JPS6242015A - Temperature correcting method for ultrasonic flow meter - Google Patents

Temperature correcting method for ultrasonic flow meter

Info

Publication number
JPS6242015A
JPS6242015A JP60180400A JP18040085A JPS6242015A JP S6242015 A JPS6242015 A JP S6242015A JP 60180400 A JP60180400 A JP 60180400A JP 18040085 A JP18040085 A JP 18040085A JP S6242015 A JPS6242015 A JP S6242015A
Authority
JP
Japan
Prior art keywords
wave
time
signal
propagation time
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60180400A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60180400A priority Critical patent/JPS6242015A/en
Publication of JPS6242015A publication Critical patent/JPS6242015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the correct propagating time even when the vibrator resonance frequency is changed together with temperature by setting the measuring point of the third propagating time to the maximum vicinity of the receiving signal in the system to deduct the time for several waves from the rise of the flow meter to next maximum zero cross point and measure the true propagating time. CONSTITUTION:A receiving signal (d) obtained from the ultrasonic flow meter is changed to the signal having the first gate off width (a) by the first gate 29, an obtained receiving signal (e) is compared with the first threshold (b) and the first time measuring completing signal (f) is obtained. Thus, when the first propagating time (g) is measured and the first gate receiving signal comes to be the maximum, the second time measuring completing signal (h) is sent, and thus, the second propagating time (i) is measured, the second gate off width (j) is set and the second gate receiving signal (k) is obtained. Therefore, the third time measuring completing signal (m) is obtained from the first zero cross point of the signal (k), the third propagating time (m) is measured, the time from the zero cross point to the next zero point equivalent to serveral periods is measured, divided by the number of the included wave and a period signal (o) is obtained.

Description

【発明の詳細な説明】 〔発明の属する分野〕 この発明は超音波流量計の温度補正方法に係り、特に流
れの上下流に超音波振動子を配設して相互に送信、受信
を行い、流体の流速によって送信から受信までの各々の
伝搬時間に差が生ずることな利用して流量を測定するよ
うにした非挿入式透過型超音波流量計の温度補正方法に
関する。
[Detailed Description of the Invention] [Field to which the invention pertains] The present invention relates to a temperature correction method for an ultrasonic flowmeter, and in particular, it involves disposing ultrasonic transducers upstream and downstream of a flow for mutual transmission and reception. The present invention relates to a temperature correction method for a non-insertion type transmission type ultrasonic flowmeter that measures the flow rate by taking advantage of the difference in propagation time from transmission to reception depending on the flow velocity of the fluid.

〔従来技術とその問題点〕[Prior art and its problems]

この種の非挿入式透過型超音波流量計を第4図に示す。 This type of non-insertion type transmission type ultrasonic flow meter is shown in FIG.

流体を導く配管(1)に流体の進行方向に互いに位置を
ずらせて超音波送受波器(2a) 、 (2b)を配置
し、超音波送受波器(2a)から放射された超音波が超
音波送受波器(2b)に到達する時間と、超音波送受波
器(2b)から放射された超音波が超音波送受波器(2
a)に到達する時間との時間差に基すいて配管(1)内
の流体の速度から配管(1)内の流体の流量を求めるも
のである。このようにして使用される超音波送受波器と
して第2図に示す構造のものが知られている。図中符号
(3)は超音波振動子である。この超音波振動子(3)
は例えばジルコン・チタン酸鉛系のセラミックスなどの
圧電素子を円板上に成形し、その両面に銀電極を蒸着し
たもので、クサビ(4)は超音波振動子(3)から発生
する超音波を配管(1)に伝達するためのもので、エポ
キシ樹脂、アクリル樹脂、金属などの超音波伝搬部材に
よ多構成されている。またクサビ(4)の底面(5)は
超音波送受波器の使用に際して、配管(1)に音響的マ
ツチングを取るために介装材(6)を倉口て密着される
。このクサビ(4)の超音波振動子取付面(力は底面(
5)に対して角度θをもって斜めに形成されており、こ
れにより超音波振動子(3)から発生する超音波が底面
(5)に対して斜めに放射されるようになっている0 しかして、リード線(81、(9)を介して超音波振動
子(3)に所定の周波数の交流を印加すると、超音波振
動子(3)が同周波数で振動して超音波パルス信号Pを
発生する。この超音波パルス信号Pはクサビ(4)を通
り、介装材(6)、配管(1)を介して、測定対象の流
体00)に入射し、配管(1)の対向面で反射して、再
び配管(1)、介装材(6)を介してクサビ(4)を通
り、超音波振動子(3)に到達すると、超音波振動子(
3)とリード線(8) 、 (9)に接続された電気回
路で測定信号に変換される。このようにして第5図に示
す超音波送受波器は超音波の送受信を行うのである。
Ultrasonic transducers (2a) and (2b) are arranged in a fluid-guiding pipe (1) with their positions shifted from each other in the direction of movement of the fluid, and the ultrasonic waves emitted from the ultrasonic transducer (2a) are The time required for the ultrasonic waves emitted from the ultrasonic transducer (2b) to reach the ultrasonic transducer (2b)
The flow rate of the fluid in the pipe (1) is determined from the velocity of the fluid in the pipe (1) based on the time difference between the time at which it reaches point a). As an ultrasonic transducer used in this manner, one having a structure shown in FIG. 2 is known. Reference numeral (3) in the figure is an ultrasonic transducer. This ultrasonic transducer (3)
For example, a piezoelectric element made of zircon-lead titanate-based ceramics is molded onto a disk, and silver electrodes are deposited on both sides of the piezoelectric element. It is for transmitting the ultrasonic wave to the pipe (1), and is made up of ultrasonic propagation members such as epoxy resin, acrylic resin, and metal. In addition, the bottom surface (5) of the wedge (4) is closely attached to the pipe (1) with an intervening material (6) for acoustic matching when the ultrasonic transducer is used. The ultrasonic transducer mounting surface of this wedge (4) (the force is applied to the bottom surface (
5), so that the ultrasonic waves generated from the ultrasonic transducer (3) are radiated obliquely to the bottom surface (5). When an alternating current of a predetermined frequency is applied to the ultrasonic vibrator (3) through the lead wires (81, (9)), the ultrasonic vibrator (3) vibrates at the same frequency and generates an ultrasonic pulse signal P. This ultrasonic pulse signal P passes through the wedge (4), enters the fluid to be measured (00) via the intervening material (6) and the pipe (1), and is reflected on the opposing surface of the pipe (1). Then, the ultrasonic transducer (
3) and is converted into a measurement signal by an electric circuit connected to lead wires (8) and (9). In this manner, the ultrasonic transducer shown in FIG. 5 transmits and receives ultrasonic waves.

