JPH1048009A - Ultrasound temperature current meter - Google Patents

Ultrasound temperature current meter

Info

Publication number
JPH1048009A
JPH1048009A JP8204794A JP20479496A JPH1048009A JP H1048009 A JPH1048009 A JP H1048009A JP 8204794 A JP8204794 A JP 8204794A JP 20479496 A JP20479496 A JP 20479496A JP H1048009 A JPH1048009 A JP H1048009A
Authority
JP
Japan
Prior art keywords
pipe
piezoelectric element
ultrasonic
temperature
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8204794A
Other languages
Japanese (ja)
Inventor
Junichi Azuma
淳一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8204794A priority Critical patent/JPH1048009A/en
Publication of JPH1048009A publication Critical patent/JPH1048009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasound temperature current meter capable of measuring temperature and flow velocity of fluid easily and precisely. SOLUTION: On an outer wall face 31 of a pipe 30, piezoelectric elements 21 and 22 are opposed thereto in a vertical direction relevant to a longitudinal direction of the pipe 30, sensors 1 to 3 are set so that piezoelectric elements 23 and 24 are opposed thereto in a diagonal direction, and sound velocity in the fluid flowing in the pipe 30 is measured from a transmission time of a reflection wave 101 transmitting from the piezoelectric element 21 to the piezoelectric element 22 and a transmission time of a reflection wave 102 transmitted from the piezoelectric element 21, reflected on an inner wall face 32 of the pipe 30, and returning to the piezoelectric element 21. A temperature of fluid flowing in the pipe 30 from this sound velocity is measured, and further a difference between the transmission time of the ultrasound wave 103 transmitting from the piezoelectric element 23 to the piezoelectric element 23 and the transmission time of the ultrasound wave 104 transmitting from the piezoelectric element 24 to the piezoelectric element 23 and flow velocity of the fluid flowing in the pipe 30 from the above measured sound velocity are measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いて配
管内を流れる流体の温度および流速を計測する超音波温
度流速計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic temperature / velocity meter for measuring the temperature and flow velocity of a fluid flowing in a pipe using ultrasonic waves.

【0002】[0002]

【従来の技術】従来、配管内を流れる流体の流速を計測
する装置として、配管の外壁面上に配管の長手方向に対
し斜めの方向に対向して第1および第2の超音波センサ
を設置し、第1の超音波センサから第2の超音波センサ
へ伝搬する超音波の伝搬時間と第2の超音波センサから
第1の超音波センサへ伝搬する超音波の伝搬時間との差
および予め設定された流体中の音速に基づいて流速を求
める超音波流速計が知られている。
2. Description of the Related Art Conventionally, as an apparatus for measuring the flow velocity of a fluid flowing in a pipe, first and second ultrasonic sensors are installed on the outer wall surface of the pipe so as to face in a direction oblique to the longitudinal direction of the pipe. The difference between the propagation time of the ultrasonic wave propagating from the first ultrasonic sensor to the second ultrasonic sensor and the propagation time of the ultrasonic wave propagating from the second ultrasonic sensor to the first ultrasonic sensor, and 2. Description of the Related Art There is known an ultrasonic anemometer that determines a flow velocity based on a set sound velocity in a fluid.

【0003】また、流体中の音速の値は流体の温度によ
って変化するため、例えば実願平2−111617で示
される温度補償形熱式流量計のように、適当な測温素子
を用いて流体の温度を計測し、その温度に基づいて音速
を補正することにより、温度に影響されることなく流速
を求める方法が提案されている。
Further, since the value of the speed of sound in a fluid changes depending on the temperature of the fluid, for example, a suitable temperature measuring element such as a temperature-compensated thermal flow meter disclosed in Japanese Utility Model Application No. 2-111617 is used. A method has been proposed in which the temperature is measured and the speed of sound is corrected based on the temperature to determine the flow velocity without being affected by the temperature.

【0004】[0004]

【発明が解決しようとする課題】上述したような流体の
温度による音速の変化の影響を取り除くために、測温素
子を用いて流体の温度を計測する従来の超音波流速計で
は、測温素子の設置のために配管に対して穴あけ等の加
工を行う必要があるという問題があり、さらに測温素子
の計測遅れのため、流体の温度および流速が時間的に激
しく変化するような場合には正確な計測を行うことがで
きないという問題があった。本発明は、容易かつ高精度
に流体の温度および流速を計測することのできる超音波
温度流速計を提供することを目的とする。
In order to eliminate the influence of the change in the speed of sound due to the temperature of the fluid as described above, a conventional ultrasonic current meter which measures the temperature of the fluid using a temperature measuring element is used. When there is a problem that it is necessary to perform processing such as drilling on the piping for installation of the pipe, and when the temperature and flow velocity of the fluid change drastically with time due to the delay in measurement of the temperature measuring element, There was a problem that accurate measurement could not be performed. An object of the present invention is to provide an ultrasonic temperature / velocity meter that can easily and accurately measure the temperature and flow velocity of a fluid.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は配管の外壁面上に配管の長手方向に対し垂
直の方向に対向して設置された一対の超音波トランスデ
ューサを用いて、配管内を流れる流体中の音速と温度を
計測するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a pair of ultrasonic transducers installed on the outer wall surface of a pipe in a direction perpendicular to the longitudinal direction of the pipe, It measures the speed of sound and temperature in the fluid flowing through the pipe.

