JP3512512B2 - Ultrasonic flow velocity measuring device - Google Patents

Ultrasonic flow velocity measuring device

Info

Publication number
JP3512512B2
JP3512512B2 JP07885495A JP7885495A JP3512512B2 JP 3512512 B2 JP3512512 B2 JP 3512512B2 JP 07885495 A JP07885495 A JP 07885495A JP 7885495 A JP7885495 A JP 7885495A JP 3512512 B2 JP3512512 B2 JP 3512512B2
Authority
JP
Japan
Prior art keywords
transducers
flow
flow velocity
ultrasonic
velocity measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07885495A
Other languages
Japanese (ja)
Other versions
JPH08278177A (en
Inventor
宇治 海法
優治 松本
秀幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP07885495A priority Critical patent/JP3512512B2/en
Publication of JPH08278177A publication Critical patent/JPH08278177A/en
Application granted granted Critical
Publication of JP3512512B2 publication Critical patent/JP3512512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波による流速測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic velocity measuring device.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、特公昭55−20174号公報に示されるよう
なものがあった。図4は従来の超音波流速測定装置の概
要図、図5はその超音波流速測定装置の信号処理系のブ
ロック図である。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, there is one as shown in Japanese Patent Publication No. 55-20174. FIG. 4 is a schematic diagram of a conventional ultrasonic flow velocity measuring apparatus, and FIG. 5 is a block diagram of a signal processing system of the ultrasonic flow velocity measuring apparatus.

【0003】図4において、1は水中、2−1〜2−3
はV字型に設置された送受波器、3−1〜3−3は送受
信器、4は処理器である。図5において、11は送受波
器、12は送受切替器、13は増幅器、14は信号検出
回路、15は遅延回路、16はパルス発生器、17は電
力増幅器、18はフリップ・フロップ、19はANDゲ
ート、20は発振器、21は計数器であり、以下に説明
するように動作する。
In FIG. 4, reference numeral 1 denotes 2-1 to 2-3 in water.
Is a V-shaped wave transmitter / receiver, 3-1 to 3-3 are transceivers, and 4 is a processor. In FIG. 5, 11 is a transmitter / receiver, 12 is a transmission / reception switcher, 13 is an amplifier, 14 is a signal detection circuit, 15 is a delay circuit, 16 is a pulse generator, 17 is a power amplifier, 18 is a flip-flop, and 19 is An AND gate, 20 is an oscillator, and 21 is a counter, which operates as described below.

【0004】ここでフリップ・フロップ18、ANDゲ
ート19、発振器20、計数器21は、図5の処理器4
に対応する部分である。送受波器2−1から超音波信号
を送信し、一端送受波器2−2で受信し、再び送受波器
2−2から送信し、送受波器2−3で受信し、処理器4
に送る。反対の経路の場合は上述の動作の逆になる。
Here, the flip-flop 18, the AND gate 19, the oscillator 20, and the counter 21 are the processor 4 of FIG.
Is a part corresponding to. The ultrasonic wave signal is transmitted from the wave transmitter / receiver 2-1, received by the wave transmitter / receiver 2-2, transmitted from the wave transmitter / receiver 2-2 again, received by the wave transceiver 2-3, and processed by the processor 4
Send to. In the case of the opposite route, the above operation is reversed.

【0005】送受波器2−1から超音波信号を送信する
場合は、送受信器3−1を送信器として動作させ、パル
ス発生器16にトリガ信号を加え信号を発生させる。こ
れを電力増幅器17に加え、増幅後、送受切替器12を
経由し、送受波器11に送信電圧を加え、水中1に超音
波信号を送出する。送受波器2−3で超音波信号を受信
する場合は、送受信器3−3を受信器として動作させ、
送受波器11で超音波信号を受信し、電気信号に変換す
る。送受切替器12を通り、増幅器13で一定レベルま
で増幅し、信号検出回路14により受信信号の検出を行
い、信号を出力する。
When the ultrasonic wave signal is transmitted from the wave transmitter / receiver 2-1, the transmitter / receiver 3-1 is operated as a transmitter, and a trigger signal is applied to the pulse generator 16 to generate a signal. This is added to the power amplifier 17, and after amplification, a transmission voltage is applied to the wave transmitter / receiver 11 via the transmission / reception switch 12, and an ultrasonic signal is transmitted to the underwater 1. When the ultrasonic wave is received by the transmitter / receiver 2-3, the transceiver 3-3 is operated as a receiver,
The transmitter / receiver 11 receives the ultrasonic signal and converts it into an electric signal. After passing through the transmission / reception switch 12, the amplifier 13 amplifies the signal to a certain level, the signal detection circuit 14 detects the received signal, and outputs the signal.

