JPS5981514A - Flow meter - Google Patents

Flow meter

Info

Publication number
JPS5981514A
JPS5981514A JP57191444A JP19144482A JPS5981514A JP S5981514 A JPS5981514 A JP S5981514A JP 57191444 A JP57191444 A JP 57191444A JP 19144482 A JP19144482 A JP 19144482A JP S5981514 A JPS5981514 A JP S5981514A
Authority
JP
Japan
Prior art keywords
wave
acoustic
time difference
detecting
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57191444A
Other languages
Japanese (ja)
Inventor
Nobuyuki Iwama
信行 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57191444A priority Critical patent/JPS5981514A/en
Publication of JPS5981514A publication Critical patent/JPS5981514A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Abstract

PURPOSE:To measure a flow rate accurately and stably without any error by detecting the maximum crest value of the receive wave of each acoustic oscillator, detecting the timing of the zero-level crossing of each receive wave after the detection, and detecting the time difference in timing between both as the propagation time difference of an acoustic wave between a couple of acoustic oscillators. CONSTITUTION:A transmitting circuit 13 is driven to send acoustic waves out of the acoustic oscillators 12a and 12b. Maximum crest waves of receive waves detected by the acoustic oscillators 12a and 12b are detected and the timing at which the next wave with the maximum crest value is detected. A time difference detecting circuit 19 calculates the time difference in detection timing between zero-cross detecting circuits 18a and 18b and measures the difference between the propagation time of an acoustic wave from 12a to 12b and that from 12b to 12a. This propagation time difference is multiplied by a coefficient to find the velocity of fluid in piping 11 and this velocity is multiplied by the sectional area of the piping 11 to find the flow rate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、一対の音響振動子によシ音波を送受波して流
量を計測する流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a flowmeter that measures a flow rate by transmitting and receiving sound waves using a pair of acoustic vibrators.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の流量計は第1図に示すように、流体が内部を通
流する配管1に一対の音響振動子2a。
As shown in FIG. 1, this type of flowmeter includes a pair of acoustic vibrators 2a in a pipe 1 through which fluid flows.

2bを斜めに対向して取付け、それぞれの音響振動子2
a、2bから同時に送波される音波を対向する側の音響
振動子2b、2aによって受波し、その伝搬時間の差か
ら配管1の流量を計測するものである。
2b diagonally facing each other, each acoustic vibrator 2
The sound waves simultaneously transmitted from the acoustic transducers a and 2b are received by the acoustic transducers 2b and 2a on opposite sides, and the flow rate in the pipe 1 is measured from the difference in propagation time.

第2図は音響振動子によ)受波される音波の波形の一例
である。従来はある一定の閾値3を設定して、各々の音
響振動子2a、2bの受信波が閾値3を越えた時のタイ
ミングをそれぞれ検出し、双方のタイミングの時間差を
計測することによって、配管1内を流れる流速に比例し
た伝搬時間差を得ていた。この伝搬時間差に係数をかけ
ると流速が求まり、さらに流速に配管1の断面積をかけ
れば、流量が算出できる。
FIG. 2 is an example of the waveform of a sound wave received by an acoustic vibrator. Conventionally, the piping 1 A propagation time difference proportional to the velocity of the flow inside was obtained. The flow velocity can be determined by multiplying this propagation time difference by a coefficient, and by further multiplying the flow velocity by the cross-sectional area of the pipe 1, the flow rate can be calculated.