【0006】すなわち、本発明に係る超音波温度流速計
は、配管の外壁面上に配管の長手方向に対し垂直の方向
に対向して設置された第1および第2の超音波トランス
デューサと、配管の外壁面上に配管の長手方向に対し斜
めの方向に対向して設置された第3および第4の超音波
トランスデューサと、第1の超音波トランスデューサか
ら第2の超音波トランスデューサへ伝搬する超音波の伝
搬時間および第1の超音波トランスデューサから送信さ
れ配管の内壁面で反射されて第1の超音波トランスデュ
ーサに戻る超音波の伝搬時間に基づいて配管内を流れる
流体中の音速を計測する音速計測手段と、この音速計測
手段により計測された音速から配管内を流れる流体の温
度を計測する温度計測手段と、第3の超音波トランスデ
ューサから第4の超音波トランスデューサへ伝搬する超
音波の伝搬時間と第4の超音波トランスデューサから第
3の超音波トランスデューサへ伝搬する超音波の伝搬時
間との差および音速計測手段により計測された音速に基
づいて配管内を流れる流体の流速を計測する流速計測手
段とを備えている。
That is, the ultrasonic temperature and velocity meter according to the present invention comprises first and second ultrasonic transducers installed on the outer wall surface of a pipe in a direction perpendicular to the longitudinal direction of the pipe, Third and fourth ultrasonic transducers installed on the outer wall surface of the pipe in a direction oblique to the longitudinal direction of the pipe, and ultrasonic waves propagating from the first ultrasonic transducer to the second ultrasonic transducer Velocity measurement for measuring the velocity of sound in the fluid flowing through the pipe based on the propagation time of the ultrasonic wave and the propagation time of the ultrasonic wave transmitted from the first ultrasonic transducer and reflected on the inner wall surface of the pipe and returned to the first ultrasonic transducer Means, temperature measuring means for measuring the temperature of the fluid flowing through the pipe from the sound velocity measured by the sound velocity measuring means, and a fourth ultrasonic transducer to a fourth ultrasonic transducer. Based on the difference between the propagation time of the ultrasonic wave propagating to the ultrasonic transducer and the propagation time of the ultrasonic wave propagating from the fourth ultrasonic transducer to the third ultrasonic transducer, and the sound velocity measured by the sound velocity measuring means, the inside of the pipe is determined. A flow velocity measuring means for measuring the flow velocity of the flowing fluid.

【0007】本発明の超音波温度流速計では、第1の超
音波トランスデューサから第2の超音波トランスデュー
サへ伝搬する超音波の伝搬時間から第1の超音波トラン
スデューサから送信され配管の内壁面で反射されて第1
の超音波トランスデューサに戻る超音波の伝搬時間を差
し引くことによって配管の板厚の影響が除去され、流体
中の超音波の伝搬時間が求まる。
In the ultrasonic temperature and velocity meter of the present invention, the ultrasonic wave is transmitted from the first ultrasonic transducer based on the propagation time of the ultrasonic wave propagating from the first ultrasonic transducer to the second ultrasonic transducer, and is reflected by the inner wall surface of the pipe. Been the first
By subtracting the propagation time of the ultrasonic wave returning to the ultrasonic transducer, the influence of the thickness of the pipe is removed, and the propagation time of the ultrasonic wave in the fluid is obtained.

【0008】この第1の超音波トランスデューサから送
信された超音波は、伝搬方向が配管内を流れる流体の流
れ方向に対して垂直の方向であるため、流体の流速によ
って伝搬時間の影響を受けることはない。従って、この
流体中の超音波が伝搬時間に基づいて正確な音速が得ら
れ、さらに、この音速から流体の温度を求めることがで
きる。
The ultrasonic wave transmitted from the first ultrasonic transducer is influenced by the flow time of the fluid because the propagation direction of the ultrasonic wave is perpendicular to the flow direction of the fluid flowing through the pipe. There is no. Accordingly, an accurate sound speed can be obtained based on the propagation time of the ultrasonic wave in the fluid, and the temperature of the fluid can be obtained from the sound speed.

【0009】このようにして、測温素子を用いる場合の
ように配管に穴空け等をすることなく、また配管の板厚
や板厚の温度変化の影響を受けることなく、容易かつ高
精度に音速および温度を求めることができる。
In this manner, unlike the case where a temperature measuring element is used, the pipe is not drilled or the like, and it is easy and highly accurate without being affected by the thickness of the pipe or the temperature change of the thickness. The speed of sound and temperature can be determined.

