定流体の時間的或いは物理的な変動を検出し、当該変動が検出された場合には、増幅率演算手段による増幅率の演算を、当該変動が検出されない場合の所定の波のピーク電圧を直接調整する手順に代えて、当該所定の波が含まれる超音波ビームの受信信号の最大ピーク電圧を間接調整する手順によって行わせる増幅率演算制御手段とを備えていることを特徴とする。 An ultrasonic flowmeter according to the present invention includes a pair of ultrasonic transmitters / receivers provided in a measurement channel through which a fluid to be measured flows and the positions of the fluids to be measured shifted from each other along the flow direction of the fluid to be measured. So that the peak voltage of the predetermined wave in the reception signal of the ultrasonic beam transmitted from the ultrasonic transmitter / receiver on the transmission side and received by the ultrasonic transmitter / receiver on the reception side becomes a predetermined voltage. An amplification factor calculating means for calculating the amplification factor of the received signal, an amplification means for amplifying the reception signal by the ultrasonic transmitter / receiver on the reception side with the amplification factor calculated by the amplification factor calculating means, and a pair of ultrasonic transmitter / receiver In both the transmission side and the reception side, the ultrasonic beam is transmitted and received in the forward direction and the reverse direction with respect to the direction of the flow of the fluid to be measured, and between the pair of ultrasonic transceivers. Between the sender and receiver In response to the change in direction, a predetermined wave in the received signal of the ultrasonic beam received by the ultrasonic transmitter / receiver on the receiving side and amplified by the amplifying means is detected, and the detected wave is detected in order with respect to the flow direction of the fluid to be measured Measures the propagation time in each direction and reverse direction, and calculates the flow rate of the fluid to be measured from both propagation times, detects the temporal or physical fluctuation of the fluid to be measured, and detects the fluctuation. In such a case, the calculation of the amplification factor by the amplification factor calculation means is replaced with a procedure for directly adjusting the peak voltage of the predetermined wave when the fluctuation is not detected, and reception of an ultrasonic beam including the predetermined wave is received. And a gain calculation control means for performing the procedure for indirectly adjusting the maximum peak voltage of the signal.
本発明によれば、被測定流体の流速や圧力等、被測定流体の時間的或いは物理的な変動が生じた場合であっても、受信側の超音波送受信器において超音波ビームの受信側への到達を所定の周期遅れで検出するために使用される超音波ビームの受信信号における所定番目の信号波を正確に検出できるようになり、増幅率が不正確であることに伴う伝搬時間の誤計測や、延いては被測定流体の流量の誤計測を防止できる。
上記した以外の、課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, even when temporal or physical fluctuations of the fluid under measurement occur, such as the flow velocity or pressure of the fluid under measurement, the ultrasonic wave transmitter / receiver on the receiving side moves to the ultrasonic beam receiving side. It is possible to accurately detect the predetermined signal wave in the received signal of the ultrasonic beam used to detect the arrival of the signal with a predetermined period delay, and the error in the propagation time due to the inaccurate amplification factor. Measurement and, in turn, erroneous measurement of the flow rate of the fluid to be measured can be prevented.
Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
以下、本発明に係る超音波流量計の一実施の形態について、その構成及び作用を図面に基づき説明する。
なお、説明中では、図6(B)及び図6(C)に示したように、超音波流量計において、本来、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnがゲイン調整用出力値Vajとなるようにゲイン調整によって演算された増幅率で、受信側の超音波送受信器の受信出力が増幅されている場合であっても、被測定流体の流速又は圧力等の変動によって、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)として、実際に受信した超音波ビームの受信信号Sgrのn+1波目(図では3波目)を又はn−1波目(図では1波目)を誤検出してしまう現象を、“一波跳び”と略称し、この“一波跳び”が生じているのを検出することを“一波跳び検出”と略称する場合がある。
Hereinafter, the configuration and operation of an ultrasonic flowmeter according to an embodiment of the present invention will be described based on the drawings.
In the description, as shown in FIGS. 6B and 6C, in the ultrasonic flowmeter, a predetermined nth wave (2 in the figure) of the reception signal Sgr of the originally received ultrasonic beam is used. Even if the reception output of the ultrasonic transmitter / receiver on the receiving side is amplified with the amplification factor calculated by gain adjustment so that the peak voltage value Vpn of the wave) becomes the gain adjustment output value Vaj, As a predetermined n-th wave (second wave in the figure) of the received signal Sgr of the received ultrasonic beam due to fluctuations in the flow velocity or pressure of the fluid to be measured, n + 1 waves of the received signal Sgr of the actually received ultrasonic beam The phenomenon of erroneously detecting the eye (the third wave in the figure) or the n-1 wave (the first wave in the figure) is abbreviated as “one wave jump”, and this “one wave jump” occurs. This detection may be abbreviated as “one-wave jump detection”.
図1は、本発明の一実施の形態に係る超音波流量計の全体構成図である。
図1において、超音波流量計1は、被測定流体が流れる測定流路11が形成された測定管路12の管壁に、測定流路11における被測定流体の流れ方向に沿って上流側と下流側とで互いの位置をずらして、超音波センサとしての超音波送受信器(トランスデューサ)13,14を配置してなる流量計本体10を有する。また、図示の例では、流量計本体10には、測定流路11に所在する被測定流体の圧力を検出するための圧力センサ16が設けられている。
FIG. 1 is an overall configuration diagram of an ultrasonic flowmeter according to an embodiment of the present invention.