しかし、この方法によると流速が速く々つたり、配管1
内を流れる流体の組成が変化して音波が配管内を伝搬す
る間に減衰し、受信波の振幅が小さくなったときに、第
2図(a)のようにそれまでとらえていた受信波の第1
波4の波高値が同図(b)に示すように閾値3より小さ
くなると、第1波4を検出できずに次の第2波5をとら
えてし甘う。このとき他方の音響振動子の受信波の振幅
が充分大きく、第2図(a)に示すように第1波4が閾
値3を越えていて、正常に第1波4をとらえたとすると
、双方の受信波が閾値3を越えるタイミングの時間差を
計測した場合、真の伝搬時間差よりも音波の1波長分の
誤差が生じ、流量計測の大きな誤差となってしまうとい
う欠点があった。
However, with this method, the flow rate is fast and fluctuates, and the pipe 1
When the composition of the fluid flowing inside the pipe changes and the sound waves are attenuated while propagating inside the pipe, and the amplitude of the received wave becomes smaller, the received wave that was previously captured as shown in Figure 2 (a) 1st
When the peak value of the wave 4 becomes smaller than the threshold value 3 as shown in FIG. 4(b), the first wave 4 cannot be detected and the next second wave 5 is not detected. At this time, if the amplitude of the received wave from the other acoustic transducer is sufficiently large and the first wave 4 exceeds the threshold 3 as shown in FIG. 2(a), and the first wave 4 is normally captured, then both When measuring the time difference between the timings at which the received waves exceed the threshold value 3, an error corresponding to one wavelength of the sound wave occurs than the true propagation time difference, resulting in a large error in flow rate measurement.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、配管内を伝搬する音波の減衰に起因す
る上述したような計測誤差をなくし、正確、安定な流量
計測を行なえる流量計を提供することにある。
An object of the present invention is to provide a flow meter that can eliminate the above-mentioned measurement errors caused by attenuation of sound waves propagating in piping and can accurately and stably measure a flow rate.

〔発明の概要〕[Summary of the invention]

本発明は、各音響振動子の受信波の最大波高値をそれぞ
れ検出し、その検出後にそれぞれの受信波がゼロレベル
を横切るタイミングを検出し、この両タイミングの時間
差を一対の音響振−動子間の音波の伝搬時間差として検
出することによって、流量を計測するようにしたもので
ある。
The present invention detects the maximum wave height value of the received wave of each acoustic transducer, detects the timing at which each received wave crosses the zero level after that detection, and calculates the time difference between the two timings between the pair of acoustic transducers. The flow rate is measured by detecting the difference in propagation time of sound waves between the two.

すなわち、従来のようにある閾値を受信波が最初に横切
ったタイミングでなく、受信波が最大波高値直後のゼロ
レベルを横切ったタイミングを検出し、そのタイミング
の時間差を伝搬時間差とするのである。
That is, instead of detecting the timing at which the received wave first crosses a certain threshold as in the conventional method, the timing at which the received wave crosses the zero level immediately after the maximum peak value is detected, and the time difference between these timings is taken as the propagation time difference.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流速が変化したり、また配管内を流れ
る流体の組成が変化するなどして、音波が配管内を伝搬
する間に減衰しても、受信波の最大波高値の位置は一定
であるから、その最大波高値の検出は確実、容易であり
、この最大波高値直後のゼロクロス点のタイミングも確
実に検出される。このため、伝搬時間差の計測に、従来
の如く音波の1波長分あるいはそれ以上といったような
大きな誤差を生ずることがなくなり、正確な流量測定を
安定に行なうことが可能となる。
According to the present invention, even if the sound wave is attenuated while propagating inside the pipe due to a change in the flow velocity or a change in the composition of the fluid flowing inside the pipe, the position of the maximum peak value of the received wave will remain unchanged. Since it is constant, the maximum peak value can be detected reliably and easily, and the timing of the zero cross point immediately after this maximum peak value can also be detected reliably. Therefore, in the measurement of the propagation time difference, a large error of one or more wavelengths of sound waves does not occur as in the conventional method, and it becomes possible to stably and accurately measure the flow rate.

