JPH04318455A - Ultrasonic concentration measuring instrument - Google Patents

Ultrasonic concentration measuring instrument

Info

Publication number
JPH04318455A
JPH04318455A JP3111200A JP11120091A JPH04318455A JP H04318455 A JPH04318455 A JP H04318455A JP 3111200 A JP3111200 A JP 3111200A JP 11120091 A JP11120091 A JP 11120091A JP H04318455 A JPH04318455 A JP H04318455A
Authority
JP
Japan
Prior art keywords
concentration
transducer
receiver
ultrasonic
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3111200A
Other languages
Japanese (ja)
Inventor
Teru Okubo
大久保 輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP3111200A priority Critical patent/JPH04318455A/en
Publication of JPH04318455A publication Critical patent/JPH04318455A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Abstract

PURPOSE:To obtain a concentration measuring instrument which can accurately measure the concentration of a fluid, such as silt, etc., or a fluidized body irrespective of the variation of the transmitting output, variation of the converting efficiency, or variation of the receiving amplification degree of the instrument. CONSTITUTION:This ultrasonic concentration measuring instrument is composed of a transducer 1, transducer 2, and a plurality of reflectors A and B which are arranged at different distances in the same direction against the transducer 2. The damping amount per unit distance of reflected waves by silt, etc., is found from the ratio between the received wave amplifying signal of the reflected waves from the reflector A and that of the reflected waves from the reflector B and the concentration of the silt, etc., corresponding to the damping amount is found.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超音波の伝搬減衰量を
測定することにより汚泥等の濃度を測定する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration of sludge or the like by measuring the propagation attenuation of ultrasonic waves.

【0002】0002

【従来の技術】汚泥等の中を伝搬する超音波は汚泥等の
濃度が高い程伝搬中の減衰も大きくなる。即ち、減衰量
は濃度の関数となる。従って、予め濃度と減衰量の相関
関係を調べて置けば、減衰量を測定することにより濃度
を知ることができる。
2. Description of the Related Art The higher the concentration of ultrasonic waves propagating in sludge, etc., the greater the attenuation during propagation. That is, the amount of attenuation is a function of concentration. Therefore, if the correlation between the concentration and the attenuation amount is investigated in advance, the concentration can be determined by measuring the attenuation amount.

【0003】このように濃度を測定するシステムとして
は、従来は図3に示すように、測定すべき汚泥等3の中
に超音波の送波器6と受波器7を対向させて設け、送波
器6へは送信器4から超音波周波の電気信号を印加して
超音波を汚泥等3の中へ送波し、受波器7は汚泥中を伝
搬して来た超音波を受波し、これを超音波電気信号に変
換して受信器5へ送る。
Conventionally, as shown in FIG. 3, a system for measuring concentration as described above includes an ultrasonic wave transmitter 6 and a wave receiver 7 placed opposite each other in the sludge or the like 3 to be measured. The transmitter 6 applies an electric signal of ultrasonic frequency from the transmitter 4 to transmit the ultrasonic wave into the sludge etc. 3, and the receiver 7 receives the ultrasonic wave propagated through the sludge. wave, converts it into an ultrasonic electrical signal, and sends it to the receiver 5.

【0004】受信器5では入力された信号のレベルを必
要なレベルまで増幅した後予め設定されている基準レベ
ルと比較して、これを濃度に換算したうえ濃度指示信号
として出力する。
The receiver 5 amplifies the level of the input signal to a required level, compares it with a preset reference level, converts it to density, and outputs it as a density instruction signal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のシステムでは、長い時間の経過とともに、送信器4
の送信出力が変化したり、送波器6や受波器7の感度(
変換効率)が変化したり、或いは受信器5の増幅度が変
化すると濃度指示信号に変換する前に信号レベルが変化
してしまい、汚泥等3の濃度が変化していなくとも、恰
も濃度が変化したかの如き濃度指示信号が出力されてし
まい、正確な濃度が測定できなくなってしまうという問
題があった。
However, in the conventional system described above, over a long period of time, the transmitter 4
The transmission output of the transmitter 6 or receiver 7 may change, or the sensitivity (
If the conversion efficiency (conversion efficiency) changes or the amplification degree of the receiver 5 changes, the signal level will change before it is converted into a concentration indication signal, and even if the concentration of sludge etc. 3 does not change, the concentration will change. There has been a problem in that a concentration indicating signal that appears as if the image has been removed is output, making it impossible to accurately measure the concentration.