In FIG. 1, the
そして、一対の上流側及び下流側の超音波送受信器13,14間には、被測定流体を伝搬媒体とする超音波ビームの伝搬路15が形成される。伝搬路15は、被測定流体の流れる方向、この場合は測定流路11を形成された測定管路12の管軸方向に対して角度θだけ傾いている。
An ultrasonic
ここで、超音波送受信器13,14それぞれは、駆動信号Sgdの入力によって被測定流体に臨む送受信面を超音波振動させて被測定流体中に超音波ビームを発信する一方、被測流定体中を伝搬してきた超音波ビームの受信で振動する送受信面の超音波振動を電気出力で取り出して、図6に示したような超音波ビームの受信信号Sgrを出力する。
Here, each of the ultrasonic transmitters /
なお、図1に示した超音波流量計1では、超音波ビームの伝搬路15は、測定流路11を挟んで対向配置された一対の超音波送受信器13,14により、一対の超音波送受信器13,14間の直線状の直接伝搬路からなる超音波伝搬路を有する構成としたが、一方及び他方の超音波送受信器13,14の送受信面を臨ませた側と対向する側の測定管路12の管路面に反射させるV字反射方式の間接伝搬路からなる超音波伝搬路を有する構成や、一方の超音波送受信器13の送受信面より送受信される超音波ビームを測定管路12の管路面に複数回反射させて他方の超音波送受信器14の送受信面にて送受信させる複数回反射方式の間接伝搬路からなる超音波伝搬路を有する構成であってもよい。
In the
また、超音波流量計1には、予め定められた計測周期間隔で、一対の超音波送受信器13,14間で送信側と受信側とを双方で変更して被測定流体の流れを横切るようにして超音波ビームの送受信を行って、測定流路11の被測定流体の流れ方向に対して順方向AU及び逆方向ADそれぞれの超音波ビームの伝搬時間Tau,Tadを計測し、測定流路11を流れる被測定流体の流量Qを演算する流量計測演算装置20が備えられている。そして、流量計測演算装置20は、計測演算された流量Qを、図示せぬ表示器等に対して出力する。
Further, the
流量計測演算装置20は、上述した流量計測演算を行うために、図示の例では、流量計測演算制御部21,駆動信号出力部22,受信信号増幅部23,送受信側切替部24,ゲイン切替部25,順方向ゲインGau設定部26,逆方向ゲインGad設定部27を有する。
In the illustrated example, the flow
流量計測演算制御部21は、CPU,メモリ等を備えた演算制御装置により構成され、流量計測演算装置20の他の各部の制御を行い、流量計測処理部31,一波跳び検出処理部32,設定ゲイン調整処理部33として機能する。
The flow measurement
流量計測演算制御部21は、流量計測処理部31として、超音波送受信器13,14間で送信側と受信側とを双方で変更して被測定流体の流れの方向に対して順方向及び逆方向のそれぞれで超音波ビームの送受信を行わせるとともに、この超音波送受信器13,14間での送信側と受信側との双方変更に応じて受信側になった超音波送受信器13(又は14)から出力され、受信信号増幅部23によって増幅されて供給される超音波ビームの受信信号Sgrを基に、被測定流体の流れの方向に対して順方向及び逆方向それぞれの伝搬時間Tau,Tadを計測し、当該両伝搬時間Tau,Tadから被測定流体の流量Qを演算する。
The flow measurement
流量計測演算制御部21は、一波跳び検出処理部32として、図6(B)及び図6(C)に示したような、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)として、実際に受信した超音波ビームの受信信号Sgrのn+1波目(図では3波目)を又はn−1波目(図では1波目)を誤検出してしまう“一波跳び”現象の発生を検出する。
The flow measurement
流量計測演算制御部21は、設定ゲイン調整処理部33として、一波跳び検出処理部32の検出結果に基づいて、流量計測中の通常のゲイン調整設定処理と、流量計測中における一波跳び発生時のゲイン調整設定処理とを選択的に行う。
Based on the detection result of the single jump
ここで、流量計測中の通常のゲイン調整処理とは、被測定流体の計測中に、図6に示したような、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク時(図中、○印で示す時点)の電圧値Vpnが所定のゲイン調整用出力値Vajとなるように、今回の超音波ビームの受信信号Sgrのn波目(図では2波目)のピーク電圧値Vpnの、ゲイン調整用出力値Vajに対するずれを基に、この受信側の超音波送受信器13(又は14)が次回に受信側として再び作動する際の受信出力の増幅ゲイン(増幅率)Ga(Gau,Gad)を演算するゲイン調整設定処理を指す。 Here, the normal gain adjustment processing during flow rate measurement is a predetermined n-th wave (2 in the figure) of the received signal Sgr of the received ultrasonic beam as shown in FIG. 6 during measurement of the fluid to be measured. The wave-th peak (the time indicated by a circle in the figure) is the n-th wave (in the figure) of the reception signal Sgr of the ultrasonic beam so that the voltage value Vpn at the predetermined gain adjustment output value Vaj Based on the deviation of the peak voltage value Vpn of the second wave) from the gain adjustment output value Vaj, the reception output when the reception side ultrasonic transmitter / receiver 13 (or 14) again operates as the reception side next time. A gain adjustment setting process for calculating an amplification gain (amplification factor) Ga (Gau, Gad).
流量計測演算制御部21は、流量計測中に、一波跳び検出処理部32によって一波跳びが検出された場合や、超音波流量計1の自動又はマニュアルリセット操作が入力された場合は、設定ゲイン調整処理部33として、上述した流量計測中の通常のゲイン調整処理に代えて、流量計測中の通常のゲイン調整処理とは異なる手順により、受信出力の増幅ゲイン(増幅率)Ga(Gau,Gad)を演算する。
The flow measurement
流量計測演算制御部21には、一波跳び検出処理部32に関連して、圧力センサ16による被測定流体の圧力計測値も入力される。なお、図示の例では、被測定流体の圧力を計測するため、流量計本体10は、圧力センサ16が設けられた構成としたが、流量計本体10には圧力センサ16を設けずに、流量計本体10に配管接続される被測定流体の移送管に備えられた圧力センサを利用するようにしてもよい。
In relation to the single-jump
駆動信号出力部22は、流量計測演算制御部21から供給される、送信側の超音波送受信器に超音波ビームを発振させるための駆動信号を増幅して、送受信側切替部24に出力する。
The drive
受信信号増幅部23は、送受信側切替部24を介して選択的に供給される、受信側の超音波送受信器からの受信出力を、ゲイン切替部25を介して接続された、順方向ゲインGau設定部26又は逆方向ゲインGad設定部27のいずれか一方に設定されている増幅ゲインGau又はGadにより増幅して、流量計測演算制御部21に出力する。
The reception
送受信側切替部24は、流量計測演算制御部21から供給される接続指示に基づいて、駆動信号出力部22,受信信号増幅部23それぞれに接続される超音波送受信器を超音波送受信器13,14間で切り替える。
Based on the connection instruction supplied from the flow measurement
ゲイン切替部25は、送受信側切替部24の場合と同様に、流量計測演算制御部21から供給される接続指示に基づいて、受信信号増幅部23に接続されるゲイン設定部を順方向ゲインGau設定部26と逆方向ゲインGad設定部27との間で切り替える。
As in the case of the transmission / reception
送受信側切替部24及びゲイン切替部25それぞれに対する接続指示は、例えば、流量計測処理部31による被測定流体の流れの方向に対しての順方向の伝搬時間Tau若しくは逆方向の伝搬時間Tadの計測種別に応じて、又は設定ゲイン調整処理部33による順方向ゲインGau若しくは逆方向ゲインGadの調整種別に応じて、流量計測演算制御部21から供給される。
The connection instruction to each of the transmission / reception
順方向ゲインGau設定部26は、流量計測演算制御部21から供給される、設定ゲイン調整処理部33によって設定若しくは調整された順方向ゲインGauを格納する。逆方向ゲインGad設定部27は、流量計測演算制御部21から供給される、設定ゲイン調整処理部33によって設定若しくは調整された逆方向ゲインGadを格納する。
The forward gain
次に、流量計1の、流量計測演算制御部21が流量計測処理部31,一波跳び検出処理部32,設定ゲイン調整処理部33として実行する機能について、図2〜図5に基づいて説明する。以下、説明にあたって、ステップS10をS10のように記し、ステップの記載を省略する。
Next, functions executed by the flow measurement
図2は、流量計測演算制御部が流量計測処理部として実行する流量計測処理のフローチャートである。
流量計測演算制御部21は、予め定められた計測周期間隔で流量計測処理を実行する。
FIG. 2 is a flowchart of a flow measurement process executed by the flow measurement calculation control unit as the flow measurement processing unit.