【0006】V字型の頂点に送受信器3−2を配置する
場合は、送受波器11で超音波信号を受信し、電気信号
に変換する。送受切替器12を通り、増幅器13で一定
レベルまで増幅し、信号検出回路14により受信信号の
検出を行い、信号を出力する。信号が検出されてから一
定時間を遅延回路15により遅延してから、パルス発生
器16に送信トリガを出力する。パルス発生器16の出
力は電力増幅器17で増幅後、送受切替器12を経由
し、送受波器11に送信電圧を加え、水中に超音波信号
を検出する。この場合、信号検出回路14は一定レベル
以上の信号が入力されると検出出力を出す。
When the transceiver 3-2 is arranged at the apex of the V-shape, the transmitter / receiver 11 receives the ultrasonic signal and converts it into an electric signal. After passing through the transmission / reception switch 12, the amplifier 13 amplifies the signal to a certain level, the signal detection circuit 14 detects the received signal, and outputs the signal. After the signal is detected, the delay circuit 15 delays a fixed time, and then a transmission trigger is output to the pulse generator 16. The output of the pulse generator 16 is amplified by the power amplifier 17 and then passed through the transmission / reception switch 12 to apply a transmission voltage to the transducer 11 to detect an ultrasonic signal in water. In this case, the signal detection circuit 14 outputs a detection output when a signal of a certain level or higher is input.

【0007】超音波の計測時間の測定の一例を説明する
と、送信トリガが送出され超音波信号が水中1に送信さ
れると、フリップ・フロップ18がセットされる。AN
Dゲート19の一方には発振器20の出力が接続されて
おり、その出力は計数器21で計測される。フリップ・
フロップ18がセットされると同時に、計数器21には
発振器20の出力が入り計数を開始する。発振器20の
周波数を適当に選んでおけば、計数器21の内容は時間
の直読みとなる。
An example of measuring the ultrasonic measurement time will be described. When a transmission trigger is sent and an ultrasonic signal is transmitted to the underwater 1, the flip-flop 18 is set. AN
The output of the oscillator 20 is connected to one of the D gates 19, and the output is measured by the counter 21. Flip
At the same time that the flop 18 is set, the output of the oscillator 20 enters the counter 21 and starts counting. If the frequency of the oscillator 20 is properly selected, the contents of the counter 21 will be a direct reading of time.

【0008】このように、従来の超音波流速測定装置
は、このように構成され、以下のような動作を行う。ま
ず、処理器4からの指令で送受信器3−1の送信出力
が、送受波器2−1に加えられ、水中1に超音波信号が
送出される。この信号を送受波器2−2で受信し、再び
送受信器3−2で送信信号を作成し、送受波器2−2で
送信する。この信号を送受信器3−3で受信し、処理器
4に送り、送信指令から送受信器3−3で受信するまで
の時間を計測する。
As described above, the conventional ultrasonic flow velocity measuring device is constructed in this way and operates as follows. First, in response to a command from the processor 4, the transmission output of the transceiver 3-1 is added to the transceiver 2-1 and an ultrasonic signal is transmitted to the underwater 1. This signal is received by the wave transmitter / receiver 2-2, a transmission signal is created again by the transmitter / receiver 3-2, and transmitted by the wave transmitter / receiver 2-2. This signal is received by the transmitter / receiver 3-3, sent to the processor 4, and the time from the transmission command to the reception by the transmitter / receiver 3-3 is measured.

【0009】このようにして測定された伝搬時間を
n ,tn+1 とし、次回の測定では上記と反対に、送受
波器2−3、2−2、2−1の順に超音波信号が伝搬す
るように送信する。このようにして測定された伝搬時間
をtn ′とする。この場合、流速vは送信間隔をT0
送受波器の間隔をrとすると、 V1 =(r/4)・{[(T0 −tn −tn ′)− 〔T0 −(tn ′−tn+1 )〕]/t2 n } …(1) で計算される。
The propagation times measured in this manner are set to t n and t n + 1, and in the next measurement, the ultrasonic signals are transmitted in the order of the transducers 2-3, 2-2 and 2-1 in the order opposite to the above. To be transmitted. The propagation time measured in this way is t n ′. In this case, the flow velocity v is the transmission interval T 0 ,
V 1 = (r / 4) · {[(T 0 −t n −t n ′) − [T 0 − (t n ′ −t n + 1 )]] /, where r is the spacing between the transducers. t 2 n } (1) is calculated.