このような構成の非挿入式透過型超音波流量計において
、流体の温度の変化、周囲温度の変化により、超音波振
動子の温度が変化すると以下に示す欠点を示す。超音波
振動子の共振周波数は温度依存性を有している0第6図
は振動子メーカーより提供された振動子別の共振周波数
の温度特性データである。第6図かられかるように、振
動子の振動周波数を20℃でIMHzとし、温度特性を
300ppm/lとすると、I℃では1.015MHz
1too℃では1.030MHzとなる〇一方振動子の
共振周波数は振動子の材料によって定まる周波数定数と
振動子の厚みの積によって決まる〇一般に、振動子の厚
みを所定寸法に対して、1μmの精度で合致させること
は困難であるし、コスト高の原因ともなる0第7図に納
入された超音波振動子の共振周波数のバラツキを示す。
In a non-insertion type transmission type ultrasonic flowmeter having such a configuration, if the temperature of the ultrasonic vibrator changes due to a change in fluid temperature or a change in ambient temperature, the following drawbacks occur. The resonant frequency of an ultrasonic transducer has temperature dependence. Figure 6 shows temperature characteristic data of the resonant frequency for each transducer provided by the transducer manufacturer. As shown in Figure 6, if the vibration frequency of the vibrator is IMHz at 20°C and the temperature characteristic is 300ppm/l, then at I°C it is 1.015MHz.
At 1too°C, it becomes 1.030MHz〇On the other hand, the resonant frequency of the vibrator is determined by the product of the frequency constant determined by the material of the vibrator and the thickness of the vibrator〇Generally, the thickness of the vibrator is set to 1 μm for a given dimension. It is difficult to match with precision and is also a cause of high costs. Figure 7 shows variations in the resonant frequencies of the delivered ultrasonic transducers.

しかし、これをいくら精度良く所定寸法に仕上げたとし
ても、振動子単体で使用出来ず、流量計の場合は振動子
をクサビに接着するので、もはやこの場合の共振周波数
は振動子単体のときの共振周波数と異なるのである。表
1に振動子単体の場合とクサビに増シ付けた場合の共振
周波数の相違を示す。
However, no matter how precisely this is finished to the specified dimensions, it cannot be used as a single vibrator; in the case of a flowmeter, the vibrator is glued to a wedge, so the resonant frequency in this case is no longer the same as when using a single vibrator. This is different from the resonant frequency. Table 1 shows the difference in resonant frequency between a single vibrator and a wedge.