The flow measurement
超音波流量計1において、流量計測演算制御部21による流量計測処理が実行開始されると、まず、S10では、流量計測演算制御部21は、例えば、超音波ビームの送信側を被測定流体の流れ方向の上流側の超音波送受信器13とし、受信側を被測定流体の流れ方向の下流側の超音波送受信器14とするように、送受信側切替部24及びゲイン切替部25を切り替え、超音波送受信器13,14間で被測定流体の流れ方向に対する順方向での超音波ビームの送受信を行う。そして、流量計測演算制御部21は、順方向ゲインGau設定部26に格納されている順方向ゲインGauで受信信号増幅部23が増幅した超音波ビームの受信信号Sgrを基に、図6(A)で説明したように、所定のn波目(図では2波目)の終了時点のゼロクロスポイント(図中、■印で示す時点tz)を検出して、被測定流体の流れの方向に対しての順方向の伝搬時間Tauを計測する。
In the
次に、S20では、流量計測演算制御部21は、超音波ビームの送信側を被測定流体の流れ方向の下流側の超音波送受信器14とし、受信側を被測定流体の流れ方向の上流側の超音波送受信器13とするように送受信側を双方で変更するように、送受信側切替部24及びゲイン切替部25を切り替え、超音波送受信器13,14間で被測定流体の流れ方向に対する逆方向での超音波ビームの送受信を行う。そして、流量計測演算制御部21は、逆方向ゲインGad設定部27に格納されている逆方向ゲインGadで受信信号増幅部23が増幅した超音波ビームの受信信号Sgrを基に、所定のn波目(図では2波目)の終了時点のゼロクロスポイントtzを検出して、被測定流体の流れの方向に対しての逆方向の伝搬時間Tadを計測する。
Next, in S20, the flow measurement
次に、S30では、流量計測演算制御部21は、S10,S20で計測した順方向の伝搬時間Tauと逆方向の伝搬時間Tadとの差分から被測定流体の流速qを求め、さらに求めた流速qと、測定管路12の管軸方向に対して垂直な流路断面積とから流体の体積流量Qを求める。
Next, in S30, the flow measurement
次に、S40では、流量計測演算制御部21は、一波跳び検出処理部32として一波跳び検出処理を行い、今回の、超音波ビームの送信側を被測定流体の流れ方向の下流側の超音波送受信器14とし、受信側を被測定流体の流れ方向の上流側の超音波送受信器13とした場合の、S10,S20で示した順方向及び逆方向それぞれの伝搬時間Tau,Tadの計測において、受信した超音波ビームの受信信号Sgrの所定のn波目(図では2波目)として、実際に受信した超音波ビームの受信信号Sgrのn+1波目(図では3波目)又はn−1波目(図では1波目)を誤検出してしまう、いわゆる“一波跳び”の検出を行う。
Next, in S40, the flow measurement
次に、S50では、流量計測演算制御部21は、S40で順方向及び逆方向それぞれの伝搬時間Tau,Tadの計測(S10,S20)において“一波跳び”が検出されなかった場合は、S30で演算した流量Qを、図示せぬ表示器等に対して出力する。
Next, in S50, the flow measurement
次に、S60では、流量計測演算制御部21は、設定ゲイン調整処理部33として、流量計測中の通常のゲイン調整設定処理を行う。すなわち、流量計測演算制御部21は、今回の計測周期での流量計測処理の実行に係り、S10,S20で示した順方向,逆方向それぞれの伝搬時間Tau,Tadの計測時にそれぞれ取得した、超音波送受信器14,13それぞれの順方向ゲインGau設定部26,逆方向ゲインGad設定部27それぞれに格納されていた順方向ゲインGau,逆方向ゲインGadで受信信号増幅部23により増幅された、各超音波ビームの受信信号Sgrの所定のn波目(図では2波目)のピーク電圧値Vpnを基に、このピーク電圧値Vpnが所定のゲイン調整用出力値Vajとなるように、このピーク電圧値Vpnのゲイン調整用出力値Vajに対するずれを基にして、次回の計測周期で超音波送受信器14,13が受信側として再び作動する際の順方向設定ゲインGau,逆方向設定ゲインGadを演算する。
Next, in S60, the flow measurement
次に、S70では、流量計測演算制御部21は、S60で演算した順方向設定ゲインGau,逆方向設定ゲインGadを、順方向ゲインGau設定部26,逆方向ゲインGad設定部27に更新格納する。
Next, in S70, the flow measurement
したがって、流量計測演算制御部21が、予め定められた計測周期間隔で実行する流量計測処理では、S40に示した一波跳び検出処理で一波跳びが生じていないことが確認されている間は、S60で説明した流量計測中の通常のゲイン調整設定処理によって、受信信号増幅部23が取得する順方向設定ゲインGau,逆方向設定ゲインGadは、計測周期毎にフィードバック調整され、所定のゲイン調整用出力値Vajを基準とする最適なゲインに保持される。
Therefore, in the flow measurement process executed by the flow measurement
次に、流量計測演算制御部21が、流量計測処理のS40で一波跳び検出処理部32として実行する一波跳び検出処理について、図3,図4に基づき説明する。
Next, the single wave jump detection process executed by the flow measurement
図3,図4は、流量計測演算制御部が一波跳び検出処理部として実行する一波跳び検出処理のフローチャートである。
流量計測演算制御部21による一波跳び検出処理が実行開始されると、まず、S401では、流量計測演算制御部21は、今回(この場合はn回目)の計測周期での流量計測処理の実行に係り、S10で計測された順方向の伝搬時間Tauと、S20で計測された逆方向の伝搬時間Tadとを加算し、その絶対値|Tau+Tad|が所定時間と略等しくなっているか否かを判別する。
3 and 4 are flowcharts of the single-jump detection process executed by the flow measurement calculation control unit as the single-jump detection processing unit.
When the execution of the one-wave jump detection process by the flow measurement
ここで、同一計測周期での流量計測処理により計測された順方向の伝搬時間Tauと逆方向の伝搬時間Tadとの加算は、被測定流体の流れによる伝搬時間の短縮分及び遅延分を相殺することと等価であり、その所定時間は、被測定流体の流れがないときの伝搬時間Tの2倍の値に該当する。 Here, the addition of the forward propagation time Tau and the backward propagation time Tad measured by the flow rate measurement process in the same measurement cycle cancels the shortened and delayed propagation time due to the flow of the fluid to be measured. The predetermined time corresponds to a value twice the propagation time T when there is no flow of the fluid to be measured.
そこで、流量計測演算制御部21は、超音波ビームの伝搬する距離をL、音速をCとすると、被測定流体の流れがないときの伝搬時間Tは時間L/Cとなるから、絶対値|Tau+Tad|が所定時間と略等しくなっておらず、その許容誤差範囲から逸脱している場合は、順方向の伝搬時間Tauの計測時又は逆方向の伝搬時間Tadの計測時の少なくともいずれかにおいて一波跳びが発生していると推定し、一波跳びの発生を検出する。
Therefore, the flow measurement
なお、上記S401では、流量計測演算制御部21は、絶対値|Tau+Tad|が所定時間と略等しくなっていない場合には一波跳びの発生を検出しているが、これに代えて、又はこれと併せて、S402に示すようにして、一波跳びを検出するようにしてもよい。
In S401, the flow measurement
S402では、被測定流体の順方向AUの超音波ビームの伝達時間Tauと逆方向ADの超音波ビームの伝達時間Tadとの時間差|α+β|の異常により、一波跳びを検出する。 In S402, a one-wave jump is detected based on an abnormality of the time difference | α + β | between the transmission time Tau of the ultrasonic beam in the forward direction AU and the transmission time Tad of the ultrasonic beam in the reverse direction AD of the fluid to be measured.
すなわち、被測定流体が流れていない場合における超音波送受信器13,14間の超音波ビームの伝達時間をTとすると、被測定流体が流れている場合における超音波送受信器13,14間の超音波ビームの伝達時間Tau,Tadはそれぞれ、
Tau=T−α
Tad=T+β
と見なすことができる。この場合、α,βそれぞれは、被測定流体の順方向AU,逆方向ADそれぞれの流れにより生じた時間である。
That is, when the transmission time of the ultrasonic beam between the
Tau = T-α
Tad = T + β
Can be considered. In this case, α and β are times generated by the flow in the forward direction AU and the reverse direction AD of the fluid to be measured, respectively.