【0010】そして、第3の超音波トランスデューサか
ら第4の超音波トランスデューサへ伝搬する超音波の伝
搬時間と第4の超音波トランスデューサから第3の超音
波トランスデューサへ伝搬する超音波の伝搬時間の差と
上述の計測された音速とに基づいて配管内を流れる流体
の流速を計測することにより、流体の温度および流速が
時間的に激しく変化するような場合でも正確に流速を求
めることができる。
The difference between the propagation time of the ultrasonic wave propagating from the third ultrasonic transducer to the fourth ultrasonic transducer and the propagation time of the ultrasonic wave propagating from the fourth ultrasonic transducer to the third ultrasonic transducer. By measuring the flow velocity of the fluid flowing in the pipe based on the measured sound velocity and the above-described sound velocity, the flow velocity can be accurately obtained even when the temperature and the flow velocity of the fluid change drastically with time.

【0011】[0011]

【発明の実施の形態】図1は、本発明の一実施形態に係
る超音波温度流速計の概略構成を示すブロック図であ
る。この超音波温度流速計は、センサ1〜3、切替器
4、送受信器5、ゲート回路6、カウンタ7、演算部
8、制御部9により構成されている。
FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic temperature and velocity meter according to an embodiment of the present invention. The ultrasonic temperature and velocity meter includes sensors 1 to 3, a switch 4, a transceiver 5, a gate circuit 6, a counter 7, a calculation unit 8, and a control unit 9.

【0012】センサ1〜3は、本実施形態において超音
波の送受信を行うためのものであり、図2にその具体的
な構成および配管への設置状態を示す。センサ1には圧
電素子21,23が設けられ、センサ2,3には圧電素
子22,24がそれぞれ設けられている。圧電素子21
は、切替器4を介して送受信器5から出力される送信信
号により駆動されて配管30側に超音波を送信すると共
に、配管30側から入射する超音波を受信して電気信号
に変換し、受信信号として出力するものである。
The sensors 1 to 3 are for transmitting and receiving ultrasonic waves in the present embodiment, and FIG. 2 shows a specific configuration thereof and a state of being installed in a pipe. The sensor 1 is provided with piezoelectric elements 21 and 23, and the sensors 2 and 3 are provided with piezoelectric elements 22 and 24, respectively. Piezoelectric element 21
Is driven by a transmission signal output from the transmitter / receiver 5 via the switch 4, transmits an ultrasonic wave to the pipe 30 side, receives an ultrasonic wave incident from the pipe 30 side, converts it into an electric signal, It is output as a received signal.

【0013】そして、センサ1〜3は圧電素子21と圧
電素子22とが配管30の長手方向に対し垂直方向に対
向し、かつ圧電素子23と圧電素子24とが配管30の
長手方向に対し斜めの方向に対向するように、すなわち
角度θ(0°<θ<90°)の方向で対向するように配
管30の外壁面31に設置される。この場合、圧電素子
21から送信される超音波101は、圧電素子22で受
信されると共に、その一部が配管30の内壁面32で反
射し、その反射波102が圧電素子21で受信される。
また、圧電素子23から送信される超音波103は圧電
素子24で受信され、圧電素子24から送信される超音
波104は圧電素子23で受信される。
In the sensors 1 to 3, the piezoelectric element 21 and the piezoelectric element 22 are opposed to each other in a direction perpendicular to the longitudinal direction of the pipe 30, and the piezoelectric elements 23 and 24 are oblique to the longitudinal direction of the pipe 30. , That is, on the outer wall surface 31 of the pipe 30 so as to face in the direction of the angle θ (0 ° <θ <90 °). In this case, the ultrasonic wave 101 transmitted from the piezoelectric element 21 is received by the piezoelectric element 22, and a part thereof is reflected on the inner wall surface 32 of the pipe 30, and the reflected wave 102 is received by the piezoelectric element 21. .
The ultrasonic wave 103 transmitted from the piezoelectric element 23 is received by the piezoelectric element 24, and the ultrasonic wave 104 transmitted from the piezoelectric element 24 is received by the piezoelectric element 23.

【0014】切替器4は、センサ1〜3の各圧電素子2
1〜24の送信状態と受信状態とを切り替えるためのも
のである。ここで、送信状態とは送受信器5から出力さ
れる送信信号が圧電素子21〜24に入力される状態を
いい、受信状態とは圧電素子から出力される受信信号が
送受信器5に入力される状態をいう。
The switching device 4 is provided for each of the piezoelectric elements 2 of the sensors 1 to 3.
This is for switching between the transmission state and the reception state of Nos. 1 to 24. Here, the transmission state refers to a state in which a transmission signal output from the transceiver 5 is input to the piezoelectric elements 21 to 24, and the reception state refers to a reception signal output from the piezoelectric element being input to the transceiver 5. State.

【0015】送受信器5は、切替器4を介して送信状態
の圧電素子21〜24に所定の周波数および電圧の送信
信号を出力すると共に、受信状態の圧電素子21〜24
から切替器4を介して入力される受信信号を適当に増幅
してゲート回路6に出力する。
The transmitter / receiver 5 outputs a transmission signal of a predetermined frequency and voltage to the piezoelectric elements 21 to 24 in the transmitting state via the switch 4, and outputs the transmitting signals to the piezoelectric elements 21 to 24 in the receiving state.
, And appropriately amplifies the received signal input through the switch 4 and outputs the amplified signal to the gate circuit 6.