表 1 以上のことから、超音波流量計に用いられる2個以上の
超音波振動子には必ず共振周波数の数%程度の周波数の
ずれがある。一方、超音波流量計を小口径管に適用する
と、管の厚み、内径、被測定流体によって異なるが、例
えば管の厚み3.2m、内径:25震、被測定流体が水
の場合、一方の超音波振動子から音波が送信され、超音
波振動子に受信されるまでの音波の伝搬時間はV法の場
合約5μ向、Z法の場合12.5μ冠で、流体の流速が
1m/Sのときの超音波振動子(2a)の送信から超音
波振動子(2b)の受信までの伝搬時間と超音波振動子
(2b)の送信から超音波振動子(2a)の受信までの
伝搬時間との伝搬時間差はV法の場合約25nsl!c
、Z法の場合約12.51secとなる。市販の超音波
流量計の流速1m/Sの時の測定精度が1%であること
から、この伝搬時間差を少なくとも0.1nsecで測
定する必要がある。伝搬時間の計測は以下のように行な
われる。送信状態になっている超音波振動子(2a)が
送信された瞬間、時間測定を開始し、超音波振動子(2
b)での受信波が所望の闇値に達すると時間測定を終了
する0超音波流量計の場合受信状態になっている超音波
振動子(2b)は流体中を伝搬してくる音波以外に、例
えば配管の周囲を伝搬してくる回り込み波などのノイズ
音波も受信する0従って、この闇値はノイズによって、
誤って伝搬時間を測定しないように、ノイズ音波レベル
よりも大きく設定されている。即ち、闇値を越える地点
での受信波は超音波振動子(2a)が送信された瞬間の
音波が伝搬して来た音波ではなく、それより数波分、後
で送信された音波である0言い換えれば、計測している
伝搬時間(送信された瞬間から、受信波が闇値を越える
までの時間)は、真の伝搬時間(送信された瞬間から、
送信された瞬間の音波が受信用の超音波振動子(2b)
で受信されるまでの時間)と音波の数波分の周期に相当
する時間の和からなる。上流→下流、下流→上流への計
測伝搬時間は、流速が真の伝搬時間が同一であっても、
2個の振動子の共振周波数差による音波の数波分の周期
差に相当する時間分だけ異なることになり、流速が零で
あるにも関わらず、流れがあるかのように指示する。温
度が変化すると、振動子の共振周波数差が温度によって
変化し、音波の数波分の周期差に相当する時間分差が変
り、流速が変化したかのように指示を行う。第8図に流
速が零の時超音波振動子の共振周波数差による伝搬時間
差の発生の様子を示す0上流側振動子より上流側送信波
αυを送出し、下流側振動子で配管を伝搬して来た回り
込み波(19と配管と流体を伝搬して来た配管内水中伝
搬波(イ)とからなる音波を受信し、下流側受信波03
を得る。この下流側受信波03)が予め定められた閾値
(15)を越えた時に下流側受波有り°信号QOを出す
。この上流側送信から下流側受波有シ信号までの時間が
送信からA点までの寞の伝搬時間と図中の3周期子宝か
ら闇値αωまで時間の和となる。下流側振動子より上流
側振動子への送信の場合も同様な波形となる。送信から
A点までの時間は上下流側とも同一であるので、A点か
ら闇値(15)まで時間について、検討を行う。下流側
振動子は上流側振動子の送信周波数flの音波を受信し
、上流側振動子は下流側振動子の送信周波数f2の音波
を受信するので、上下流の受信波のA点から閾値(15
)までの時間(A点からB点、A点から0点)は当然具
なる0 即ち、(1/ f+  i、/rz ) * (3周期
子宝から闇値)の時間差分具なる0従って、流速が零で
あるにもかかわらす伝搬時間差(B点から0点)が生じ
、流速が零でないかの様に表示し、流体の温度が変化す
れば、上流側振動子の共振周波数差も変化するので、指
示値も変化し、流速が変化したかのように誤認させる〇
一方、この闇値(19を低いレベルにすれば、振動子の
共振周波数の変化の影響は少ないが、A点に近いところ
の受信波0階は回り込み波(1鴎と配管と流体を伝搬し
て来た配管内水中伝搬波側の重畳波となII) 、 S
/N比が悪いため、伝搬時間測定の精度が悪いといった
問題が生じ、ジレンマに陥る。このように従来の超音波
流量計は適用温度範囲が狭く、0〜40℃程度であり、
この適用温度範囲外では流量指示値のオフセットが生じ
十分な測定精度が得られないという問題があった0 〔発明の目的〕 そこで、本発明の目的は、広範囲の温度にわたって振動
子の共振周波数差による流量指示値のオフセットを少な
くし精度の良い流量測定が可能な非挿入式透過型超音波
流量計の温度補正方法を提供することにある。
Table 1 From the above, two or more ultrasonic vibrators used in an ultrasonic flowmeter always have a frequency difference of several percent of the resonant frequency. On the other hand, when an ultrasonic flowmeter is applied to a small-diameter pipe, it depends on the thickness, inner diameter, and fluid to be measured of the pipe, but for example, if the pipe is 3.2 m thick, the inner diameter is 25 mm, and the fluid to be measured is water, one of the The propagation time of the sound wave from when it is transmitted from the ultrasonic transducer to when it is received by the ultrasonic transducer is approximately 5 μ in the V method and 12.5 μ in the Z method, and the fluid flow velocity is 1 m/s. The propagation time from the transmission of the ultrasonic transducer (2a) to the reception of the ultrasonic transducer (2b) and the propagation time from the transmission of the ultrasonic transducer (2b) to the reception of the ultrasonic transducer (2a) when The propagation time difference with V method is about 25nsl! c.
, in the case of the Z method, it is approximately 12.51 seconds. Since the measurement accuracy of a commercially available ultrasonic flow meter at a flow rate of 1 m/s is 1%, it is necessary to measure this propagation time difference with at least 0.1 nsec. Measurement of propagation time is performed as follows. The moment the ultrasonic transducer (2a) in the transmitting state is transmitted, it starts time measurement and the ultrasonic transducer (2a)
When the received wave in b) reaches the desired darkness value, the time measurement ends.0 In the case of an ultrasonic flowmeter, the ultrasonic transducer (2b) in the receiving state is used to detect waves other than the sound waves propagating in the fluid. , for example, also receives noise sound waves such as wrap-around waves propagating around the pipes. Therefore, this dark value is due to noise,
It is set higher than the noise sound wave level to avoid accidentally measuring the propagation time. In other words, the received wave at the point exceeding the dark value is not the sound wave that propagated at the moment the ultrasonic transducer (2a) was transmitted, but the sound wave that was transmitted several waves later. 0 In other words, the measured propagation time (the time from the moment of transmission until the received wave exceeds the dark value) is the true propagation time (from the moment of transmission,