そこで、上記式より、超音波送受信器13,14間の超音波ビームの伝達時間Tau,Tadの時間差をとると、
|Tau−Tad|=|T−α−(T+β)|=|α+β|
となる。
ここで、時間差|α+β|は、被測定流体の流速を表す値部分になる。
Therefore, from the above formula, when the time difference between the transmission times Tau and Tad of the ultrasonic beam between the
| Tau−Tad | = | T−α− (T + β) | = | α + β |
It becomes.
Here, the time difference | α + β | is a value portion representing the flow velocity of the fluid to be measured.
したがって、流量計測演算制御部21は、例えば、この時間差|α+β|が所定時間(例えば、超音波ビームの受信信号Sgrの振動周期)よりも大きくなった場合、前回演算された時間差|α+β|(n-1)と今回演算された時間差|α+β|(n)との差が所定時間差以上異なった場合、等の時間差|α+β|の値の異常時には、一波跳びの発生を検出する。
Accordingly, for example, when the time difference | α + β | becomes larger than a predetermined time (for example, the vibration period of the reception signal Sgr of the ultrasonic beam), the flow measurement
次に、S403では、流量計測演算制御部21は、前回(この場合は‘n−1’回目)の計測周期での流量計測処理の実行に係り、S30で演算された流量Q(n-1)から、今回の計測周期での流量計測処理の実行に係り、S30で演算された流量Q(n)を減算し、その絶対値|Q(n-1)−Q(n)|が所定変動量ΔQよりも小さくなっているか否かを判別する。
Next, in S403, the flow rate measurement
そして、流量計測演算制御部21は、絶対値|Q(n-1)−Q(n) |が所定変動量ΔQよりも小さくなっておらず、前回の計測周期と今回の計測周期とで被測定流体の流速に大きな変動が生じている場合は、今回の計測周期での順方向の伝搬時間Tauの計測時又は逆方向の伝搬時間Tadの計測時の少なくともいずれかにおいて、一波跳びが発生していると推定し、一波跳びの発生を検出する。
Then, the flow rate measurement
次に、S404では、流量計測演算制御部21は、前回の計測周期での流量計測処理の実行に係り、被測定流体の圧力を計測する圧力センサ16から取得した被測定流体の圧力値P(n-1)から、今回の計測周期での流量計測処理の実行に係り、圧力センサ16から取得した被測定流体の圧力値P(n) を減算し、その絶対値|P(n-1)−P(n)|が所定変動量ΔPよりも小さくなっているか否かを判別する。
Next, in S404, the flow measurement
そして、流量計測演算制御部21は、絶対値|P(n-1)−P(n)|が所定変動量ΔPよりも小さくなっておらず、前回の計測周期と今回の計測周期とで被測定流体の圧力に大きな変動が生じている場合は、今回の計測周期での順方向の伝搬時間Tauの計測時又は逆方向の伝搬時間Tadの計測時の少なくともいずれかにおいて、一波跳びが発生していると推定し、一波跳びの発生を検出する。
Then, the flow rate measurement
そして、S401〜S404のいずれかで、流量計測演算制御部21は、一波跳びの発生を検出した場合は、設定ゲイン調整処理部33として、S800で示した設定ゲインGau・Gad調整処理を実行する。
In any of S401 to S404, the flow measurement
一方、S401〜S404のいずれでも、一波跳びの発生が検出されない場合は、流量計測演算制御部21は、まずS405に示す処理を行う。
On the other hand, if the occurrence of a single wave jump is not detected in any of S401 to S404, the flow measurement
S405では、流量計測演算制御部21は、前回の計測周期での流量計測処理の実行に係り、S10で計測された順方向の伝搬時間Tau(n-1)から、今回の計測周期での流量計測処理の実行に係り、S10で計測された順方向の伝搬時間Tau(n) を減算し、その絶対値|Tau(n-1)−Tau(n)|が所定時間差ΔTaよりも大きくなっているか否かを判別する。
In S405, the flow measurement
そして、流量計測演算制御部21は、S405で絶対値|Tau(n-1)−Tau(n)|が所定時間差ΔTaよりも大きくなっている場合は、S406の処理を行う。
If the absolute value | Tau (n−1) −Tau (n) | is greater than the predetermined time difference ΔTa in S405, the flow measurement
S406では、流量計測演算制御部21は、内部にFIFO(First-In First-Out、先入先出)メモリ等により構成され、最新所定回数分(例えばn回分)の計測周期毎の流量計測処理の実行それぞれについての順方向の伝搬時間Tauの計測時における一波跳びの発生の兆候(可能性)を先入れ先出しで記憶する一波跳び発生兆候フラグ記憶部(図示省略)Fauに、今回の計測周期で実行した伝搬時間Tauの計測が一波跳びの発生の可能性があることを示すデータとして、フラグFau(n)=1を記憶する。
In S406, the flow measurement
これに対し、流量計測演算制御部21は、絶対値|Tau(n-1)−Tau(n)|が所定時間差ΔTa以下になっている場合は、S407の処理を行う。
On the other hand, when the absolute value | Tau (n−1) −Tau (n) | is equal to or smaller than the predetermined time difference ΔTa, the flow measurement
S407では、流量計測演算制御部21は、発生兆候フラグ記憶部(図示省略)Fauに、今回の計測周期で実行した伝搬時間Tauの計測が一波跳びの発生の可能性がないことを示すデータとして、フラグFau(n)=0を記憶する。
In S407, the flow measurement
したがって、流量計測演算制御部21の発生兆候フラグ記憶部Fauには、最新所定回数分(例えばn回分)の計測周期毎の伝搬時間Tauの計測それぞれについて、一波跳びの発生の可能性の有・無が、フラグFau(n)=1又はフラグFau(n)=0で、随時、更新蓄積されていることになる。
Therefore, the occurrence sign flag storage unit Fau of the flow measurement
S408では、流量計測演算制御部21は、前回の計測周期での流量計測処理の実行に係り、S20で計測された逆方向の伝搬時間Tad(n-1)から、今回の計測周期での流量計測処理の実行に係り、S20で計測された逆方向の伝搬時間Tad(n) を減算し、その絶対値|Tad(n-1)−Tad (n)|が所定時間差ΔTdよりも大きくなっているか否かを判別する。
In S <b> 408, the flow measurement
そして、流量計測演算制御部21は、S408で絶対値|Tad(n-1)−Tad(n)|が所定時間差ΔTdよりも大きくなっている場合は、S409の処理を行う。