【0010】送信の順序は、送受波器2−3から開始し
ても同様の動作を行う。得られた流速は処理器4の表示
器で表示又は、処理器4より伝送装置等に出力する。
Regarding the transmission order, the same operation is performed even if the transmission / reception unit 2-3 is started. The obtained flow velocity is displayed on the display of the processor 4, or is output from the processor 4 to a transmission device or the like.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記し
た従来の装置では、一連の測定が連続的に測定できない
場合、特に、一方方向に伝搬する場合に測定ができなく
なると、流速の計測結果は得られない。このように正常
に超音波が伝搬しない場合は、表面が太陽光で熱せら
れ、音線が曲がる夏場などに生じる。また、海岸近くの
河川の場合、海水が底に混入し比重が一定にならないよ
うな場合、音線の曲がりが発生し、対岸まで音波が伝搬
しない場合がある。特に伝搬距離が大きくなった場合、
影響は大きくなり、連続して測定できないという欠点が
ある。
However, in the above-described conventional apparatus, when a series of measurements cannot be continuously measured, particularly when the measurement cannot be performed when propagating in one direction, the measurement result of the flow velocity is obtained. I can't. When the ultrasonic waves do not propagate normally in this way, the surface is heated by sunlight, which occurs in the summer when the sound rays bend. Also, in the case of a river near the coast, when seawater is mixed in the bottom and the specific gravity is not constant, the sound ray may be bent and the sound wave may not propagate to the opposite bank. Especially when the propagation distance becomes large,
The influence is large and there is a drawback that continuous measurement is not possible.

【0012】本発明は、上記問題点を除去し、音線の曲
がりが発生し、対岸まで音波が伝搬しないような場合で
も、補間用送受波器の配置により、連続計測を行うこと
ができる超音波流速測定装置を提供することを目的とす
る。
The present invention eliminates the above-mentioned problems, and even in the case where the sound ray is bent and the sound wave does not propagate to the opposite bank, the continuous measurement can be performed by the arrangement of the interpolating transducer. An object is to provide an acoustic velocity measuring device.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)流れを横断するように送受波器を配置して流速を
測定する超音波流速測定装置において、流れを横断する
ようにV字型に配置される第1の送受波器の組と、流れ
の横断の距離よりも短い距離で流れに平行に設置される
第2の送受波器の組と、通常は前記第1の送受波器の組
にて流れの平均流速を測定し、同時に前記第2の送受波
器の組で流れの一部を測定し、両者の相関関係を算出す
る手段とを設け、音線の曲がりが生じ、前記第1の送受
波器の組で伝搬が不能となった場合、前記第2の送受波
器の組で流れの一部を測定し、前記相関係数から前記第
1の送受波器の組による平均流速と推定するようにした
ものである。
In order to achieve the above-mentioned object, the present invention provides (1) an ultrasonic flow velocity measuring apparatus for measuring the flow velocity by arranging a transducer to traverse the flow. A first set of transducers arranged in a V-shape transversely, and a second set of transducers usually placed parallel to the flow at a distance less than the distance of the flow traversal; A means for calculating an average flow velocity of the flow with the first set of transducers, measuring a part of the flow with the second set of transducers at the same time, and calculating a correlation between the two; When the sound ray is bent and the propagation is disabled in the first set of transducers, a part of the flow is measured by the second set of transducers, and the first coefficient is calculated from the correlation coefficient. It is assumed that the average flow velocity due to the set of one wave transmitter / receiver is estimated.

【0014】(2)上記(1)記載の超音波流速測定装
置において、前記流れを横断するようにV字型に配置さ
れる第1の送受波器の組の流れに平行に設置される送受
波器の組と同一の場所に前記第2の送受波器の組を配置
するようにしたものである。 (3)上記(1)記載の超音波流速測定装置において、
前記流れを横断するようにV字型に配置される第1の送
受波器の組の流れに平行に設置される送受波器の組とは
別の場所に前記第2の送受波器の組を配置するようにし
たものである。
(2) In the ultrasonic velocity measuring device according to (1) above, a transmitter / receiver installed parallel to the flow of a first set of transducers arranged in a V shape so as to cross the flow. The second set of wave transmitters / receivers is arranged at the same place as the set of wave units. (3) In the ultrasonic flow velocity measuring device according to (1) above,
The second set of transducers is located in a different place from the set of transducers arranged in parallel to the flow of the first set of transducers arranged in a V shape so as to traverse the flow. Are arranged.

【0015】[0015]

【作用】[Action]

(1)請求項1記載の超音波流速測定装置によれば、流
れを横断するようにV字型に配置される第1の送受波器
の組と、流れの横断の距離よりも短い距離で流れに平行
に設置される第2の送受波器の組と、通常は前記第1の
送受波器の組にて流れの平均流速を測定し、同時に前記
第2の送受波器の組で流れの一部を測定し、両者の相関
関係を算出する手段とを設け、音線の曲がりが生じ、前
記第1の送受波器の組で伝搬が不能となった場合、前記
第2の送受波器の組で流れの一部を測定し、前記相関係
数から前記第1の送受波器の組による平均流速と推定す
るようにしたので、音線の曲がりが生じ、前記第1の送
受波器の組で伝搬が不能となった場合でも、長期に連続
測定を行うことができる。
(1) According to the ultrasonic velocity measuring device of claim 1, the first set of transducers arranged in a V shape so as to cross the flow and the distance shorter than the distance of the flow crossing. The average flow velocity of the flow is measured by a second set of transducers, which are installed parallel to the flow, and usually the first set of transducers, and at the same time the flow of the second set of transducers is measured. And a means for calculating the correlation between the two are provided, and when the sound ray is bent and the propagation is disabled in the first set of the transceiver, the second transceiver Since a part of the flow is measured by a set of instruments and the average velocity is estimated from the correlation coefficient by the set of the first transducers, the sound ray is bent, and the first transmission and reception signals are generated. Even if the propagation is disabled by the set of instruments, continuous measurement can be performed for a long time.

【0016】(2)請求項2記載の超音波流速測定装置
によれば、上記(1)における前記流れを横断するよう
にV字型に配置される第1の送受波器の組の流れに平行
に設置される送受波器の組と同一の場所に前記第2の送
受波器の組を配置するようにしたので、通常の計測系と
補間用の計測系との計測条件を同じくすることができ、
より正確な相関関係を算出することが可能になり、信頼
性の高い連続測定を行うことができる。
(2) According to the ultrasonic velocity measuring device of the second aspect, in the flow of the first set of transducers arranged in a V shape so as to cross the flow in (1) above. Since the second set of transducers is arranged in the same place as the set of transducers installed in parallel, the measurement conditions of the normal measurement system and the measurement system for interpolation should be the same. Can
It becomes possible to calculate a more accurate correlation, and it is possible to perform highly reliable continuous measurement.

【0017】(3)請求項3記載の超音波流速測定装置
によれば、上記(1)における前記流れを横断するよう
にV字型に配置される第1の送受波器の組の流れに平行
に設置される送受波器の組とは別の場所に前記第2の送
受波器の組を配置するようにしたので、通常の計測系と
補間用の計測系との間の干渉をなくすことができるとと
もに、補間用の計測系を有利な場所に配置することがで
きる。
(3) According to the ultrasonic velocity measuring device of the third aspect, in the flow of the first set of transducers arranged in a V shape so as to traverse the flow in (1) above. Since the second set of transducers is arranged in a place different from that of the set of transducers installed in parallel, interference between the normal measurement system and the measurement system for interpolation is eliminated. In addition, the measurement system for interpolation can be arranged at an advantageous place.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は本発明の第1実施例を示す超音波流速
測定装置の概要図である。図1において、21は水中、
22−1〜22−3はV字型に設置された第1の送受波
器の組、22−4〜22−5はV字型に設置された第1
の送受波器の組の流れに平行に設置される送受波器の組
と同じ場所に設置された第2の送受波器の組(補間用送
受波器)、23−1〜23−5は送受信器、24は処理
器である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of an ultrasonic flow velocity measuring apparatus showing a first embodiment of the present invention. In FIG. 1, 21 is underwater,
22-1 to 22-3 are first sets of transducers installed in a V-shape, and 22-4 to 22-5 are first sets installed in a V-shape.
Of the second set of transducers (interpolating transducers), 23-1, 23-5, installed at the same location as the set of transducers installed parallel to the flow of the set of transducers of The transceiver 24 is a processor.

【0019】また、この実施例の送受信器及び処理器の
構成は、従来例と同様であり、その説明は省略する。こ
の実施例の超音波流速測定装置は、このように構成さ
れ、以下のような動作を行う。ここで、送受波器22−
1、22−2又は送受波器22−2、22−3間の距離
をr1 、送受波器22−4、22−5間の距離をr2
すると、r1 >>r2 のように配置される。
The configuration of the transmitter / receiver and the processor of this embodiment is similar to that of the conventional example, and the description thereof is omitted. The ultrasonic flow velocity measuring apparatus of this embodiment is configured in this way and operates as follows. Here, the transceiver 22-
If the distance between 1 , 22-2 or the wave transceivers 22-2, 22-3 is r 1 and the distance between the wave transceivers 22-4, 22-5 is r 2 , r 1 >> r 2 Is located in.

【0020】従来と同様の方法で、V字型の測定を行
う。この実施例の方式は従来方式と同様であるので、そ
の説明は省略する。上記(1)式により、流速V1 が演
算される。同時に2組の対向した送受波器(補間用送受
波器)によって流速を測定する。まず、処理器24から
の指令で送受信器23−4から、送信出力が送受波器2
2−4に加えられ、水中21に超音波信号が送出され
る。この信号を送受波器22−5で受信し、処理器24
に送る。このようにして測定された伝搬時間をttn
ttn+1 とし、次回の測定では上記と反対の送受波器2
2−5、22−4の順に送信する。このようにして測定
された伝搬時間をtt′n とする。
V-shaped measurement is carried out in the same manner as in the prior art. Since the system of this embodiment is similar to the conventional system, its explanation is omitted. The flow velocity V 1 is calculated by the equation (1). At the same time, the flow velocity is measured by two sets of opposed transducers (translation transducers). First, in response to a command from the processor 24, the transmission output from the transceiver 23-4 is transmitted / received by the transceiver 2
2-4, an ultrasonic signal is transmitted to the underwater 21. This signal is received by the transmitter / receiver 22-5, and the processor 24
Send to. The propagation time measured in this way is tt n ,
tt n + 1, and in the next measurement
2-5 and 22-4 are transmitted in this order. The propagation time measured in this way is tt ' n .

【0021】これを上記(1)式と同様に演算すると、
流れに平行な流速V2 が測定できる。ここでV1 とV2
の相関関係を計算する。ここで、流速V1 は川の送受波
器22−1、22−2及び22−3との間の平均流速で
ある。一方、V2 は流れの1点の流速である。今、V1
とV2 との間に直線的な相関関係があるとすると、図2
に示すような関係になる。
When this is calculated in the same manner as the above equation (1),
The flow velocity V 2 parallel to the flow can be measured. Where V 1 and V 2
Calculate the correlation of. Here, the flow velocity V 1 is an average flow velocity between the wave transmitters / receivers 22-1, 22-2, and 22-3. On the other hand, V 2 is the flow velocity at one point of the flow. Now V 1
If there is a linear correlation between V 2 and V 2 ,
The relationship is as shown in.

【0022】この時のV1 =a・V2 +bとし、a及び
bを求める。この第1実施例では、補間用送受波器をV
字型の送受波器と同一の場所に設置したが、この必要性
はなく、余り離れていない場所であれば、単独に設置す
ることが可能である。このように構成したので、第1実
施例によれば、通常音線が正常であり、伝搬が正常に第
1の送受波器の組22−1〜22−3で行われている場
合に、V字型の設置による流速測定を行う。同時に第2
の送受波器の組22−4〜22−5による流速測定を行
い、両者の間の相関関係を求める。
At this time, V 1 = a · V 2 + b is set, and a and b are obtained. In the first embodiment, the interpolation transmitter / receiver is V
Although it was installed in the same place as the V-shaped transmitter / receiver, this is not necessary, and it can be installed separately if it is not too far away. With this configuration, according to the first embodiment, when the normal sound ray is normal and the propagation is normally performed by the first transducer set 22-1 to 22-3, Velocity measurement by V-shaped installation. Second at the same time
Velocity measurement is performed using the sets of transducers 22-4 to 22-5, and the correlation between the two is obtained.

【0023】表面が異常に熱せられるような場合、塩分
が混入し、比重が一定にならないような場合、音線は異
常になり、音波の伝搬上曲がりが発生し、対岸の送受波
器まで伝搬しない状況になった場合〔信号検出回路14
(図5参照)からの出力信号が得られなくなると〕、通
常は送受波器22−1及び22−2の間よりも、送受波
器22−4と22−5の間隔は狭いので、送受波器22
−1及び22−2の間で伝搬ができない場合でも、送受
波器22−4と22−5の間の伝搬は正常に行われる。
When the surface is abnormally heated, salt is mixed, and when the specific gravity is not constant, the sound ray becomes abnormal and the sound wave is bent upward and propagates to the transducer on the opposite bank. When the situation does not occur [Signal detection circuit 14
(When the output signal from the transmitter / receiver is not obtained) (see FIG. 5), the distance between the transducers 22-4 and 22-5 is usually narrower than that between the transducers 22-1 and 22-2. Wave 22
Even if the propagation between -1 and 22-2 is not possible, the propagation between the transceivers 22-4 and 22-5 is normally performed.

【0024】この様子は、図3に示すように、音線の曲
がりが一定であれば、伝搬可能距離は間隔に比例するこ
とを示している。このように、流れを横断するようにV
字型に配置される第1の送受波器の組の流れに平行に設
置される送受波器の組と同一の場所に前記第2の送受波
器の組を配置するようにしたので、通常の計測系と補間
用の計測系との計測条件を同じくすることができ、より
正確な相関関係を算出することが可能になり、信頼性の
高い連続測定を行うことができる。
This state shows that, as shown in FIG. 3, if the curve of the sound ray is constant, the propagable distance is proportional to the interval. Thus, V across the flow
Since the second set of transducers is arranged at the same place as the set of transducers installed in parallel to the flow of the first set of transducers arranged in a V shape, The measurement conditions of the measurement system and the measurement system for interpolation can be the same, a more accurate correlation can be calculated, and highly reliable continuous measurement can be performed.

【0025】図6は本発明の第2実施例を示すV字型の
送受波器の設置と独立させて補間用送受波器を設置した
例を示す図である。また、通常の流速測定ではV字型に
ついて説明したが、Vの一辺を使用して測定しても同様
の効果がある。V字型に設置された第1の送受波器の組
22−1〜22−3と独立させて、第2の送受波器の組
(補間用送受波器)32−4〜32−5を設置した場
合、第1の送受波器の組22−1〜22−3で測定した
流速と、第2の送受波器の組(補間用送受波器)32−
4〜32−5で測定した流速の間の相関係数に違いがあ
っても、基本的な動作は同じである。
FIG. 6 is a diagram showing an example in which an interpolating transducer is installed independently of the installation of the V-shaped transducer according to the second embodiment of the present invention. Further, although the V-shape has been described in the ordinary flow velocity measurement, the same effect can be obtained even if the measurement is performed using one side of V. The second set of wave transceivers (transducer / receiver) 32-4 to 32-5 are provided independently of the first set of wave transceivers 22-1 to 22-3 installed in a V shape. When installed, the flow velocity measured by the first transducer set 22-1 to 22-3 and the second transducer set (interpolation transducer) 32-
Even if there is a difference in the correlation coefficient between the flow velocities measured in 4 to 32-5, the basic operation is the same.

【0026】このように構成したので、第2実施例によ
れば、V字型の第1の送受波器の組と独立させて第2の
送受波器の組(補間用送受波器)を設置した場合、V字
型の送受波器で測定した流速と補間用送受波器で測定し
た流速の間の相関係数に違いがあっても、基本的な動作
の効果は同様に発生する。また、流れを横断するように
V字型に配置される第1の送受波器の組の流れに平行に
設置される送受波器の組とは別の場所に、前記第2の送
受波器の組を配置するようにしたので、通常の計測系と
補間用の計測系との間の干渉をなくすことができるとと
もに、補間用の計測系を有利な場所に配置することがで
きる。
With this configuration, according to the second embodiment, the second set of transducers (interpolation transducer) is provided independently of the set of V-shaped first transducers. When installed, even if there is a difference in the correlation coefficient between the flow velocity measured by the V-shaped transducer and the flow velocity measured by the interpolating transducer, the same basic operation effect occurs. In addition, the second transducer unit is provided in a place different from that of the first transducer unit which is arranged in a V-shape so as to traverse the flow and which is installed in parallel with the flow unit. Since the set is arranged, the interference between the normal measuring system and the measuring system for interpolation can be eliminated, and the measuring system for interpolation can be arranged at an advantageous place.

【0027】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0028】[0028]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (1)請求項1記載の発明によれば、流れを横断するよ
うにV字型に配置される第1の送受波器の組と、流れの
横断の距離よりも短い距離で流れに平行に設置される第
2の送受波器の組と、通常は前記第1の送受波器の組に
て流れの平均流速を測定し、同時に前記第2の送受波器
の組で流れの一部を測定し、両者の相関関係を算出する
手段とを設け、音線の曲がりが生じ、前記第1の送受波
器の組で伝搬が不能となった場合、前記第2の送受波器
の組で流れの一部を測定し、前記相関係数から前記第1
の送受波器の組による平均流速と推定するようにしたの
で、音線の曲がりが生じ、前記第1の送受波器の組で伝
搬が不能となった場合でも、長期に連続測定を行うこと
ができる。
As described in detail above, according to the present invention, the following effects can be achieved. (1) According to the invention of claim 1, the first set of transducers arranged in a V shape so as to traverse the flow and parallel to the flow at a distance shorter than the traversing distance of the flow. An average flow velocity of the flow is measured by a second set of transducers and usually the first set of transducers, and at the same time, a part of the flow is measured by the second set of transducers. A means for measuring and calculating the correlation between the two is provided, and when the sound ray is bent and the propagation is disabled in the first set of transducers, the second set of transducers is used. A part of the flow is measured and the first coefficient is calculated from the correlation coefficient.
Since it was estimated as the average flow velocity by the set of transducers, the sound ray is bent, and even if the propagation of the first set of transducers is disabled, continuous measurement should be performed for a long time. You can