〔発明0実施例〕   イみ、1 第3図は本発明の一実経係る流量計の構成図である。図
において、11は流体が通流する配管であり、この配管
11に一対の音響振動子12a、12bが配管1ノの長
さ方向に対し斜めに対向して取付けられている。これら
の音響撮動子12a、12bは送信回路13の出力・平
ルスによって同時に駆動されて、音波(例えば超音波)
を配管11内に送波する。送波された音波は対向する側
の音響撮動子で受波され、受信回路14h、14bを介
して電気信号となる。
[Embodiment 0 of the Invention] Figure 3 is a block diagram of a flowmeter according to one embodiment of the present invention. In the figure, reference numeral 11 denotes a pipe through which fluid flows, and a pair of acoustic vibrators 12a and 12b are attached to this pipe 11 so as to face each other diagonally with respect to the length direction of the pipe 1. These acoustic imagers 12a and 12b are simultaneously driven by the output of the transmitting circuit 13 and generate sound waves (for example, ultrasonic waves).
is transmitted into the pipe 11. The transmitted sound waves are received by the acoustic camera on the opposite side and converted into electrical signals via receiving circuits 14h and 14b.

受信回路14a、14bの出力は受信波の波高値を検出
する波高値検出回路151L、15bに入力され、波高
値検出回路15a、16bの出力は受信波の1波長前の
波高値を保持出力する波高値記憶回路16a、16bお
よび比較回路17a、、17bに入力される。比較回路
17 a。
The outputs of the receiving circuits 14a and 14b are input to peak value detection circuits 151L and 15b that detect the peak value of the received wave, and the outputs of the peak value detection circuits 15a and 16b hold and output the peak value of the received wave one wavelength before. The signal is input to peak value storage circuits 16a, 16b and comparison circuits 17a, 17b. Comparison circuit 17 a.

17bは波高値検出回路15th、15bの出力と、1
波長前の波高値である波高値記憶回路16a、16bの
出力とを比較し、波高9直記憶回路16a、16bの出
力の方が大きい場合にのみ、次段のゼロクロス検出回路
18 a 、18bを作動させる。ゼロクロス検出回路
18th。
17b is the peak value detection circuit 15th, the output of 15b, and 1
The outputs of the wave height storage circuits 16a and 16b, which are the wave height values before the wavelength, are compared, and only when the output of the wave height 9 straight storage circuits 16a and 16b is larger, the next stage zero cross detection circuits 18a and 18b are activated. Activate. Zero cross detection circuit 18th.

18bは受信波、つまり受信回路14a、14bの出力
がゼロレベルを横切るタイミング(ゼロクロス点)をそ
れぞれ検出する。そしてこれらのタイミングの時間差が
時間差検出回路19によシ検出される。
Reference numeral 18b detects the timing at which the received waves, that is, the outputs of the receiving circuits 14a and 14b cross the zero level (zero crossing point). The time difference between these timings is detected by the time difference detection circuit 19.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

送信回路13は音響振動子12a、12bを同時に駆動
し、これにより音響振動子12a。
The transmitting circuit 13 simultaneously drives the acoustic vibrators 12a and 12b, thereby causing the acoustic vibrator 12a.

12bから送波された音波は、配管11内を伝搬してそ
れぞれ対向した側の音響振動子12b。
The sound waves transmitted from 12b propagate within the pipe 11 and reach the acoustic transducers 12b on opposite sides.

12aへ到達する。音響振動子12a側について説明す
ると、受信回路14aは第4図に示されるような受信波
を検出し、次段の波高値検出回路15aへ供給する。波
高値検出回路151Lはまず、受信波の第1波4の波高
値を検出する。
12a is reached. Regarding the acoustic vibrator 12a side, the receiving circuit 14a detects a received wave as shown in FIG. 4, and supplies it to the next-stage peak value detection circuit 15a. The peak value detection circuit 151L first detects the peak value of the first wave 4 of the received wave.