When the absolute value | Tad (n−1) −Tad (n) | is greater than the predetermined time difference ΔTd in S408, the flow measurement
S409では、流量計測演算制御部21は、内部にFIFO(First-In First-Out、先入先出)メモリ等により構成され、最新所定回数分(例えばn回分)の計測周期毎の流量計測処理の実行それぞれについての逆方向の伝搬時間Tadの計測時における一波跳びの発生の兆候(可能性)を先入れ先出しで記憶する一波跳び発生兆候フラグ記憶部(図示省略)Fadに、今回の計測周期で実行した伝搬時間Tadの計測が一波跳びの発生の可能性があることを示すデータとして、フラグFad(n)=1を記憶する。
In S409, the flow measurement
これに対し、流量計測演算制御部21は、絶対値|Tad(n-1)−Tad(n)|が所定時間差ΔTd以下になっている場合は、S410の処理を行う。
On the other hand, when the absolute value | Tad (n−1) −Tad (n) | is equal to or smaller than the predetermined time difference ΔTd, the flow measurement
S410では、流量計測演算制御部21は、発生兆候フラグ記憶部(図示省略)Fadに、今回の計測周期で実行した伝搬時間Tadの計測が一波跳びの発生の可能性がないことを示すデータとして、フラグFad(n)=0を記憶する。
In S410, the flow measurement
したがって、流量計測演算制御部21の発生兆候フラグ記憶部Fadには、最新所定回数分(例えばn回分)の計測周期毎の伝搬時間Tadの計測それぞれについて、一波跳びの発生の可能性の有・無が、フラグFad(n)=1又はフラグFad(n)=0で、随時、更新蓄積されていることになる。
Therefore, the occurrence sign flag storage unit Fad of the flow measurement
S411では、流量計測演算制御部21は、発生兆候フラグ記憶部Fau,Fad毎に、最新所定回数分(例えばn回分)の計測周期毎の伝搬時間Tau,Tadの計測それぞれにおいて、一波跳びの発生の可能性があるとしてフラグFau (n)=1,Fad(n)=1が記憶されている計測周期が幾つ分あるかを計数演算する。
In S411, the flow measurement
S412では、流量計測演算制御部21は、発生兆候フラグ記憶部Fau,Fad毎に、計数演算した計測周期の数(すなわち、流量計測処理の実行回数)であるFauフラグ回数又はFadフラグ回数を、予め設定されている所定回数Nと比較し、Fauフラグ回数及びFadフラグ回数の両方ともが所定回数Nよりも小さい場合は、一波跳びが発生していないと推定し、一波跳び検出処理を終了させて、図2で説明した流量計測処理のS50で示した流量Qの出力処理に移行する。
In S412, the flow measurement
これに対し、流量計測演算制御部21は、S412で、Fauフラグ回数又はFadフラグ回数のいずれかが所定回数Nよりも大きい場合は、一波跳びが発生していると推定し、一波跳びの発生を検出する。
On the other hand, the flow measurement
流量計測演算制御部21は、S412で一波跳びの発生を検出した場合は、設定ゲイン調整処理部33として、S800で示した設定ゲインGau・Gad調整処理を実行する。
When the occurrence of a single wave jump is detected in S412, the flow measurement
このように、流量計測演算制御部21は、上述したように一波跳び検出処理部32として、S401,S402,S403,S404,S405〜S412といった一波跳び検出処理を実行することによって、本来、被測定流体の流量計測中は認識できなかった一波跳びの発生を、被測定流体の時間的或いは物理的な変動から多面的に検出することができ、超音波流量計による被測定流体の正確な流量計測を保証することができる。
As described above, the flow measurement
なお、本実施の形態では、流量計測演算制御部21は、一波跳び検出処理において、一波跳びの発生を検出した場合は、そのまま、S800で示した設定ゲインGau・Gad調整処理の実行に移行するようにしたが、その移行に当たって、一波跳び検出報知信号を出力するように構成し、現場若しくは管理所の作業員に、超音波流量計1が一波跳びの発生状態になっていることを報知するように構成してもよい。
In the present embodiment, the flow measurement
次に、流量計測演算制御部21が、一波跳び検出処理のS800で設定ゲイン調整処理部33として実行する設定ゲインGau・Gad調整処理について、図5に基づき説明する。
Next, the set gain Gau / Gad adjustment process executed by the flow measurement
設定ゲインGau・Gad調整処理は、流量計測演算制御部21が設定ゲイン調整処理部33として実行する、図2でS60で説明した流量計測中の通常のゲイン調整設定処理とは異なり、超音波ビームの受信信号Sgrの所定のn波目(図6では2波目)、及びそのn波目のピーク電圧値Vpnを、流量計測中の超音波ビームの受信信号Sgrから識別して取得することができないことから、次に説明するように、異なる手順で行われる。
The set gain Gau / Gad adjustment processing is different from the normal gain adjustment setting processing during flow rate measurement described in S60 in FIG. 2 performed by the flow rate measurement
図5は、流量計測演算制御部が設定ゲイン調整処理部として実行する設定ゲインGau・Gad調整処理のフローチャートである。
図5中、S801〜S812に示した各処理は、設定ゲインGau,設定ゲインGadそれぞれの調整処理毎に行われ、ここでは、設定ゲインGauを調整・設定する場合について説明し、設定ゲインGadを調整・設定する場合も、この設定ゲインGauを調整・設定する場合と同様なので、その詳細は説明省略する。
FIG. 5 is a flowchart of the setting gain Gau / Gad adjustment processing executed by the flow measurement calculation control unit as the setting gain adjustment processing unit.
In FIG. 5, the processes shown in S801 to S812 are performed for each adjustment process of the set gain Gau and the set gain Gad. Here, a case where the set gain Gau is adjusted and set will be described. The adjustment / setting is the same as the adjustment / setting of the setting gain Gau, and the details thereof will be omitted.