【0029】(2)請求項2記載の発明によれば、上記
(1)における前記流れを横断するようにV字型に配置
される第1の送受波器の組の流れに平行に設置される送
受波器の組と同一の場所に、前記第2の送受波器の組を
配置するようにしたので、通常の計測系と補間用の計測
系との計測条件を同じくすることができ、より正確な相
関関係を算出することが可能になり、信頼性の高い連続
測定を行うことができる。
(2) According to the invention described in claim 2, it is installed in parallel with the flow of the first set of the transducers arranged in a V shape so as to cross the flow in the above (1). Since the second set of transducers is arranged at the same place as the set of transducers, the measurement conditions of the normal measurement system and the measurement system for interpolation can be the same, It becomes possible to calculate a more accurate correlation, and it is possible to perform highly reliable continuous measurement.

【0030】(3)請求項3記載の発明によれば、上記
(1)における前記流れを横断するようにV字型に配置
される第1の送受波器の組の流れに平行に設置される送
受波器の組とは別の場所に前記第2の送受波器の組を配
置するようにしたので、通常の計測系と補間用の計測系
との間の干渉をなくすことができるとともに、補間用の
計測系を有利な場所に配置することができる。
(3) According to the invention of claim 3, the first transducer set is arranged in parallel with the flow of the first set of transducers arranged in a V shape so as to traverse the flow in the above (1). Since the second set of transducers is arranged in a place different from that of the set of transducers, it is possible to eliminate the interference between the normal measurement system and the measurement system for interpolation. The measurement system for interpolation can be arranged at an advantageous place.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す超音波流速測定装置
の概要図である。
FIG. 1 is a schematic diagram of an ultrasonic flow velocity measuring apparatus showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示す川の流れの平均流速
1 と流れの1点の流速V2 との相関関係を示す図であ
る。
FIG. 2 is a diagram showing a correlation between an average flow velocity V 1 of a river flow and a flow velocity V 2 at one point of the flow showing the first embodiment of the present invention.

【図3】本発明の第1実施例における川の音線図であ
る。
FIG. 3 is a sound ray diagram of the river in the first embodiment of the present invention.

【図4】従来の超音波流速測定装置の概要図である。FIG. 4 is a schematic diagram of a conventional ultrasonic flow velocity measuring apparatus.

【図5】従来の超音波流速測定装置の信号処理系のブロ
ック図である。
FIG. 5 is a block diagram of a signal processing system of a conventional ultrasonic flow velocity measuring apparatus.

【図6】本発明の第2実施例を示すV字型の送受波器の
設置と独立させて補間用送受波器を設置した例を示す図
である。
FIG. 6 is a diagram showing an example in which a wave transceiver for interpolation is installed independently of the installation of a V-shaped wave transceiver according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21 水中 22−1〜22−3 V字型に設置された第1の送受
波器の組 22−4〜22−5,32−4〜32−5 第2の送
受波器の組(補間用送受波器) 23−1〜23−5 送受信器 24 処理器
21 Underwater 22-1 to 22-3 V-shaped set of first transducers 22-4 to 22-5, 32-4 to 32-5 Second transducer set (for interpolation) Transceiver) 23-1 to 23-5 Transceiver 24 Processor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 秀幸 東京都港区虎ノ門1丁目7番12号 沖電 気工業株式会社内 (56)参考文献 特開 昭59−126212(JP,A) 特開 昭62−247216(JP,A) 特公 昭55−20174(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01F 1/00 - 9/02 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Hideyuki Takahashi 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (56) Reference JP-A-59-126212 (JP, A) JP 62-247216 (JP, A) JP-B 55-20174 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) G01F 1/00-9/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流れを横断するように送受波器を配置し
て流速を測定する超音波流速測定装置において、(a)
流れを横断するようにV字型に配置される第1の送受波
器の組と、(b)流れの横断の距離よりも短い距離で流
れに平行に設置される第2の送受波器の組と、(c)通
常は前記第1の送受波器の組で流れの平均流速を測定
し、同時に前記第2の送受波器の組で流れの一部を測定
し、両者の相関関係を算出する手段とを設け、(d)音
線の曲がりが生じ、前記第1の送受波器の組で伝搬が不
能となった場合、前記第2の送受波器の組で流れの一部
の測定に基づいた前記相関係数から前記第1の送受波器
の組による平均流速と推定することを特徴とする超音波
流速測定装置。
1. An ultrasonic flow velocity measuring device in which a transducer is arranged so as to traverse a flow to measure the flow velocity,
A first set of transducers arranged in a V-shape across the flow, and (b) a second set of transducers placed parallel to the flow at a distance shorter than the distance of the flow crossings. And (c) usually the first set of transducers to measure the average flow velocity of the flow, and at the same time the second set of transducers to measure part of the flow to determine the correlation between the two. And (d) when the sound ray is bent and the propagation is disabled in the first set of transducers, a part of the flow of the second set of transducers is used. An ultrasonic flow velocity measuring apparatus, wherein the average flow velocity of the first set of transducers is estimated from the correlation coefficient based on measurement.
【請求項2】 請求項1記載の超音波流速測定装置にお
いて、前記流れを横断するようにV字型に配置される第
1の送受波器の組の流れに平行に設置される送受波器の
組と同一の場所に前記第2の送受波器の組を配置するよ
うにしたことを特徴とする超音波流速測定装置。
2. The ultrasonic wave velocity measuring device according to claim 1, wherein the transducers are arranged in parallel with a flow of a set of first transducers arranged in a V shape so as to traverse the flow. The ultrasonic flow velocity measuring device is characterized in that the second set of transducers is arranged in the same place as the second set.
【請求項3】 請求項1記載の超音波流速測定装置にお
いて、前記流れを横断するようにV字型に配置される第
1の送受波器の組の流れに平行に設置される送受波器の
組とは別の場所に前記第2の送受波器の組を配置するよ
うにしたことを特徴とする超音波流速測定装置。
3. The ultrasonic wave velocity measuring apparatus according to claim 1, wherein the transducers are arranged in parallel with a flow of a first set of transducers arranged in a V shape so as to traverse the flow. The ultrasonic flow velocity measuring device, wherein the second set of the transmitter / receiver is arranged in a place different from that of the second set.
JP07885495A 1995-04-04 1995-04-04 Ultrasonic flow velocity measuring device Expired - Lifetime JP3512512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07885495A JP3512512B2 (en) 1995-04-04 1995-04-04 Ultrasonic flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07885495A JP3512512B2 (en) 1995-04-04 1995-04-04 Ultrasonic flow velocity measuring device

Publications (2)

Publication Number Publication Date
JPH08278177A JPH08278177A (en) 1996-10-22
JP3512512B2 true JP3512512B2 (en) 2004-03-29

Family

ID=13673419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07885495A Expired - Lifetime JP3512512B2 (en) 1995-04-04 1995-04-04 Ultrasonic flow velocity measuring device

Country Status (1)

Country Link
JP (1) JP3512512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349504B1 (en) * 2000-04-24 2002-08-21 주식회사 창민테크 Ultrasonic flow velocity measuring apparatus
RU2530832C1 (en) * 2013-06-11 2014-10-20 Общество с ограниченной ответственностью "ЛОМО МЕТЕО" Ultrasonic meter of flow speeds

Also Published As

Publication number Publication date
JPH08278177A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
JPS601554A (en) Ultrasonic inspection apparatus
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JPH1048009A (en) Ultrasound temperature current meter
GB2167185A (en) Acoustically detecting and/or identifying a liquid
JPH0943360A (en) Water infiltration detecting method
JP3624743B2 (en) Ultrasonic flow meter
JP2003215112A (en) Ultrasonic wave density meter
JPS6316685B2 (en)
JPH04318455A (en) Ultrasonic concentration measuring instrument
JPH05180810A (en) Ultrasonic transmitter-receiver for liquid concentration meter
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2563790Y2 (en) Underwater position measurement system using pinger
JP2000329597A5 (en)
JP3465100B2 (en) Vortex flow meter
SU1030656A1 (en) Ultrasonic flowmeter
JP3079912B2 (en) Metal material inspection equipment
JP3622613B2 (en) Ultrasonic flow meter
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPH0666620A (en) Ultrasonic level indicator
SU580498A1 (en) Ultrasound propagation rate meter
JPH07139982A (en) Ultrasonic flowmeter
JPH05172793A (en) Sound characteristic value measuring device
JPS58115381A (en) Measuring device of distribution of shoal of fish

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

EXPY Cancellation because of completion of term