波高値記憶回路16aは第1波の波高値を記憶する。次
に波高値検出回路15aは受信波の第2波5の波高値を
検出する。ここで比較回路17aは波高値検出回路15
aで検出した受信波の第2波の波高値と、波高値記憶回
路16ILに記憶されていた受信波の第1波の波高値と
を比較する。第2の波高値の方が太きいため比較回路1
7aはこれを検出せず、波高値記憶回路16aは新だに
第2波の波高値、を記憶する。
The peak value storage circuit 16a stores the peak value of the first wave. Next, the peak value detection circuit 15a detects the peak value of the second wave 5 of the received wave. Here, the comparison circuit 17a is the peak value detection circuit 15.
The peak value of the second wave of the received wave detected in step a is compared with the peak value of the first wave of the received wave stored in the wave height storage circuit 16IL. Since the second peak value is larger, comparison circuit 1
7a does not detect this, and the peak value storage circuit 16a newly stores the peak value of the second wave.

このようにして次々と波高値の検出とそれ以前の波の波
高値との比較が行なわれ、波高値記憶回路16aに受信
波の最大波高値21が記憶される。次に波高値検出回路
15aは受信波の最大波高値21の次の波の波高値22
を検出する。比較回路17aは波高値記憶回路16aに
に記憶されている波高値、つまり受信波の最大波高値の
方が太きいため、比較回路17aは次段のゼロクロス検
出回路18aを動作状態忙する。ゼロクロス検出回路1
8mは動作状態に入ると、受信波がゼロレベルを横切る
タイミング23を検出する。
In this way, the detection of the wave height value and the comparison with the wave height value of the previous wave are performed one after another, and the maximum wave height value 21 of the received wave is stored in the wave height storage circuit 16a. Next, the wave height detection circuit 15a detects the wave height 22 of the next wave after the maximum wave height 21 of the received wave.
Detect. Since the peak value stored in the peak value storage circuit 16a, that is, the maximum peak value of the received wave, is larger, the comparison circuit 17a keeps the next stage zero-cross detection circuit 18a in an operating state. Zero cross detection circuit 1
When 8m enters the operating state, it detects timing 23 when the received wave crosses the zero level.

他方の音響振動子12bで検出した受信波についても同
様にして最大波高値を検出して、最大波高値の次の波が
ゼロレベルを横切るタイミングを検出する。時間差検出
回路19はゼロクロス検出回路18g、18bの検出タ
イミングの時間差、つまり音響振動子12aの受信波の
最大波高値の次の波がゼロレベル金横切るタイミングと
、音響振動子12bの受信波の最大波高値の次の波がゼ
ロレベルを横切るタイミングとの時間差をとり、音響振
動子12th、12b間の音波の12a→12bの伝搬
時間と12b→12hの伝搬時間の差を計測する。この
伝搬時間差に係数をかけると配管11内を流れる流体の
速度が求まり、この流速に配管11の断面積をかけるこ
とによって流量が求まることになる。
The maximum wave height value of the received wave detected by the other acoustic vibrator 12b is similarly detected, and the timing at which the next wave after the maximum wave height crosses the zero level is detected. The time difference detection circuit 19 detects the time difference between the detection timings of the zero cross detection circuits 18g and 18b, that is, the timing when the next wave after the maximum wave height value of the received wave of the acoustic vibrator 12a crosses the zero level, and the maximum wave height of the received wave of the acoustic vibrator 12b. The time difference between the timing at which the next wave of the wave height crosses the zero level is taken, and the difference between the propagation time from 12a to 12b and the propagation time from 12b to 12h of the sound wave between the acoustic transducers 12th and 12b is measured. By multiplying this propagation time difference by a coefficient, the velocity of the fluid flowing inside the pipe 11 can be determined, and by multiplying this flow velocity by the cross-sectional area of the pipe 11, the flow rate can be determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関係する流量計の基本原理を説明する
だめの断面図、第2図(、) (b)は従来の流量計に
おける伝搬時間差の計測方法を説明するための受信波の
i形図、第3図は本発明の一実施例に係る流量計の構成
を示すブロック図、第4図は同実施例における伝搬時間
差の計測法を説明するだめの受信波の波形図である。 11・・・配管、12a、12b・・・音響振動子、1
3・・送信回路、14a、1’4b・・・受信回路、1
5’ a 、 15 b ・・・波高値検出回路、16
a。 16b・・・波高値記憶回路、17a、17b・・・比
較回路、18h、18b・・・ゼロクロス検出回路、1
9・・・時間差検出回路。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2 W!:l2b (a) (b)
Fig. 1 is a cross-sectional view to explain the basic principle of a flowmeter related to the present invention, and Fig. 2(b) is a cross-sectional view of a received wave to explain the method of measuring the propagation time difference in a conventional flowmeter. The i-shaped diagram and FIG. 3 are block diagrams showing the configuration of a flowmeter according to an embodiment of the present invention, and FIG. 4 is a waveform diagram of a received wave to explain a method of measuring a propagation time difference in the same embodiment. . 11... Piping, 12a, 12b... Acoustic vibrator, 1
3...Transmission circuit, 14a, 1'4b...Reception circuit, 1
5'a, 15b... Peak value detection circuit, 16
a. 16b... Peak value storage circuit, 17a, 17b... Comparison circuit, 18h, 18b... Zero cross detection circuit, 1
9... Time difference detection circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 W! :l2b (a) (b)

Claims (1)

【特許請求の範囲】[Claims] 一対の音響振動子を流体の通流する配管に対向して取付
け、それぞれの音響振動子から同時に配管内に送波され
た音波が対向する側の音響振動子に到達するのに要する
伝搬時間差により配管内の流量を計測する流量計におい
て、各音響振動子の受信波の最大波高値をそれぞれ検出
する手段と、との手段により最大波高値が検出された後
に各音響振動子の受信波がぜロレベルを横切るタイミン
グをそれぞれ検出する手段と、この手段によυ検出され
た各タイミングの時間差を前記伝搬時間差として検出す
る手段とを備えだことを特徴とする流量計。
A pair of acoustic transducers are installed facing each other in a pipe through which fluid flows, and the propagation time difference required for the sound waves simultaneously transmitted from each acoustic transducer into the pipe to reach the acoustic transducer on the opposite side is determined by In a flow meter that measures the flow rate in a pipe, means for detecting the maximum wave height value of the received waves of each acoustic vibrator, and detecting the maximum wave height value of each acoustic vibrator after the maximum wave height value is detected by the means. 1. A flowmeter comprising means for detecting the timings of crossing the υ level, and means for detecting a time difference between the timings detected by the means as the propagation time difference.
JP57191444A 1982-10-30 1982-10-30 Flow meter Pending JPS5981514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191444A JPS5981514A (en) 1982-10-30 1982-10-30 Flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191444A JPS5981514A (en) 1982-10-30 1982-10-30 Flow meter

Publications (1)

Publication Number Publication Date
JPS5981514A true JPS5981514A (en) 1984-05-11

Family

ID=16274718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191444A Pending JPS5981514A (en) 1982-10-30 1982-10-30 Flow meter

Country Status (1)

Country Link
JP (1) JPS5981514A (en)

Similar Documents

Publication Publication Date Title
JP3028723B2 (en) Ultrasonic fluid flow meter
JP2935833B2 (en) Multi-line flow measurement device
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
CA2619063C (en) Driver configuration for an ultrasonic flow meter
JP3045677B2 (en) Ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH06281663A (en) Flow speed measuring device
JPH1048009A (en) Ultrasound temperature current meter
JPS5981514A (en) Flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP2608961B2 (en) Sound wave propagation time measurement method
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JP2000329597A (en) Ultrasonic flowmeter
JP2002340641A (en) Instrument for measuring flow rate
JP2000329597A5 (en)
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JPS63173920A (en) Ultrasonic gas current meter
JPS6394184A (en) Ultrasonic wave displacement detecting device
JPH1151726A (en) Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
JPS61100616A (en) Apparatus for measuring flow amount
JPH0361892B2 (en)
JP2723291B2 (en) Ultrasonic sensor
JPH09292270A (en) Ultrasonic wave measuring device
JPH0117090B2 (en)
JPH04328424A (en) Ultrasonic wave gas flowmeter