流量計測演算制御部21による設定ゲインGau・Gad調整処理の中、設定ゲインGauの調整処理が実行開始されると、S801では、流量計測演算制御部21は、順方向ゲインGau設定部26に初期ゲインとして最低ゲインGLを格納する。
When the adjustment process of the setting gain Gau is started in the setting gain Gau / Gad adjustment process by the flow measurement
次に、S802では、流量計測演算制御部21は、超音波ビームの送信側を被測定流体の流れ方向の上流側の超音波送受信器13とし、受信側を被測定流体の流れ方向の下流側の超音波送受信器14とするように、送受信側切替部24及びゲイン切替部25を切り替え、超音波送受信器13,14間で被測定流体の流れ方向に対する順方向での超音波ビームの送受信を行う。
Next, in S802, the flow measurement
これにより、下流側の超音波送受信器14による超音波ビームの受信出力は、受信信号増幅部23によって、順方向ゲインGau設定部26に格納されている順方向ゲインGau、この場合はS801で格納されている最低ゲインGLで増幅され、この最低ゲインGLで増幅された下流側の超音波送受信器14の超音波ビームの受信出力に含まれる、図6(A)で説明したような、所定の周期振動が生じている超音波ビームの受信信号Sgrが、流量計測演算制御部21に供給される。
Thereby, the reception output of the ultrasonic beam by the ultrasonic transmitter /
次に、S803では、流量計測演算制御部21は、この入力された超音波ビームの受信信号Sgrの最大値Vp(図6(A)中、×印で示す時点)を計測する。なお、未だこの時点では、この最大値Vpを含む信号波が超音波ビームの受信信号Sgrに含まれた何番目の波に該当するのかは、不明である。
Next, in S803, the flow measurement
次に、S804では、流量計測演算制御部21は、この取得した超音波ビームの受信信号Sgrの最大値(最大ピーク電圧)Vpが、予め設定された初期ゲイン調整用電圧値Vaji(図6(A)では、Vmxに相当)に達しているか否かを確認する。この初期ゲイン調整用電圧値Vajiは、流量計測処理中の通常のゲイン調整設定処理(図2、S60,S70)で用いられるゲイン調整用出力値Vajとは、別途に予め設定された電圧値である。すなわち、ゲイン調整用出力値Vajは、超音波ビームの受信信号Sgrの所定のn波目(図6では2波目)が識別できた上で所定のn波目に対して用いられるゲイン調整用電圧値であるが、初期ゲイン調整用電圧値Vajiは、超音波ビームの受信信号Sgrの所定のn波目(図6では2波目)が未だ識別されていない状態で、何番目の波であるかとは無関係に識別可能な、受信信号Sgrの最大値Vpに対して用いられるゲイン調整用電圧値である。例えば、初期ゲイン調整用電圧値Vajiは、n波目(図6では2波目)のピーク電圧値Vpnを、超音波ビームの伝搬時間Tauの計測処理で所定のn波目(図6では2波目)を識別するために用いる予め設定された電圧閾値Vthと、通常のゲイン調整設定処理でこの識別したn波目(図6では2波目)のピーク電圧値Vpnの調整のために用いるゲイン調整用出力値Vajとの間の値になるように調整した場合に対応する、超音波ビームの受信信号Sgrの最大ピーク電圧Vpの電圧値に設定されている。言い換えれば、超音波ビームの受信信号Sgrの最大ピーク電圧Vpの電圧値を初期ゲイン調整用電圧値Vajiに調整するように初期ゲインを調整すれば、所定のn波目(図6では2波目)のピーク電圧値Vpnが、n波目のピーク電圧値Vpnとn−1波目のピーク電圧値Vpn-1との間になるように予め設定された電圧閾値Vthと、通常のゲイン調整設定処理で用いられるゲイン調整用出力値Vajとの間の値になるように調整されることになる。
Next, in step S804, the flow measurement
次に、S805では、流量計測演算制御部21は、S804で超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiに達していない場合は、順方向ゲインGau設定部26に現在格納されている順方向ゲインGauの値よりも調整単位で1段階分だけアップした増幅率を、順方向ゲインGau設定部26に更新格納し、S802〜S804に示した処理を行う。
Next, in S805, if the maximum value Vp of the ultrasonic beam reception signal Sgr does not reach the initial gain adjustment voltage value Vaji in S804, the flow measurement
したがって、流量計測演算制御部21は、下流側の超音波送受信器14による超音波ビームの受信出力に含まれる超音波ビームの受信信号Sgrの最大値Vpが予め設定された初期ゲイン調整用電圧値Vajiに達するまでは、順方向ゲインGau設定部26に格納される順方向ゲインGauの値を、S802で示した超音波ビームの送受信毎、逐次1段階分だけアップされることになる。なお、本実施例では、順方向ゲインGauの調整を所定の調整単位ずつアップさせることにより、超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiとなるように調整するように構成しているが、これに代えて、超音波ビームの受信信号Sgrの最大値Vpと初期ゲイン調整用電圧値Vajiとから、最大値Vpが初期ゲイン調整用電圧値Vajiとなるような順方向ゲインGauを演算して得た増幅率を用いて順方向ゲインGauの調整を行うようにしてもよい。
Therefore, the flow measurement
そして、流量計測演算制御部21は、S804で超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiに達したのを確認した場合は、その確認が被測定流体の時間的或いは物理的な変動が生じてスポット的に調整されたものであるのか否かを、S806以下の処理で確認する。
When the flow measurement
まず、S806では、流量計測演算制御部21は、この確認に備えて、内部のメモリにそれぞれ形成されている送受信回数カウンタCn及び到達回数カウンタCmそれぞれの、カウント値Cn,Cmを零リセットする。
First, in S806, in preparation for this confirmation, the flow measurement
ここで、送受信回数カウンタCは、超音波送受信器13,14間で被測定流体の流れ方向に対する順方向での超音波ビームの送受信回数を計数するためのもので、到達回数カウンタCmは、所定回数Nの超音波ビームの送受信において超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiに達した回数を計数するためのものである。
Here, the transmission / reception number counter C is for counting the number of transmission / reception of the ultrasonic beam in the forward direction with respect to the flow direction of the fluid to be measured between the ultrasonic transmission /
S807では、流量計測演算制御部21は、超音波送受信器13,14間で被測定流体の流れ方向に対する順方向での超音波ビームの送受信を行わせる。
In step S <b> 807, the flow measurement
S808では、流量計測演算制御部21は、この超音波ビームの送受信によって取得した超音波ビームの受信信号Sgrの最大値Vpが、予め設定された初期ゲイン調整用電圧値Vajiに達しているか否かを確認する。
In S808, the flow measurement
S809では、流量計測演算制御部21は、超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiに達している場合は、到達回数カウンタCmのカウント値Cmをインクリメントする。
In S809, when the maximum value Vp of the ultrasonic beam reception signal Sgr reaches the initial gain adjustment voltage value Vaji, the flow measurement
S810では、流量計測演算制御部21は、送受信回数カウンタCnのカウント値Cnをインクリメントする。
In S810, the flow measurement
S811では、流量計測演算制御部21は、送受信回数カウンタCnのカウント値Cnが所定回数Nに達したか否かを確認する。この確認により、流量計測演算制御部21は、所定回数Nの、超音波送受信器13,14間で被測定流体の流れ方向に対する順方向での超音波ビームの送受信が行われていない場合は、S807〜S811に係る、順方向ゲインGau設定部26に更新格納されている順方向ゲインGauの値の確認処理を繰り返す一方、所定回数Nの送受信が行われて順方向ゲインGauの値の確認処理が終了したならば、その順方向ゲインGauの値の評価を行う。
In S811, the flow measurement
S812では、流量計測演算制御部21は、その評価を、到達回数カウンタCmのカウント値Cmの値が、所定回数Nの送受信を行って、所定回数M以上、超音波ビームの受信信号Sgrの最大値Vpが初期ゲイン調整用電圧値Vajiに達している否かに基づいて行う。
In S812, the flow measurement
そして、流量計測演算制御部21は、到達回数カウンタCmのカウント値Cmが所定回数Mよりも低く、順方向ゲインGau設定部26に更新格納されている順方向ゲインGauの値の更なる調整を必要とする場合は、再びS805に戻って順方向ゲインGauの値を微調整する。一方、到達回数カウンタCmのカウント値Cmが所定回数Mよりも高い場合は、先にS805で順方向ゲインGau設定部26に更新格納された順方向ゲインGauの値で、その調整・設定を完了する。
Then, the flow measurement
以上、設定ゲインGauを調整・設定する場合について説明したが、設定ゲインGadを調整・設定する場合も、この設定ゲインGauを調整・設定する場合と同様な手順で調整・設定が流量計測演算制御部21により行われる。この場合、設定ゲインGauの調整・設定の完了によって、設定ゲインGadの調整・設定を連続して行うようにしてもよいし、設定ゲインGau及び設定ゲインGadそれぞれの調整・設定を、両者で超音波ビームの送受信が重畳することがないようにして並行して行うようにしてもよい。
The case where the setting gain Gau is adjusted / set has been described above. However, when the setting gain Gad is adjusted / set, the flow rate calculation calculation control is performed in the same procedure as when the setting gain Gau is adjusted / set. This is performed by the
そして、流量計測演算制御部21は、設定ゲインGau及び設定ゲインGadそれぞれの調整・設定が完了したならば、図2のS40に示した一波跳び検出処理において‘一波跳びあり’の場合として表わしたように、流量計測処理を再開する。
Then, when the adjustment and setting of the set gain Gau and the set gain Gad are completed, the flow measurement
これにより、本実施の形態の超音波流量計1では、一波跳びが生じていることを検出したならば、流量計測中の通常のゲイン調整設定処理とは異なる、超音波ビームの受信信号Sgrの所定のn波目(図6では2波目)、及びそのn波目のピーク電圧値Vpnを、流量計測中の超音波ビームの受信信号Sgrから識別して取得することができないことを前提とした設定ゲインGau・Gad調整処理を自動的に行って、設定ゲインGau,Gadが不正確であることに伴う伝搬時間Tau,Tadの誤計測や、延いては被測定流体の流量Qの誤計測を防止して、被測定流体の正確な流量Qが計測できるようになる。
Thereby, in the
本実施の形態に係る超音波流量計1は、以上説明したとおりであるが、一波跳びが生じていることを、被測定流体の時間的或いは物理的な変動によって検出し、流量計測演算制御部21が、超音波ビームの受信信号Sgrの所定のn波目の検出に依存しない設定ゲインGau・Gad調整処理を行うものであるならば、その具体的構成は上記説明したものに限らず、種々の変形例が適用可能である。
Although the
1 超音波流量計、 10 流量計本体、 11 測定流路、
12 測定管路、 13,14 超音波送受信器、
15 伝搬路、 16 圧力センサ、 20 流量計測演算装置、
21 流量計測演算制御部、 22 駆動信号出力部、
23 受信信号増幅部、 24 送受信側切替部、
25 ゲイン切替部、 26 順方向ゲインGau設定部、
27 逆方向ゲインGad設定部、 31 流量計測処理部、
32 一波跳び検出処理部、 33 設定ゲイン調整処理部。
1 Ultrasonic flow meter, 10 Flow meter body, 11 Measurement flow path,
12 measurement pipelines, 13, 14 ultrasonic transceivers,
15 propagation path, 16 pressure sensor, 20 flow measurement and calculation device,
21 flow measurement calculation control unit, 22 drive signal output unit,
23 reception signal amplification unit, 24 transmission / reception side switching unit,
25 gain switching unit, 26 forward gain Gau setting unit,
27 reverse gain Gad setting unit, 31 flow rate measurement processing unit,
32 a single wave jump detection processing unit, 33 a set gain adjustment processing unit.