【0006】本発明の目的は、上記従来技術の問題点に
鑑みて、送信器の出力や、送波器、受波器の感度や受信
器の増幅度が変動してもその変動の影響を受けることな
く濃度の測定を行うことのできる濃度測定装置を提供す
ることにある。
In view of the problems of the prior art described above, an object of the present invention is to eliminate the effects of fluctuations in the output of the transmitter, the sensitivity of the transmitter and receiver, and the amplification degree of the receiver. An object of the present invention is to provide a concentration measuring device capable of measuring concentration without being exposed to water.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するために次の手段構成を有する。即ち、本発明の
超音波濃度測定装置は、パルス状の超音波周波信号を出
力する送信器と;  時間差をもって入力する信号間の
強度の比を算出し得る受信器と;送信器からの超音波周
波信号を超音波に変換して送波するとともに、受波され
た超音波を超音波周波電気信号に変換し受信器へ送る送
受波器と;  該送受波器に対して同じ方向で音波伝搬
距離の異なる位置に設置される複数の反射体と;から構
成されることを特徴とする超音波濃度測定装置である。
[Means for Solving the Problems] The present invention has the following means for achieving the above object. That is, the ultrasonic concentration measurement device of the present invention includes: a transmitter that outputs a pulsed ultrasonic frequency signal; a receiver that can calculate the intensity ratio between signals input with a time difference; and an ultrasonic wave output from the transmitter. A transducer that converts a frequency signal into an ultrasonic wave and transmits the same, and converts the received ultrasonic wave into an ultrasonic frequency electrical signal and sends it to a receiver; Sound waves propagate in the same direction with respect to the transducer. An ultrasonic concentration measuring device characterized by comprising: a plurality of reflectors installed at positions at different distances;

【0008】[0008]

【作用】以下、本発明の濃度測定装置の作用を説明する
。今、説明を簡単にするために、送受波器に対して同じ
方向に距離を違えて2個の反射体がある場合について説
明する。
[Operation] The operation of the concentration measuring device of the present invention will be explained below. Now, to simplify the explanation, a case will be explained in which there are two reflectors at different distances in the same direction with respect to the transducer.

【0009】送受波器に近い方の反射体をA、遠い方の
反射体をBとし、送受波器からの距離をそれぞれlA 
,lB 、反射断面積をそれぞれぞれσA ,σB 、
反射係数をηA ,ηB とし、送受波器から送波され
る音響パワーをPt 、送受波器の変換効率をη、単位
距離l0 だけ伝搬した場合の減衰量(減衰係数)をα
(〈1)、受信器の増幅度をGとし、反射体Aからの反
射による信号の受信増幅後における出力をEA 、同様
に反射体Bからの反射による信号の受信増幅後における
出力をEBとして、送信器からパルス状の超音波周波信
号を出力すると、距離2lA を伝搬するに要する時間
経過した時点で、次の数式1で表される出力EA が得
られる。但し、Kは比例定数である。
The reflector closer to the transducer is A, the reflector farther away is B, and the distance from the transducer is lA.
, lB , and the reflection cross sections are σA , σB , respectively.
The reflection coefficients are ηA and ηB, the acoustic power transmitted from the transducer is Pt, the conversion efficiency of the transducer is η, and the amount of attenuation (attenuation coefficient) when propagating by a unit distance l0 is α
(<1), where the amplification degree of the receiver is G, the output after receiving amplification of the signal reflected from reflector A is EA, and similarly the output after receiving amplification of the signal due to reflection from reflector B is EB. When a pulsed ultrasonic frequency signal is output from the transmitter, an output EA expressed by the following equation 1 is obtained after the time required to propagate a distance of 2lA has elapsed. However, K is a proportionality constant.

【0010】0010

【数1】[Math 1]

【0011】更にこの後、距離lB とlA の差の2
倍の距離を伝搬するに要する時間経過した時点で、次の
数式2で表される出力EB が得られる。
Further, after this, 2 of the difference between the distances lB and lA
When the time required to propagate twice the distance has elapsed, an output EB expressed by the following equation 2 is obtained.

【0012】0012

【数2】[Math 2]

【0013】本発明の受信器は、このように時間差をも
って入力する信号間の比を求めるので、数式1と数式2
の比Rをとると、数式3のようになる。
Since the receiver of the present invention calculates the ratio between the input signals with a time difference in this way, Equation 1 and Equation 2
Taking the ratio R of , it becomes as shown in Equation 3.

【0014】[0014]

【数3】[Math 3]

【0015】そこで数式3を見ると、K、Pt 、η2
 、Gがすべて消えており、これらの値が変化しても比
Rの値に影響を与えないことが分かる。また、残るσA
 、σB 、ηA 、ηB は、反射体の物理的構造に
よって固定的に定まるものであるから、用いる反射体が
決まれば、固定的に決まるものであり反射体を変更しな
い限り、経時変化や経年変化はしない性質のものである
[0015] Looking at Equation 3, we find that K, Pt, η2
, G have all disappeared, and it can be seen that even if these values change, the value of the ratio R is not affected. Also, the remaining σA
, σB , ηA , and ηB are fixedly determined by the physical structure of the reflector, so once the reflector to be used is decided, they are fixed and will not change over time or change over time unless the reflector is changed. It is of a nature that does not occur.

【0016】また、l0 は単位距離で固定値であるし
、lA ,lB も送受波器および反射体A,Bを固定
的に設置すれば変化しない固定値となる。結局、数式3
の比Rは単位距離当りの減衰量αの変化によってのみ変
化する関数として表される。
Further, l0 is a fixed value in unit distance, and lA and lB also become fixed values that do not change if the transducer and the reflectors A and B are fixedly installed. In the end, formula 3
The ratio R is expressed as a function that changes only with changes in the attenuation amount α per unit distance.

【0017】ところで、従来の技術で述べたように、減
衰量αは汚泥等の濃度の関数であるから、減衰量と濃度
との関係を実験等により予め把握しておけば、比Rを知
ることにより濃度を知ることができることとなる。
By the way, as described in the prior art, since the attenuation amount α is a function of the concentration of sludge, etc., the ratio R can be determined by understanding the relationship between the attenuation amount and the concentration in advance through experiments or the like. This makes it possible to know the concentration.

【0018】[0018]

【実施例】以下、本発明装置の実施例を図面を参照して
説明する。図1は実施例の構成を示す図である。1は送
受信器で、手段構成にいう送信器と受信器を併せた構成
となっている。送受波器2は送受信器1からの超音波周
波信号を超音波に変換して反射体Aおよび同Bへ向けて
送波するとともに、反射体Aおよび同Bから反射されて
返って来た超音波を電気信号に変換して送受信器1へ送
る。
Embodiments Hereinafter, embodiments of the apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the configuration of an embodiment. Reference numeral 1 denotes a transmitter/receiver, which has a configuration that combines a transmitter and a receiver referred to in the means configuration. The transducer 2 converts the ultrasonic frequency signal from the transceiver 1 into ultrasonic waves and transmits the waves to the reflectors A and B, and also transmits the ultrasonic waves reflected from the reflectors A and B. The sound waves are converted into electrical signals and sent to the transceiver 1.

【0019】この関係を示すと図2のようになる。図2
の(a)の左端の波形は送信波であり、この信号を送波
したのち、超音波の伝搬速度と距離lA によって定ま
る時間を経過した後、反射体Aからの反射波が受波され
る。同様に超音波の伝搬速度と距離lB によって定ま
る時間を経過した後、反射体Bからの反射波が受波され
る。
FIG. 2 shows this relationship. Figure 2
The waveform at the left end of (a) is the transmitted wave, and after this signal is transmitted, the reflected wave from reflector A is received after a time determined by the propagation speed of the ultrasonic wave and the distance lA has elapsed. . Similarly, after a period of time determined by the propagation speed of the ultrasonic wave and the distance IB has elapsed, the reflected wave from the reflector B is received.

【0020】受波された超音波による電気信号を送受信
器1で増幅検波した後の波形が図2の(b)である。反
射体Aからの反射による信号はEA として現れ、反射
体Bからの反射による信号はEB として現れる。送受
信器1ではこのEA とEB との比を算出して、これ
より数式3から汚泥等の単位距離当りの減衰量αを求め
、この減衰量αからこれに対応する濃度を引き出して濃
度指示信号として出力する。
FIG. 2(b) shows the waveform after amplification and detection of the received ultrasonic electrical signal by the transmitter/receiver 1. The signal reflected from reflector A appears as EA, and the signal reflected from reflector B appears as EB. The transmitter/receiver 1 calculates the ratio between EA and EB, calculates the attenuation amount α per unit distance of sludge, etc. from Equation 3, extracts the corresponding concentration from this attenuation amount α, and generates a concentration indication signal. Output as .

【0021】[0021]

【発明の効果】以上説明したように、本発明の濃度測定
装置は、送受波器に対して同じ方向で距離を異にする複
数の反射体から反射されて来る超音波を受波し、増幅検
波した出力の比を算出することにより汚泥等の単位距離
当りの減衰量を求め、この減衰量に対応する濃度を指示
させるようにしたので送信出力や送受波器の変換効率や
受信増幅度の経時変化、経年変化等の変動に影響される
ことなく正確な濃度を測定することができるという利点
がある。
As explained above, the concentration measuring device of the present invention receives and amplifies ultrasonic waves reflected from a plurality of reflectors at different distances in the same direction with respect to the transducer. By calculating the ratio of the detected outputs, the amount of attenuation per unit distance of sludge, etc. is determined, and the concentration corresponding to this amount of attenuation is indicated, so the transmission output, the conversion efficiency of the transducer, and the reception amplification This method has the advantage of being able to accurately measure concentration without being affected by changes over time or changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例装置の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention.

【図2】本発明装置における送信波・受信波および送受
信器で増幅検波された後の波形を示す図である。
FIG. 2 is a diagram showing a transmitted wave, a received wave, and a waveform after being amplified and detected by a transceiver in the device of the present invention.

【図3】超音波を用いた従来の濃度測定装置の構成を示
すブロック図である。
FIG. 3 is a block diagram showing the configuration of a conventional concentration measuring device using ultrasonic waves.

【符号の説明】[Explanation of symbols]

1  送受信器 2  送受波器 3  汚泥等 4  送信器 5  受信器 6  送波器 7  受波器 A  反射体 B  反射体 1 Transmitter/receiver 2 Transducer/receiver 3. Sludge, etc. 4 Transmitter 5 Receiver 6 Transmitter 7 Receiver A Reflector B Reflector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  パルス状の超音波周波信号を出力する
送信器と;  時間差をもって入力する信号間の強度の
比を算出し得る受信器と;  送信器からの超音波周波
信号を超音波に変換して送波するとともに、受波された
超音波を超音波周波電気信号に変換し受信器へ送る送受
波器と;  該送受波器に対して同じ方向で音波伝搬距
離の異なる位置に設置される複数の反射体と;  から
構成されることを特徴とする超音波濃度測定装置。
Claim 1: A transmitter that outputs a pulsed ultrasonic frequency signal; A receiver that can calculate the intensity ratio between input signals with a time difference; Converts the ultrasonic frequency signal from the transmitter into an ultrasonic wave. a transducer/receiver that converts the received ultrasonic wave into an ultrasonic frequency electrical signal and sends it to a receiver; An ultrasonic concentration measuring device comprising: a plurality of reflectors; and a plurality of reflectors.
JP3111200A 1991-04-16 1991-04-16 Ultrasonic concentration measuring instrument Pending JPH04318455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111200A JPH04318455A (en) 1991-04-16 1991-04-16 Ultrasonic concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111200A JPH04318455A (en) 1991-04-16 1991-04-16 Ultrasonic concentration measuring instrument

Publications (1)

Publication Number Publication Date
JPH04318455A true JPH04318455A (en) 1992-11-10

Family

ID=14555043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111200A Pending JPH04318455A (en) 1991-04-16 1991-04-16 Ultrasonic concentration measuring instrument

Country Status (1)

Country Link
JP (1) JPH04318455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539111A (en) * 2006-06-01 2009-11-12 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Apparatus and method for monitoring marking fluid
CN101858771A (en) * 2010-05-18 2010-10-13 周雷 Method and device for detecting mixing layers
CN108693091A (en) * 2018-06-29 2018-10-23 无锡厚发自动化设备有限公司 A kind of sludge concentration monitoring system based on cloud platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034289A (en) * 1973-07-26 1975-04-02
JPS5194295A (en) * 1975-02-17 1976-08-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034289A (en) * 1973-07-26 1975-04-02
JPS5194295A (en) * 1975-02-17 1976-08-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539111A (en) * 2006-06-01 2009-11-12 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Apparatus and method for monitoring marking fluid
EP2021877B1 (en) * 2006-06-01 2019-03-20 Hewlett-Packard Development Company, Jl.P. Apparatus and method for monitoring marking liquid
CN101858771A (en) * 2010-05-18 2010-10-13 周雷 Method and device for detecting mixing layers
CN108693091A (en) * 2018-06-29 2018-10-23 无锡厚发自动化设备有限公司 A kind of sludge concentration monitoring system based on cloud platform

Similar Documents

Publication Publication Date Title
US11391863B2 (en) Method of free-field broadband calibration of hydrophone sensitivity based on pink noise
US5143072A (en) Apparatus for determining the mechanical properties of a solid
CA2677516A1 (en) Apparatus for determining transverse velocity or temperature of a fluid in a pipe
JPS6238355A (en) Method and device for measuring fluid characteristic by using capacity search signal of surface generation
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
RU2186399C2 (en) Ultrasonic device measuring flow velocity
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JPH04318455A (en) Ultrasonic concentration measuring instrument
JPH1048009A (en) Ultrasound temperature current meter
JPH039405B2 (en)
JP3169534B2 (en) Inundation detection method
JP2007309794A (en) Apparatus and method for measuring plate thickness
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JPS6367151B2 (en)
JPS6246812B2 (en)
Sawada et al. Precision calibration of echo sounder by integration of standard sphere echoes
JPS6316685B2 (en)
RU2106602C1 (en) Ultrasound flowmeter
JPH05172793A (en) Sound characteristic value measuring device
RU2138786C1 (en) Method of measuring of liquid media level in reservoirs
KR100317954B1 (en) Ultrasonic Flow Measurement Method Using Variable Delay
JP2001330485A (en) Ultrasonic flowmeter
JPH04194663A (en) Ultrasonic type flow rate and concentration measuring apparatus
JPH0361892B2 (en)
SU1064171A1 (en) Meter of liquid pressure in pipe