The ultrasonic transducer (2b) receives the sound wave at the moment it is transmitted.
It consists of the sum of the time it takes for the signal to be received by the receiver) and the time corresponding to the period of several waves of the sound wave. The measured propagation time from upstream to downstream, downstream to upstream, even if the flow velocity and true propagation time are the same,
This results in a difference in time corresponding to a period difference of several waves of sound waves due to the difference in the resonance frequency of the two vibrators, and it is indicated as if there is a flow even though the flow velocity is zero. When the temperature changes, the resonant frequency difference of the vibrator changes depending on the temperature, and the time difference corresponding to the period difference of several waves of sound waves changes, giving an instruction as if the flow velocity had changed. Figure 8 shows how the propagation time difference occurs due to the resonance frequency difference of the ultrasonic transducer when the flow velocity is zero.0 The upstream transmission wave αυ is sent from the upstream transducer and propagated through the piping by the downstream transducer. The sound wave consisting of the wrap-around wave (19) and the underwater propagation wave (a) in the pipe that has propagated through the pipe and the fluid is received, and the downstream received wave 03
get. When this downstream received wave 03) exceeds a predetermined threshold value (15), a downstream received wave presence signal QO is output. The time from this upstream side transmission to the downstream side received signal is the sum of the propagation time of the light from the transmission to point A and the time from the 3-cycle child in the figure to the dark value αω. A similar waveform is obtained when transmitting from the downstream transducer to the upstream transducer. Since the time from transmission to point A is the same on both the upstream and downstream sides, we will examine the time from point A to the dark value (15). The downstream transducer receives the sound wave with the transmission frequency fl from the upstream transducer, and the upstream transducer receives the sound wave with the transmission frequency f2 from the downstream transducer, so the threshold value ( 15
) (from point A to point B, from point A to 0 point) is naturally 0, i.e., (1/ f+ i, /rz) * (3 period fertility to darkness value) time difference is 0. Therefore, Even though the flow velocity is zero, a propagation time difference (from point B to 0 point) occurs, and the flow velocity is displayed as if it were not zero. If the temperature of the fluid changes, the resonance frequency difference of the upstream vibrator also changes. Therefore, the indicated value also changes, giving the false impression that the flow velocity has changed.On the other hand, if this dark value (19) is set to a low level, the effect of the change in the resonant frequency of the vibrator is small, but the point A The received wave on the 0th floor near the point is a wrap-around wave (a superimposed wave on the underwater propagation wave side in the pipe that has propagated through the pipe and the fluid), S
The poor /N ratio causes problems such as poor accuracy in propagation time measurement, leading to a dilemma. In this way, conventional ultrasonic flowmeters have a narrow applicable temperature range of about 0 to 40 degrees Celsius.
Outside this applicable temperature range, there is a problem in that the flow rate indication value is offset and sufficient measurement accuracy cannot be obtained. An object of the present invention is to provide a temperature correction method for a non-insertion type transmission type ultrasonic flowmeter, which is capable of reducing the offset of the flow rate indication value caused by the noise and measuring the flow rate with high accuracy.