Claims (7)
該一対の超音波送受信器の中の送信側の超音波送受信器より送信され受信側の超音波送受信器により受信される超音波ビームの受信信号における所定の波のピーク電圧が予め定められた所定電圧となるように、当該受信信号の増幅率を演算する増幅率演算手段と、
該増幅率演算手段により演算された増幅率で受信側の超音波送受信器による受信信号を増幅する増幅手段と、
前記一対の超音波送受信器間で送信側と受信側とを双方で変更して被測定流体の流れの方向に対して順方向及び逆方向のそれぞれで超音波ビームの送受信を行わせるとともに、前記一対の超音波送受信器間での送信側と受信側との双方変更に応じて受信側になった超音波送受信器により受信され、前記増幅手段によって増幅された超音波ビームの受信信号における前記所定の波を検出して、被測定流体の流れの方向に対して順方向及び逆方向それぞれの伝搬時間を計測し、当該両伝搬時間から被測定流体の流量を演算する流量演算手段と、
被測定流体の時間的或いは物理的な変動を検出し、当該変動が検出された場合には、前記増幅率演算手段による増幅率の演算を、当該変動が検出されない場合の前記所定の波のピーク電圧を直接調整する手順に代えて、当該所定の波が含まれる超音波ビームの受信信号の最大ピーク電圧を間接調整する手順によって行わせる増幅率演算制御手段と
を備えていることを特徴とする超音波流量計。 A pair of ultrasonic transmitters / receivers provided in the measurement flow path through which the fluid to be measured flows and the positions of the fluids to be measured are shifted along the flow direction;
A predetermined peak voltage of a predetermined wave in a reception signal of an ultrasonic beam transmitted from an ultrasonic transmitter / receiver on the transmission side of the pair of ultrasonic transmitter / receivers and received by an ultrasonic transmitter / receiver on the reception side is predetermined. An amplification factor calculating means for calculating the amplification factor of the received signal so as to be a voltage;
Amplifying means for amplifying the received signal by the receiving-side ultrasonic transmitter / receiver at the gain calculated by the gain calculating means;
The transmission side and the reception side are changed between the pair of ultrasonic transmitters and receivers so that the ultrasonic beam is transmitted and received in each of the forward and reverse directions with respect to the direction of the flow of the fluid to be measured. The predetermined signal in the received signal of the ultrasonic beam received by the ultrasonic transmitter / receiver on the receiving side according to the change between the transmitting side and the receiving side between the pair of ultrasonic transmitter / receivers and amplified by the amplifying means A flow rate calculation means for measuring the propagation time in each of the forward and reverse directions with respect to the direction of the flow of the fluid to be measured, and calculating the flow rate of the fluid to be measured from the both propagation times;
When a temporal or physical variation of the fluid to be measured is detected, and the variation is detected, the amplification factor is calculated by the amplification factor calculation means, and the peak of the predetermined wave when the variation is not detected. In place of the procedure for directly adjusting the voltage, an amplification factor calculation control means for performing the procedure for indirectly adjusting the maximum peak voltage of the reception signal of the ultrasonic beam including the predetermined wave is provided. Ultrasonic flow meter.
前記流量演算手段によって計測された、前記一対の超音波送受信器間で一方の上流側の超音波送受信器から超音波ビームが送信されてから他方の下流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して順方向の伝搬時間と、他方の下流側の超音波送受信器から超音波ビームが送信されてから一方の上流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して逆方向の伝搬時間との差が所定時間差以上の場合に、被測定流体の時間的或いは物理的な変動を検出する変動検出部を含む
ことを特徴とする請求項1に記載の超音波流量計。 The amplification factor calculation control means includes
Until an ultrasonic beam is transmitted from one upstream ultrasonic transmitter / receiver to the other downstream ultrasonic transmitter / receiver, measured by the flow rate calculation means, between the pair of ultrasonic transmitters / receivers Propagation time in the forward direction with respect to the flow direction of the fluid to be measured and from the time when the ultrasonic beam is transmitted from the other ultrasonic transmitter / receiver to the time when the ultrasonic transmitter / receiver is received by one upstream And a fluctuation detector for detecting temporal or physical fluctuations of the fluid to be measured when the difference between the propagation time in the reverse direction with respect to the flow direction of the fluid to be measured is a predetermined time difference or more. The ultrasonic flowmeter according to claim 1.
前記流量演算手段によって計測された、前記一対の超音波送受信器間で一方の上流側の超音波送受信器から超音波ビームが送信されてから他方の下流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して順方向の伝搬時間と、他方の下流側の超音波送受信器から超音波ビームが送信されてから一方の上流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して逆方向の伝搬時間との和が所定時間と一致しない場合に、被測定流体の時間的或いは物理的な変動を検出する変動検出部を含む
ことを特徴とする請求項1に記載の超音波流量計。 The amplification factor calculation control means includes
Until an ultrasonic beam is transmitted from one upstream ultrasonic transmitter / receiver to the other downstream ultrasonic transmitter / receiver, measured by the flow rate calculation means, between the pair of ultrasonic transmitters / receivers Propagation time in the forward direction with respect to the flow direction of the fluid to be measured and from the time when the ultrasonic beam is transmitted from the other ultrasonic transmitter / receiver to the time when the ultrasonic transmitter / receiver is received by one upstream A fluctuation detector for detecting temporal or physical fluctuations of the fluid to be measured when the sum of the propagation time in the reverse direction with respect to the flow direction of the fluid to be measured does not coincide with the predetermined time The ultrasonic flowmeter according to claim 1.