【0016】ゲート回路6は、送受信器5から出力され
る受信信号から計測に必要な信号を適宜選択してカウン
タ7に出力する。カウンタ7は、計測開始時に制御部9
から出力されるトリガ信号とゲート回路6から出力され
る受信信号に従って制御され、圧電素子21から圧電素
子22への超音波101の伝搬時間t1 、圧電素子21
から送信され配管30の内壁面32で反射した反射波1
02が圧電素子21に戻るまでの伝搬時間t2 、圧電素
子23から圧電素子24への超音波103の伝搬時間と
圧電素子24から圧電素子24への超音波104の伝搬
時間との伝搬時間差Δtを求める。
The gate circuit 6 appropriately selects a signal required for measurement from the received signal output from the transceiver 5 and outputs the signal to the counter 7. The counter 7 is controlled by the control unit 9 at the start of measurement.
Is controlled according to the trigger signal output from the piezoelectric element 21 and the reception signal output from the gate circuit 6, the propagation time t 1 of the ultrasonic wave 101 from the piezoelectric element 21 to the piezoelectric element 22,
Reflected from the inner wall surface 32 of the pipe 30 transmitted from the
02 is the propagation time t 2 before returning to the piezoelectric element 21, and the propagation time difference Δt between the propagation time of the ultrasonic wave 103 from the piezoelectric element 23 to the piezoelectric element 24 and the propagation time of the ultrasonic wave 104 from the piezoelectric element 24 to the piezoelectric element 24. Ask for.

【0017】演算部8は、音速計測部10と温度計測部
11および流速計測部12により構成されている。音速
計測部10は、伝搬時間t1 およびt2 に基づいて流体
中の音速Cを計測する。温度計測部11は、この音速C
に基づいて流体の温度Tを計測する。流速計測部12
は、伝搬時間差Δtおよび音速Cに基づいて流体の流速
Vを計測する。
The calculation unit 8 includes a sound speed measurement unit 10, a temperature measurement unit 11, and a flow velocity measurement unit 12. The sound velocity measuring unit 10 measures the sound velocity C in the fluid based on the propagation times t 1 and t 2 . The temperature measuring unit 11 calculates the sound speed C
The temperature T of the fluid is measured based on Flow velocity measuring unit 12
Measures the flow velocity V of the fluid based on the propagation time difference Δt and the sound velocity C.

【0018】制御部9は、この超音波温度流速計の制御
を司り、切替器4、送受信器5、ゲート回路6、カウン
タ7および演算部8の動作をそれぞれ制御する。以下、
この超音波温度流速計を用いた温度および流速の計測動
作について詳細に説明する。
The control section 9 controls the ultrasonic temperature and velocity meter, and controls the operations of the switch 4, the transceiver 5, the gate circuit 6, the counter 7, and the operation section 8, respectively. Less than,
The operation of measuring the temperature and the flow velocity using the ultrasonic temperature / velocity meter will be described in detail.

【0019】まず、流体の温度Tの計測を以下のように
して行う。制御部9は、切替器4を制御してセンサ1の
圧電素子21を送信状態にすると共に、センサ2の圧電
素子22を受信状態にする。この状態で送受信器5から
送信信号が出力されることにより、圧電素子21から超
音波101が送信され、それと同時にカウンタ7におい
て時間計測のためのカウント動作が開始される。なお、
圧電素子21は超音波101を送信した後、制御部9に
よって制御された切替器4により受信状態に切り替えら
れる。
First, the temperature T of the fluid is measured as follows. The control unit 9 controls the switch 4 to set the piezoelectric element 21 of the sensor 1 to the transmission state and set the piezoelectric element 22 of the sensor 2 to the reception state. In this state, when the transmission signal is output from the transceiver 5, the ultrasonic wave 101 is transmitted from the piezoelectric element 21, and at the same time, the counter 7 starts the counting operation for time measurement. In addition,
After transmitting the ultrasonic wave 101, the piezoelectric element 21 is switched to the receiving state by the switch 4 controlled by the control unit 9.

【0020】圧電素子21から送信された超音波101
は、配管30の長手方向、すなわち流体の流れ方向33
に対し垂直方向に流体中を伝搬して圧電素子22で受信
される。圧電素子22は受信した超音波101に応じた
受信信号201を出力し、この受信信号201は切替器
4を介して送受信器5に入力されて適当に増幅された
後、ゲート回路6を介してカウンタ7に入力される。カ
ウンタ7は、受信信号201が入力された時のカウント
数を伝搬時間t1 を示すデータとして演算部8の音速計
測部10に出力する。
The ultrasonic wave 101 transmitted from the piezoelectric element 21
Is the longitudinal direction of the pipe 30, that is, the flow direction 33 of the fluid.
Are propagated in the fluid in a direction perpendicular to the fluid, and are received by the piezoelectric element 22. The piezoelectric element 22 outputs a reception signal 201 corresponding to the received ultrasonic wave 101, and the reception signal 201 is input to the transmitter / receiver 5 via the switch 4, is appropriately amplified, and then passes through the gate circuit 6. Input to the counter 7. Counter 7 outputs the sound speed measuring unit 10 of the arithmetic unit 8 counts the number when the received signal 201 is input as data indicating the propagation time t 1.

【0021】圧電素子21から送信された超音波101
の一部は配管30の内壁面32で反射し、この反射波1
02は受信状態に切り替えられた圧電素子21で受信さ
れる。圧電素子21は反射波101に応じた受信信号2
02を出力し、この受信信号202は切替器4、送受信
器5およびゲート回路6を介してカウンタ7に入力され
る。カウンタ7は、受信信号202が入力された時のカ
ウント数を伝搬時間t2 を示すデータとして音速計測部
10に出力する。伝搬時間t2 は、圧電素子21から送
信された超音波101がセンサ1,2および配管30な
どの流体中以外の部分を伝搬するのに要した時間に相当
するので、t1 からt2 を差し引くことによって流体中
の超音波101の伝搬時間を求めることができる。
The ultrasonic wave 101 transmitted from the piezoelectric element 21
Is reflected by the inner wall surface 32 of the pipe 30, and the reflected wave 1
02 is received by the piezoelectric element 21 switched to the receiving state. The piezoelectric element 21 receives the received signal 2 corresponding to the reflected wave 101.
02, and the received signal 202 is input to the counter 7 via the switch 4, the transceiver 5 and the gate circuit 6. Counter 7 outputs the sound speed measuring unit 10 as data indicating the propagation time t 2 the count number when the received signal 202 is input. Propagation time t 2, so corresponds to the time the ultrasonic wave 101 transmitted from the piezoelectric element 21 is required to propagate a portion other than in a fluid such as sensors 1, 2 and the pipe 30, the t 2 from t 1 By subtraction, the propagation time of the ultrasonic wave 101 in the fluid can be obtained.

【0022】音速計測部10は、伝搬時間t1 ,t2
基づいて計測時における流体中の音速Cを計測する。こ
の場合、圧電素子21から送信された超音波101は、
体の流れ方向33に対して垂直方向に伝搬し、流速Vに
よって伝搬時間t1 の影響を受けることがない。従っ
て、配管30の内径をL1 とすると、音速Cは次式によ
って求められる。
The sound velocity measuring unit 10 measures the sound velocity C in the fluid at the time of measurement based on the propagation times t 1 and t 2 . In this case, the ultrasonic wave 101 transmitted from the piezoelectric element 21 is
The beam propagates in a direction perpendicular to the body flow direction 33 and is not affected by the propagation time t 1 by the flow velocity V. Therefore, when the inner diameter of the pipe 30 and L 1, sound velocity C is determined by the following equation.

【0023】 C=L1 /(t1 −t2 ) …(1) 温度計測部11は、この音速Cに基づいて流体の温度T
を計測する。この場合、温度Tは次式によって求められ
る。なお、fは音速Cに対する温度Tの関数であり、流
体の種類によって定められる。
C = L 1 / (t 1 −t 2 ) (1) The temperature measuring unit 11 calculates the fluid temperature T based on the sound speed C.
Is measured. In this case, the temperature T is obtained by the following equation. Note that f is a function of the temperature T with respect to the sound speed C, and is determined by the type of the fluid.

【0024】 T=f(C) …(2) 次に、流体の流速Vの計測を以下のようにして行う。制
御部9は、切替器4を制御してセンサ1の圧電素子22
を送信状態にすると共に、センサ3の圧電素子24を受
信状態にする。この状態で送受信器5から送信信号が出
力されることにより、圧電素子23から超音波103が
送信され、それと同時にカウンタ7のカウント動作が開
始される。なお、圧電素子23は超音波103を送信し
た後、制御部9によって制御された切替器4により受信
状態に切り替えられる。
T = f (C) (2) Next, the flow velocity V of the fluid is measured as follows. The control unit 9 controls the switch 4 to control the piezoelectric element 22 of the sensor 1.
Is set to the transmission state, and the piezoelectric element 24 of the sensor 3 is set to the reception state. In this state, when the transmission signal is output from the transceiver 5, the ultrasonic wave 103 is transmitted from the piezoelectric element 23, and at the same time, the counting operation of the counter 7 is started. After transmitting the ultrasonic wave 103, the piezoelectric element 23 is switched to the reception state by the switch 4 controlled by the control unit 9.

【0025】圧電素子23から送信された超音波103
は、流体の流れ方向33に対して角度θで流体中を伝搬
して圧電素子24で受信される。圧電素子24は受信し
た超音波103に応じた受信信号203を出力し、この
受信信号203は切替器4、送受信器5およびゲート回
路6を介してカウンタ7に入力される。カウンタ7は、
受信信号203が入力された時のカウント数を超音波1
03の伝搬時間t3 として蓄積しておく。
The ultrasonic wave 103 transmitted from the piezoelectric element 23
Propagates through the fluid at an angle θ with respect to the flow direction 33 of the fluid and is received by the piezoelectric element 24. The piezoelectric element 24 outputs a reception signal 203 corresponding to the received ultrasonic wave 103, and the reception signal 203 is input to the counter 7 via the switch 4, the transceiver 5 and the gate circuit 6. The counter 7
The number of counts when the reception signal 203 is input is set to the ultrasonic wave 1
03 is stored as the propagation time t 3 .

【0026】一方、圧電素子24において圧電素子23
から送信された超音波103が受信されると、制御部9
は切替器4を制御して圧電素子24を送信状態に、圧電
素子23を受信状態にそれぞれ切り替える。そして、送
受信器5から送信信号を出力させることにより圧電素子
24から超音波104を送信させると共に、カウンタ7
のカウント動作を開始させる。
On the other hand, in the piezoelectric element 24, the piezoelectric element 23
The control unit 9 receives the ultrasonic wave 103 transmitted from the
Controls the switch 4 to switch the piezoelectric element 24 to the transmitting state and the piezoelectric element 23 to the receiving state. Then, by transmitting a transmission signal from the transceiver 5, the ultrasonic wave 104 is transmitted from the piezoelectric element 24, and
Is started.

【0027】圧電素子24から送信された超音波104
は、圧電素子23から送信された超音波103とは逆方
向に流体中を伝搬して圧電素子23で受信される。圧電
素子23は、受信した超音波104に応じた受信信号2
04を出力し、この受信信号204は切替器4、送受信
器5およびゲート回路6を介してカウンタ7に入力され
る。
The ultrasonic wave 104 transmitted from the piezoelectric element 24
Is transmitted through the fluid in the opposite direction to the ultrasonic wave 103 transmitted from the piezoelectric element 23 and received by the piezoelectric element 23. The piezoelectric element 23 receives a received signal 2 corresponding to the received ultrasonic wave 104.
04, and the received signal 204 is input to the counter 7 via the switch 4, the transceiver 5, and the gate circuit 6.

【0028】カウンタ7は、受信信号204が入力され
た時のカウント数を超音波104の伝搬時間t4 とし
て、蓄積しておいた伝搬時間t3 とこの伝搬時間t4
の伝搬時間差Δt(=t3 −t4 )を求め、この伝搬時
間差Δtを示すデータを演算部8の流速計測部12に出
力する。
The counter 7 sets the count number when the received signal 204 is input as the propagation time t 4 of the ultrasonic wave 104, and the propagation time difference Δt between the accumulated propagation time t 3 and this propagation time t 4. = T 3 −t 4 ), and outputs data indicating the propagation time difference Δt to the flow velocity measuring unit 12 of the arithmetic unit 8.

【0029】流速計測部12は、この伝搬時間差Δtお
よび先に計測した音速Cに基づいて流体の流速Vを計測
する。この場合、流れ方向33と超音波103の伝搬方
向との角度をθ、超音波103および104の流体中の
伝搬距離をL2 とすると、流速Vは次式により求められ
る。
The flow velocity measuring unit 12 measures the flow velocity V of the fluid based on the propagation time difference Δt and the previously measured sound velocity C. In this case, assuming that the angle between the flow direction 33 and the propagation direction of the ultrasonic wave 103 is θ, and the propagation distance of the ultrasonic waves 103 and 104 in the fluid is L 2 , the flow velocity V is obtained by the following equation.

【0030】[0030]

【数1】 (Equation 1)

【0031】このように本実施形態の超音波温度流速計
では、圧電素子21から圧電素子22へ伝搬する超音波
101の伝搬時間t1 から圧電素子21から送信され配
管30の内壁面30で反射されて圧電素子21に戻る反
射波102の伝搬時間t2 を差し引くことによって、配
管30の板厚の影響を除去した流体中の超音波101の
伝搬時間を求めている。ここで、圧電素子21から送信
された超音波101の伝搬方向は流体の流れ方向33に
対して垂直の方向であるため、流体の流速Vによって伝
搬時間が影響を受けることはない。従って、この流体中
の超音波101の伝搬時間に基づいて計測時における流
体中の正確な音速Cが得られる。さらに、この音速Cか
ら流体の温度Tを正確に求めることができる。
As described above, in the ultrasonic temperature and velocity meter of the present embodiment, the ultrasonic wave 101 transmitted from the piezoelectric element 21 to the piezoelectric element 22 is transmitted from the piezoelectric element 21 from the propagation time t 1 and reflected by the inner wall surface 30 of the pipe 30. By subtracting the propagation time t 2 of the reflected wave 102 returning to the piezoelectric element 21, the propagation time of the ultrasonic wave 101 in the fluid from which the influence of the plate thickness of the pipe 30 has been removed is obtained. Here, since the propagation direction of the ultrasonic wave 101 transmitted from the piezoelectric element 21 is a direction perpendicular to the flow direction 33 of the fluid, the propagation time is not affected by the flow velocity V of the fluid. Accordingly, an accurate sound velocity C in the fluid at the time of measurement can be obtained based on the propagation time of the ultrasonic wave 101 in the fluid. Further, the temperature T of the fluid can be accurately obtained from the sound speed C.

【0032】このように、従来のように配管30への穴
空け等の加工を必要とせずに、また配管30の板厚や板
厚の温度変化の影響を受けることなく、容易かつ正確に
音速Cおよび温度Tを求めることができる。
As described above, the sonic velocity can be easily and accurately determined without the need for processing such as making a hole in the pipe 30 as in the prior art, and without being affected by the thickness of the pipe 30 or the temperature change of the thickness. C and temperature T can be determined.

【0033】そして、圧電素子23から圧電素子24へ
と伝搬する超音波103の伝搬時間t3 と圧電素子24
から圧電素子23伝搬する超音波104の伝搬時間t4
との伝搬時間差Δtおよび上述の計測された音速Cに基
づいて流体の流速Vを計測することにより、流体の温度
Tおよび流速Vが時間的に激しく変化するような場合で
も、正確に流速Vを求めることができる。
The propagation time t 3 of the ultrasonic wave 103 propagating from the piezoelectric element 23 to the piezoelectric element 24 and the piezoelectric element 24
Propagation time t 4 of the ultrasonic wave 104 propagating from the piezoelectric element 23
By measuring the flow velocity V of the fluid based on the propagation time difference Δt and the measured sound velocity C, even when the temperature T and the flow velocity V of the fluid change drastically with time, the flow velocity V can be accurately determined. You can ask.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、配
管内の流体の流れ方向に対し垂直方向に送信した超音波
の流体中の伝搬時間に基づいて流体の音速および温度を
求め、さらに、この音速を用いて流体の流速を求めるこ
とにより、容易かつ高精度に流体の温度および流速を計
測することが可能となる。
As described above, according to the present invention, the sound velocity and the temperature of the fluid are obtained based on the propagation time of the ultrasonic wave transmitted in the direction perpendicular to the flow direction of the fluid in the pipe. By determining the flow velocity of the fluid using this sound velocity, the temperature and the flow velocity of the fluid can be easily and accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る超音波温度流速計の
構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of an ultrasonic temperature and velocity meter according to an embodiment of the present invention.

【図2】図1中のセンサの具体的な構成および配管への
設置状態を説明するための図
FIG. 2 is a diagram for explaining a specific configuration of the sensor in FIG. 1 and a state of installation on a pipe.

【符号の説明】[Explanation of symbols]

1〜3…センサ 4…切替器 5…送受信器 6…ゲート回路 7…カウンタ 8…演算部 9…制御部 10…音速計測部 11…温度計測部 12…流速計測部 21〜24…圧電素子 30…配管 31…外壁面 32…内壁面 33…流れ方向 1-3 Sensor 4 Switch 5 Transceiver 6 Gate circuit 7 Counter 8 Operation unit 9 Control unit 10 Sound velocity measurement unit 11 Temperature measurement unit 12 Flow velocity measurement unit 21-24 Piezoelectric element 30 ... Piping 31 ... Outer wall surface 32 ... Inner wall surface 33 ... Flow direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配管の外壁面上に配管の長手方向に対し垂
直の方向に対向して設置された第1および第2の超音波
トランスデューサと、 前記配管の外壁面上に配管の長手方向に対し斜めの方向
に対向して設置された第3および第4の超音波トランス
デューサと、 前記第1の超音波トランスデューサから前記第2の超音
波トランスデューサへ伝搬する超音波の伝搬時間および
前記第1の超音波トランスデューサから送信され前記配
管の内壁面で反射されて前記第1の超音波トランスデュ
ーサに戻る超音波の伝搬時間に基づいて前記配管内を流
れる流体中の音速を計測する音速計測手段と、 この音速計測手段により計測された音速から前記配管内
を流れる流体の温度を計測する温度計測手段と、 前記第3の超音波トランスデューサから前記第4の超音
波トランスデューサへ伝搬する超音波の伝搬時間と前記
第4の超音波トランスデューサから前記第3の超音波ト
ランスデューサへ伝搬する超音波の伝搬時間との差およ
び前記音速計測手段により計測された音速に基づいて前
記配管内を流れる流体の流速を計測する流速計測手段と
を備えたことを特徴とする超音波温度流速計。
1. A first and a second ultrasonic transducer installed on an outer wall surface of a pipe in a direction perpendicular to a longitudinal direction of the pipe, and on an outer wall surface of the pipe in a longitudinal direction of the pipe. Third and fourth ultrasonic transducers installed to face each other in an oblique direction, a propagation time of an ultrasonic wave propagating from the first ultrasonic transducer to the second ultrasonic transducer, and the first ultrasonic transducer; Sound velocity measuring means for measuring the velocity of sound in the fluid flowing through the pipe based on the propagation time of the ultrasonic wave transmitted from the ultrasonic transducer and reflected on the inner wall surface of the pipe and returned to the first ultrasonic transducer; Temperature measuring means for measuring the temperature of the fluid flowing through the pipe from the sound velocity measured by the sound velocity measuring means; and the fourth ultrasonic transducer from the third ultrasonic transducer. Based on the difference between the propagation time of the ultrasonic wave propagating to the ultrasonic transducer and the propagation time of the ultrasonic wave propagating from the fourth ultrasonic transducer to the third ultrasonic transducer, and the sound velocity measured by the sound velocity measuring means. And a flow rate measuring means for measuring a flow rate of a fluid flowing in the pipe.
JP8204794A 1996-08-02 1996-08-02 Ultrasound temperature current meter Pending JPH1048009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204794A JPH1048009A (en) 1996-08-02 1996-08-02 Ultrasound temperature current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204794A JPH1048009A (en) 1996-08-02 1996-08-02 Ultrasound temperature current meter

Publications (1)

Publication Number Publication Date
JPH1048009A true JPH1048009A (en) 1998-02-20

Family

ID=16496475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204794A Pending JPH1048009A (en) 1996-08-02 1996-08-02 Ultrasound temperature current meter

Country Status (1)

Country Link
JP (1) JPH1048009A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206133A (en) * 1998-11-10 2000-07-28 Babcock Hitachi Kk Acoustic flow velocity-measuring apparatus
JP2001074567A (en) * 1999-09-06 2001-03-23 Masahiro Nishikawa Contactless fluid temperature maesuring method using electromagnetic ultrasonic wave
JP2002277301A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Flowmeter
JP2005172547A (en) * 2003-12-10 2005-06-30 Yokogawa Electric Corp Ultrasonic flowmeter
JP2011127948A (en) * 2009-12-16 2011-06-30 Toyota Central R&D Labs Inc Flow velocity measuring device
JP2011232281A (en) * 2010-04-30 2011-11-17 Jfe Steel Corp Temperature measuring method and temperature measuring instrument for conductor
CN104215356A (en) * 2014-05-13 2014-12-17 中国计量学院 Ultrasonic-based pipeline fluid temperature measurement method
CN104457871A (en) * 2014-10-27 2015-03-25 北京福星晓程电子科技股份有限公司 Flowmeter and fluid measurement method
CN105486363A (en) * 2016-01-21 2016-04-13 成都声立德克技术有限公司 Ultrasonic gas flowmeter and measuring method
CN106525169A (en) * 2016-12-14 2017-03-22 浙江圣地物联科技有限公司 Internet of things access equipment for pipeline water supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102117A (en) * 1982-12-03 1984-06-13 Hitachi Ltd Ultrasonic wave type device for simultaneously measuring flow rate and temperature
JPS61219843A (en) * 1985-03-19 1986-09-30 フラマトーム Method and device for measuring temperature of fluid in package by using ultrasonic wave
JPH07260597A (en) * 1993-10-18 1995-10-13 Westinghouse Electric Corp <We> Nonintrusive-type temperature measuring instrument and thermometry method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102117A (en) * 1982-12-03 1984-06-13 Hitachi Ltd Ultrasonic wave type device for simultaneously measuring flow rate and temperature
JPS61219843A (en) * 1985-03-19 1986-09-30 フラマトーム Method and device for measuring temperature of fluid in package by using ultrasonic wave
JPH07260597A (en) * 1993-10-18 1995-10-13 Westinghouse Electric Corp <We> Nonintrusive-type temperature measuring instrument and thermometry method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206133A (en) * 1998-11-10 2000-07-28 Babcock Hitachi Kk Acoustic flow velocity-measuring apparatus
JP2001074567A (en) * 1999-09-06 2001-03-23 Masahiro Nishikawa Contactless fluid temperature maesuring method using electromagnetic ultrasonic wave
JP2002277301A (en) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd Flowmeter
JP2005172547A (en) * 2003-12-10 2005-06-30 Yokogawa Electric Corp Ultrasonic flowmeter
JP2011127948A (en) * 2009-12-16 2011-06-30 Toyota Central R&D Labs Inc Flow velocity measuring device
JP2011232281A (en) * 2010-04-30 2011-11-17 Jfe Steel Corp Temperature measuring method and temperature measuring instrument for conductor
CN104215356A (en) * 2014-05-13 2014-12-17 中国计量学院 Ultrasonic-based pipeline fluid temperature measurement method
CN104457871A (en) * 2014-10-27 2015-03-25 北京福星晓程电子科技股份有限公司 Flowmeter and fluid measurement method
CN105486363A (en) * 2016-01-21 2016-04-13 成都声立德克技术有限公司 Ultrasonic gas flowmeter and measuring method
CN106525169A (en) * 2016-12-14 2017-03-22 浙江圣地物联科技有限公司 Internet of things access equipment for pipeline water supply

Similar Documents

Publication Publication Date Title
JP2793133B2 (en) Through-flow volume measuring device
JPH1048009A (en) Ultrasound temperature current meter
JPS6156450B2 (en)
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
CN102023038A (en) Ultrasonic measurement method for pipeline flux
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
JPH03167418A (en) Clad-thickness measuring apparatus
JP2000329597A5 (en)
JPH0561571B2 (en)
JP2000329597A (en) Ultrasonic flowmeter
JP3465100B2 (en) Vortex flow meter
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
US20220268609A1 (en) Ultrasonic Flowmeter and Method for Determining the Velocity of a Flowing Medium
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JPS6254112A (en) Thickness measuring method for scale in pipe
JPH0961145A (en) Method and apparatus for measurement of thickness or sound velocity
JPH04328423A (en) Ultrasonic wave gas flowmeter
JP2020180811A (en) Ultrasonic flowmeter
JPH04328424A (en) Ultrasonic wave gas flowmeter
JPH10300556A (en) Measuring apparatus for level of molten metal
JPH0117090B2 (en)
KR100317954B1 (en) Ultrasonic Flow Measurement Method Using Variable Delay
JPH0926341A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111