〔発明の要点〕[Key points of the invention]

上記目的を達成するため、本発明は送信から受信波が最
大となった後の零クロス点までの時間(1″))を計測
し、受信波の回り込み波のレベルよりも若干大きく設定
された闇値と受信波レベルと比較]−1受信波における
送信の瞬間に対応する時間E k求め、受信波における
送信の瞬間に対応する時間(E)から零のロス点までの
時間(DJまでに含まれる音波の波数を計算し、別途測
定した受信波の最大付近での一周期とこの音波の波数と
の積■を求め、零クロス点までの時間p)から周期と音
波の波数との積(F′)を引算し、受信波の送信の瞬間
に対応する時間fG)を計算する。これを上流→下流、
下流→上流についてそれぞれ実施し、測定された伝搬時
間に含まれる振動子の共振周波数の差の影響外を補正す
ることによって真の伝搬時間を求め、精度良く流量を求
めるようにしたものである。
In order to achieve the above object, the present invention measures the time (1'') from transmission to the zero cross point after the received wave reaches its maximum, and sets the time to be slightly larger than the level of the wraparound wave of the received wave. Compare the darkness value with the received wave level] -1 Calculate the time E k corresponding to the moment of transmission in the received wave, and calculate the time from the time (E) corresponding to the moment of transmission in the received wave to the zero loss point (by DJ Calculate the wave number of the included sound wave, find the product of the separately measured period near the maximum of the received wave and the wave number of this sound wave, and calculate the product of the period and the wave number of the sound wave from the time p) until the zero cross point. (F') and calculate the time fG) corresponding to the moment of transmission of the received wave.
The measurement is carried out from downstream to upstream respectively, and the true propagation time is determined by correcting the influence of the difference in the resonant frequency of the vibrator included in the measured propagation time, and the flow rate is determined with high accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下本発明による超音波流量計の温度補正方法の実施例
を第1図乃至第3図を参照して説明する。
An embodiment of the temperature correction method for an ultrasonic flowmeter according to the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、符号21は測定条件入力部を示し、こ
の測定条件入力部21には管径、管厚、超音波送受波器
などの配設位置が入力されている。この測定条件入力部
21から第1ゲートオフ幅設定部22に第1ゲートオフ
幅信号が入力され、第1ゲート部四へ第1ゲートオフ幅
信号が入力される。また、測定条件入力部21から第1
閾値設定部5へ送られた信号は第1閥値すを示す信号と
して第1コンバレーヌ30へ入力される。上記第1ゲー
トオフ幅aは、送信子nよシ送信され、配管内水中伝搬
波が受信子24に受信されるまでの時間(伝播時間予想
値)を求め、この伝搬時間予想値から5〜8μs程度引
くことによって設定される。一方、前記第1閾値すは、
第11初値設定部5で入力された管径、管厚、超音波送
受波器の配設位置などと関係のある回り込み波の値より
も若干大きい値に設定される。また、音波を送信する時
は送信タイミング回路がよシ送信パルスCが送信回路n
へ入力され、送信+5が励振される。この音波を受信子
24で受信し、受信信号dが受信アンプ路へ入力されて
増幅されたのち第1ゲート部四へ入力される。
In FIG. 1, reference numeral 21 indicates a measurement condition input section, into which the pipe diameter, pipe thickness, and installation position of an ultrasonic transducer and the like are input. A first gate off width signal is input from the measurement condition input section 21 to the first gate off width setting section 22, and the first gate off width signal is input to the first gate section 4. Also, from the measurement condition input section 21, the first
The signal sent to the threshold setting section 5 is input to the first combiner 30 as a signal indicating the first threshold value. The above-mentioned first gate-off width a is determined by calculating the time (estimated propagation time) from when the underwater propagation wave in the pipe is received by the receiver 24 after it is transmitted from the transmitter n, and from this estimated propagation time, it is 5 to 8 μs. It is set by subtracting the degree. On the other hand, the first threshold value is
It is set to a value slightly larger than the value of the wraparound wave, which is related to the pipe diameter, pipe thickness, placement position of the ultrasonic transducer, etc. input in the eleventh initial value setting section 5. Also, when transmitting sound waves, the transmission timing circuit is used, and the transmission pulse C is transmitted from the transmission circuit n.
is input to , and transmit +5 is excited. This sound wave is received by the receiver 24, and the received signal d is input to the receiving amplifier path, amplified, and then input to the first gate section 4.

受信信号dを受けた第1ゲート部四は、第1ゲートオフ
幅aの信号よシ選択し、回り込み波が若干生じた付近か
ら受信信号第1ゲート化受信信号e’a’得、第1コン
パレータIへ入力スル。第1 ”:’7パレータ加は第
1ゲート化受信信号eと第1aり値すとを比較し、第1
ゲート化受信信号eが第1fA値すを越えたとき第1時
間計測終了信号fを送出し、第1時間計測回路31へ入
力する。第1時間計測回路31は、送信タイミング回路
26からの送信パルスCと第1時間計測終了信号fとか
ら第1伝搬時間gを計測し、その結果を演算部40に入
力する。
The first gate unit 4 that receives the received signal d selects a signal with the first gate off width a, obtains the received signal from the vicinity where the wrap-around wave has slightly occurred, and obtains the first gated received signal e'a'. Input to I. The first ”:'7 parator addition compares the first gated received signal e and the first a value, and
When the gated reception signal e exceeds the first fA value S, a first time measurement end signal f is sent out and input to the first time measurement circuit 31. The first time measurement circuit 31 measures the first propagation time g from the transmission pulse C from the transmission timing circuit 26 and the first time measurement end signal f, and inputs the result to the calculation unit 40 .

一方、第1ゲート化受信信号eの最大値は最大値検出回
路32によって検出され、この検出回路32は第1ゲー
ト化受信信号eが最大値となったときに第2時間計測終
了信号りを送出し、第2時間計測回路33に入力する。
On the other hand, the maximum value of the first gated reception signal e is detected by the maximum value detection circuit 32, and this detection circuit 32 detects the second time measurement end signal when the first gated reception signal e reaches the maximum value. The signal is sent out and input to the second time measurement circuit 33.

第2時間計測回路33は、送信タイミング回路26から
の送信パルスCと第2時間計測終了信号りとから第2伝
搬時間iを計測し第2ゲートオフ幅設定部別に入力する
。第2ゲートオフ幅設定部詞から出力された第2ゲート
オフ幅Jは第2ゲート部あに入力され第1ゲート化受信
信号eが選択され第2ゲート化受信信号kが出され、こ
の出力信号は第2コンパレータ37に入力され、ここで
第2#l値設定部あからの第2閣値tと比較され、第2
ゲート化受信信号kが第2閾値を越えたとき、第3時間
計測終了信号mを送出し、第3時間計測回路詔に入力す
る。この第3時間計測回路は、送信パルスCと第3時間
計測終了信号mより第3伝搬時間nを算出し前記演算部
40へ入力する。
The second time measurement circuit 33 measures the second propagation time i from the transmission pulse C from the transmission timing circuit 26 and the second time measurement end signal, and inputs it to each second gate-off width setting section. The second gate off width J output from the second gate off width setting part is input to the second gate part A, the first gated reception signal e is selected, and the second gated reception signal k is outputted, and this output signal is It is input to the second comparator 37, where it is compared with the second value t of the second #l value setting section Akara, and the second
When the gated reception signal k exceeds the second threshold, a third time measurement end signal m is sent and input to the third time measurement circuit. This third time measurement circuit calculates a third propagation time n from the transmission pulse C and the third time measurement end signal m, and inputs it to the calculation section 40.

さらに、周期測定回路39は受信信号dが最大値となっ
た以降の数波の周期を測定し、周期信号Oを送出し前記
演算部40へ入力する0この演算部40では、第1伝搬
時間gと第2伝搬時間1と周期より真の伝搬時間pを求
める0すなわち、この真の伝搬時間の算出は第1伝搬時
間をX1第2伝搬時間をY1周期をZ、真の伝搬時間を
Wとすると、次の式で求められる0 W=Y−n(Z−2) 但しく Y−X ) / (Z/ 2 ) = n の
場合 n=n(Y−X)/(Z/2)=n+cの場合n
=n+10は整数 第2図は本発明による伝搬時間補正の動作を示したフロ
ーチャートであり、第3図は流速が零の時の超音波振動
子の共振周波数の変化による伝搬時間の補正を行う各信
号のタイミングを示しており、受信信号fd)は第一ゲ
ート四で第一ゲートオフ幅(atにより、ゲート化され
、第一ゲート化受信信号(e)を得て、第一閾値(b)
と比較し、第一時間計測終了信号げ)を得る。これによ
り第一伝搬時間(g)を計測する。第一ゲート化受信信
号が最大となった時に第二時間計測終了信号(h)を送
出し、これより第二伝搬時間(i)を計測し、第二ゲー
トオフ幅(j)を設定し、第二ゲート化受信信号(k)
を得る。第二ゲート化受信信号(k)の最初の零クロス
ポイントから第三時間計測終了信号h−+)を得て、第
三伝搬時間(n)を計測する。この零クロスポイントか
ら数周期に相当する次の零クロスポイントまでの時間計
測を行い、それに含まれる波数で割り、周期信号(o)
を得る。
Furthermore, the period measuring circuit 39 measures the periods of several waves after the received signal d reaches its maximum value, and sends out a periodic signal O, which is input to the calculation section 40. In this calculation section 40, the first propagation time Calculate the true propagation time p from g, second propagation time 1 and period 0 In other words, to calculate the true propagation time, first propagation time is X1 second propagation time is Y1 period is Z, true propagation time is W Then, 0 W=Y-n(Z-2), which is calculated by the following formula. However, if Y-X ) / (Z/2) = n, n=n(Y-X)/(Z/2) =n+c if n
=n+10 is an integer Figure 2 is a flowchart showing the operation of propagation time correction according to the present invention, and Figure 3 is a flowchart showing the operation of propagation time correction according to the change in the resonance frequency of the ultrasonic transducer when the flow velocity is zero. The received signal (fd) is gated by the first gate off width (at) to obtain the first gated received signal (e), and the received signal (fd) is gated by the first gate off width (at) to obtain the first gated received signal (e).
, and obtain the first time measurement end signal). This measures the first propagation time (g). When the first gated reception signal reaches the maximum, the second time measurement end signal (h) is sent, the second propagation time (i) is measured from this, the second gate off width (j) is set, and the second time measurement end signal (h) is measured. Di-gated received signal (k)
get. A third time measurement end signal h-+) is obtained from the first zero cross point of the second gated received signal (k), and the third propagation time (n) is measured. The time from this zero cross point to the next zero cross point corresponding to several cycles is measured, divided by the number of waves included in it, and the periodic signal (o)
get.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば送信か
ら受信子による受信信号の最大の次の零クロス点までの
時間計測を行い、受信信号の最大以降の数波の周期を測
定し、前記時間計測値に対して、受信信号の立ち上がり
から最大の次の零クロス点までの波数分の時間を差し引
き、真の伝搬時間計測を行う方式において、 (11第三伝搬時間の計測するポイントを受信信号の最
大付近としたため、時間計測に対する回り込み波の影響
が少なくなり、伝搬時間計測精度が向上した〇 (2)第三伝搬時間から、受信信号の立ち上がりから最
大の次の零クロス点までの波数分の時間差し引き、伝搬
時間を求める方式としたため、振動子の共振周波数が温
度とともに変化しても、温度補正された常に正しい伝搬
時間を求めることが可能となった。
As is clear from the above description, according to the present invention, the time from transmission to the next maximum zero cross point of the received signal by the receiver is measured, and the period of several waves after the maximum of the received signal is measured, In the method of measuring the true propagation time by subtracting the time corresponding to the wave number from the rising edge of the received signal to the next maximum zero crossing point from the time measurement value, (11. The point at which the third propagation time is measured is Since it is set near the maximum of the received signal, the influence of wrap-around waves on time measurement is reduced, and the accuracy of propagation time measurement is improved. (2) From the third propagation time, from the rise of the received signal to the next maximum zero cross point. By subtracting the time by the number of waves to find the propagation time, even if the resonant frequency of the vibrator changes with temperature, it is possible to always find the correct propagation time with temperature correction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波流量計による伝搬時間補正
回路を示したブロック線図、第2図は本発明による伝搬
時間補正動作を示したフローチャート、第3図は本発明
による流速が零の時の超音波振動子の共振周波数変化に
よる伝播時間の補正を示したタイムチャート、第4図は
非挿入式透過形超音波流量計の配置状態を示した概略図
、第5図は超音波送受波器の構成を示した横断面図、第
6図は超音波振動子の共振周波数の温度特性を示した線
図、第7図は超音波振動子のバラツキ状況を示した線図
、第8図は流速が零の時の超音波振動子の共振周波数差
による伝搬時間差の発生の様子を示した線図である。 1・・・配置s  2a、2b・・・超音波送受波器、
3川超音波振動子、4・・・クサビ、10・・・流体、
11・・・上流側送信波、12・・・下流側送信波、1
3・・・下流側受信波、14・・・上流側受信波、 1
5・・・閾値、18・・・伝搬時間差、19・・・回り
込み波、加・・・水中伝搬波、21・・・測定条件入力
部、n・・・第1ゲートオフ幅設定部、田・・・送信子
、24・・・受信子、5・・・第1閾値設定部、26・
・・送信タイミング回路、四・・・第1ゲート部、31
・・・第1時間計測回路、33・・・第2時間計測回路
、34・・・第2ゲートオフ幅設定部、あ・・・第2ゲ
ート部、36・・・第2闇値設定部、羽・・・第3時間
計測回路、39・・・周期測定回路、40・・・演算部 蕩2目 答g目 算5謂 ノV
FIG. 1 is a block diagram showing a propagation time correction circuit using an ultrasonic flowmeter according to the present invention, FIG. 2 is a flow chart showing a propagation time correction operation according to the present invention, and FIG. Fig. 4 is a schematic diagram showing the arrangement of a non-insertion type transmission type ultrasonic flowmeter, and Fig. 5 is a time chart showing the correction of propagation time due to changes in the resonance frequency of the ultrasonic transducer. Fig. 6 is a diagram showing the temperature characteristics of the resonant frequency of the ultrasonic transducer; Fig. 7 is a diagram showing the variation of the ultrasonic transducer; Fig. 8 The figure is a diagram showing how the propagation time difference occurs due to the resonance frequency difference of the ultrasonic transducers when the flow velocity is zero. 1... Arrangement s 2a, 2b... Ultrasonic transducer,
3. Ultrasonic transducer, 4. Wedge, 10. Fluid.
11...Upstream side transmission wave, 12...Downstream side transmission wave, 1
3... Downstream side received wave, 14... Upstream side received wave, 1
5... Threshold value, 18... Propagation time difference, 19... Surrounding wave, addition... Underwater propagation wave, 21... Measurement condition input section, n... First gate off width setting section, field... ... Transmitter, 24... Receiver, 5... First threshold value setting section, 26.
...Transmission timing circuit, four...first gate section, 31
...First time measurement circuit, 33...Second time measurement circuit, 34...Second gate off width setting section, A...Second gate section, 36...Second darkness value setting section, Feather...Third time measurement circuit, 39...Period measurement circuit, 40...Calculation section

Claims (1)

【特許請求の範囲】 1、流れに対して音波が斜めに伝搬するように配管の外
側に一対の超音波振動子を対向して配設し、上流側から
下流側へ下流側から上流側へ交互に音波を送受信し、こ
の両方向に伝搬する音波の伝搬時間を測定し、この伝搬
時間の差より流速を求め流量を算出するようにした超音
波流量計において、送信から受信波が最大となつた後の
零クロス点までの時間を計測し、受信波の回り込み波の
レベルよりも若干大きく設定された閾値と受信波レベル
とを比較し、受信波における送信の瞬間に対応する時間
を求め、この時間から零クロス点までの時間に含まれる
音波の波数を計算し、別途測定した受信波の最大付近で
の一周期とこの音波の波数との積を求め、零クロス点ま
での時間から周期と音波の波数との積を引算し、受信波
の送信の瞬間に対応する時間を計算し、真の伝搬時間を
求めるようにしたことを特徴とする超音波流量計の温度
補正方法。 2、特許請求の範囲第1項に記載の超音波流量計の温度
補正方法において、受信波の一周期測定個所を受信波の
最大付近とし、伝搬時間測定間隔を送信から受信波が最
大となつた後の零クロス点までとしたことを特徴とする
温度補正方法。 3、特許請求の範囲第1項に記載の超音波流量計の温度
補正方法において、伝搬時間に含まれる波数を受信波が
回り込み波よりも若干大きいレベルに達した時から受信
波が最大となつた後の零クロス点までに含まれる波数と
したことを特徴とする温度補正方法。
[Claims] 1. A pair of ultrasonic transducers are disposed facing each other on the outside of the pipe so that sound waves propagate obliquely to the flow, from the upstream side to the downstream side, and from the downstream side to the upstream side. In an ultrasonic flowmeter that transmits and receives sound waves alternately, measures the propagation time of the sound waves propagating in both directions, and calculates the flow rate by determining the flow velocity from the difference in this propagation time, the wave from the transmission to the reception is the maximum. Measure the time until the zero cross point after the signal has passed, compare the received wave level with a threshold set slightly larger than the level of the wraparound wave of the received wave, and find the time corresponding to the instant of transmission in the received wave. Calculate the wave number of the sound wave included in the time from this time to the zero cross point, find the product of the separately measured period near the maximum of the received wave and the wave number of this sound wave, and calculate the period from the time to the zero cross point. A temperature correction method for an ultrasonic flowmeter, characterized in that the product of the wave number of the received wave and the wave number of the sound wave is subtracted, the time corresponding to the moment of transmission of the received wave is calculated, and the true propagation time is obtained. 2. In the temperature correction method for an ultrasonic flowmeter as set forth in claim 1, the measurement point of one cycle of the received wave is set near the maximum of the received wave, and the propagation time measurement interval is set from the transmission to the maximum of the received wave. A temperature correction method characterized in that the temperature is corrected up to the zero cross point after the temperature change. 3. In the temperature correction method for an ultrasonic flowmeter according to claim 1, the received wave reaches its maximum when the wave number included in the propagation time reaches a level slightly larger than the wraparound wave. A temperature correction method characterized by using a wave number included up to a zero cross point after
JP60180400A 1985-08-19 1985-08-19 Temperature correcting method for ultrasonic flow meter Pending JPS6242015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60180400A JPS6242015A (en) 1985-08-19 1985-08-19 Temperature correcting method for ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180400A JPS6242015A (en) 1985-08-19 1985-08-19 Temperature correcting method for ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JPS6242015A true JPS6242015A (en) 1987-02-24

Family

ID=16082575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180400A Pending JPS6242015A (en) 1985-08-19 1985-08-19 Temperature correcting method for ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JPS6242015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007538A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2011007539A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2011226844A (en) * 2010-04-16 2011-11-10 Azden Ltd Ultrasonic concentration meter
JP2011247719A (en) * 2010-05-26 2011-12-08 Azden Ltd Ultrasonic flow meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007538A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2011007539A (en) * 2009-06-24 2011-01-13 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2011226844A (en) * 2010-04-16 2011-11-10 Azden Ltd Ultrasonic concentration meter
JP2011247719A (en) * 2010-05-26 2011-12-08 Azden Ltd Ultrasonic flow meter

Similar Documents

Publication Publication Date Title
JPS6156450B2 (en)
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP2010223855A (en) Ultrasonic flowmeter
JP3624743B2 (en) Ultrasonic flow meter
JP5345006B2 (en) Ultrasonic flow meter
JP3422100B2 (en) Flow measurement device
JP6767628B2 (en) Flow measuring device
JP4485641B2 (en) Ultrasonic flow meter
JPH1151726A (en) Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
JPH04328424A (en) Ultrasonic wave gas flowmeter
JPH0666620A (en) Ultrasonic level indicator
JPH02147920A (en) Measurement of sound velocity in paper
JPH04328423A (en) Ultrasonic wave gas flowmeter
JP2007064988A (en) Flowmeter
JP2020180811A (en) Ultrasonic flowmeter
JPS592844B2 (en) ultrasonic flow meter
JP2006275512A (en) Flow measuring device
JP2000241220A (en) Method and apparatus for measuring flowing velocity of ultrasonic wave
JP5398377B2 (en) Ultrasonic flow meter
SU998860A1 (en) Shell thickness acousting checking method
JPS5981514A (en) Flow meter
JPH0117090B2 (en)
JPH09292270A (en) Ultrasonic wave measuring device