ことを特徴とする請求項3に記載の超音波流量計。 The predetermined time is determined by changing the transmission side and the reception side between the pair of ultrasonic transmitters / receivers before the ultrasonic beam in each of the forward direction and the reverse direction with respect to the flow direction of the fluid to be measured. 4. The super value according to claim 3, wherein the transmission time is a sum of propagation times in the forward direction and the reverse direction with respect to the direction of the flow of the fluid to be measured, which is measured by the flow rate calculation means when transmission / reception is performed. Sonic flow meter.
前記流量演算手段により演算された前回の流量と今回の流量との流量差が予め定められた所定流量差よりも大きい場合、或いは、前回の流量と今回の流量との流量変化率が予め定められた所定流量変化率よりも高い場合に、被測定流体の時間的或いは物理的な変動を検出する変動検出部を含む
ことを特徴とする請求項1に記載の超音波流量計。 The amplification factor calculation control means includes
When the flow rate difference between the previous flow rate and the current flow rate calculated by the flow rate calculation unit is larger than a predetermined flow rate difference, or the flow rate change rate between the previous flow rate and the current flow rate is predetermined. The ultrasonic flowmeter according to claim 1, further comprising a fluctuation detecting unit that detects temporal or physical fluctuation of the fluid to be measured when the rate of change is higher than the predetermined flow rate change rate.
前記測定流路に設けられた被測定流体の圧力を検出する圧力検出器から取得した、前回取得時の検出圧力と今回取得時の圧力との圧力差が予め定められた所定圧力差よりも大きい場合、或いは、前回取得時の検出圧力と今回取得時の圧力との圧力変化率が予め定められた所定圧力変化率よりも高い場合に、被測定流体の時間的或いは物理的な変動を検出する変動検出部を含む
ことを特徴とする請求項1に記載の超音波流量計。 The amplification factor calculation control means includes
The pressure difference between the detected pressure at the previous acquisition and the pressure at the current acquisition, which is acquired from the pressure detector that detects the pressure of the fluid to be measured provided in the measurement channel, is greater than a predetermined pressure difference. If the pressure change rate between the detected pressure at the previous acquisition and the pressure at the current acquisition is higher than a predetermined pressure change rate determined in advance, the temporal or physical variation of the fluid to be measured is detected. The ultrasonic flowmeter according to claim 1, further comprising a fluctuation detection unit.
前記流量演算手段によって今回及び前回に計測された、前記一対の超音波送受信器間で一方の上流側の超音波送受信器から超音波ビームが送信されてから他方の下流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して順方向の伝搬時間同士の伝搬時間差が所定伝搬時間差よりも大きい場合、或いは、他方の下流側の超音波送受信器から超音波ビームが送信されてから一方の上流側の超音波送受信器に受信されるまでの被測定流体の流れの方向に対して逆方向の伝搬時間同士の伝搬時間差が所定伝搬時間差よりも大きい場合に、被測定流体の時間的或いは物理的な変動を検出する変動検出部を含む
ことを特徴とする請求項1に記載の超音波流量計。 The amplification factor calculation control means includes
The ultrasonic beam is transmitted from one upstream ultrasonic transmitter / receiver between the pair of ultrasonic transmitters / receivers measured this time and the previous time by the flow rate calculation means to the other downstream ultrasonic transmitter / receiver. When the propagation time difference between the forward propagation times is larger than the predetermined propagation time difference with respect to the flow direction of the fluid to be measured until reception, or an ultrasonic beam is transmitted from the other ultrasonic transmitter / receiver on the other downstream side When the propagation time difference between the propagation times in the reverse direction to the direction of the flow of the fluid to be measured from when it is received by the ultrasonic transmitter / receiver on one upstream side is larger than the predetermined propagation time difference, The ultrasonic flowmeter according to claim 1, further comprising: a fluctuation detecting unit that detects temporal or physical fluctuations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012243373A JP5965292B2 (en) | 2012-11-05 | 2012-11-05 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012243373A JP5965292B2 (en) | 2012-11-05 | 2012-11-05 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014092469A JP2014092469A (en) | 2014-05-19 |
JP5965292B2 true JP5965292B2 (en) | 2016-08-03 |
Family
ID=50936630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012243373A Active JP5965292B2 (en) | 2012-11-05 | 2012-11-05 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5965292B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105444924A (en) * | 2015-12-24 | 2016-03-30 | 清华大学 | Ultrasonic heat meter |
JP7174574B2 (en) * | 2018-09-05 | 2022-11-17 | アズビル株式会社 | Ultrasonic flowmeter and determination method of zero-crossing time in ultrasonic flowmeter |
JP2020118553A (en) * | 2019-01-24 | 2020-08-06 | 株式会社鷺宮製作所 | Ultrasonic flowmeter, fluid circulation device, and flow rate measurement method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3149327B2 (en) * | 1994-12-02 | 2001-03-26 | 株式会社カイジョー | Received wave gain control method of ultrasonic measuring device |
JP4020455B2 (en) * | 1997-05-28 | 2007-12-12 | 愛知時計電機株式会社 | Ultrasonic flow meter |
JP2001317975A (en) * | 2000-05-10 | 2001-11-16 | Kansai Gas Meter Co Ltd | Method and apparatus for ultrasonic flow velocity measurement |
JP2002365109A (en) * | 2001-06-11 | 2002-12-18 | Aichi Tokei Denki Co Ltd | Ultrasonic flowmeter |
JP2013210313A (en) * | 2012-03-30 | 2013-10-10 | Tokiko Techno Kk | Ultrasonic flowmeter |
-
2012
- 2012-11-05 JP JP2012243373A patent/JP5965292B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014092469A (en) | 2014-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3716274B2 (en) | Ultrasonic flow meter and ultrasonic flow measurement method | |
JP2014092467A (en) | Flow rate measurement device | |
JP2007187506A (en) | Ultrasonic flowmeter | |
JP5965292B2 (en) | Ultrasonic flow meter | |
JP2011145289A (en) | Flow rate measuring device | |
JP4561088B2 (en) | Ultrasonic flow meter | |
JP4792653B2 (en) | Flowmeter | |
JP5141613B2 (en) | Ultrasonic flow meter | |
JPH1048009A (en) | Ultrasound temperature current meter | |
JP3624743B2 (en) | Ultrasonic flow meter | |
JP2018136276A (en) | Ultrasonic flowmeter | |
JP5489635B2 (en) | Ultrasonic flow meter | |
JP7203353B2 (en) | ultrasonic flow meter | |
JP2000329597A5 (en) | ||
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP5649476B2 (en) | Ultrasonic flow meter | |
JP6767628B2 (en) | Flow measuring device | |
JP4531426B2 (en) | Ultrasonic flow meter | |
JP2006343292A (en) | Ultrasonic flowmeter | |
JP7320776B2 (en) | ultrasonic flow meter | |
JP7246021B2 (en) | ultrasonic flow meter | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
WO2024134908A1 (en) | Ultrasonic flowmeter, and measuring method | |
JP5092413B2 (en) | Flow velocity or flow rate measuring device | |
JP7203352B2 (en) | ultrasonic flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5965292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |