JP3622613B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP3622613B2
JP3622613B2 JP36985299A JP36985299A JP3622613B2 JP 3622613 B2 JP3622613 B2 JP 3622613B2 JP 36985299 A JP36985299 A JP 36985299A JP 36985299 A JP36985299 A JP 36985299A JP 3622613 B2 JP3622613 B2 JP 3622613B2
Authority
JP
Japan
Prior art keywords
propagation time
measurement
flow direction
ultrasonic
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36985299A
Other languages
Japanese (ja)
Other versions
JP2001183195A5 (en
JP2001183195A (en
Inventor
裕史 藤井
裕治 中林
浩一 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP36985299A priority Critical patent/JP3622613B2/en
Publication of JP2001183195A publication Critical patent/JP2001183195A/en
Publication of JP2001183195A5 publication Critical patent/JP2001183195A5/ja
Application granted granted Critical
Publication of JP3622613B2 publication Critical patent/JP3622613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関するものである。
【0002】
【従来の技術】
従来の超音波流量計は、図5に示すようなものが一般的であった。この装置は流体の流れる測定流路1に設置した超音波振動子2と、超音波振動子2を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、超音波の伝搬時間を測定する伝搬時間測定部5と、伝搬時間測定部5から測定データを受け取る演算部6と、超音波振動子2から送信した超音波を受ける超音波振動子7と、超音波振動子7の出力を増幅するアンプ8と、アンプ8の出力と基準電圧とを比較し大小関係が反転したときに伝搬時間測定部5を停止させる受信検知回路9とを有していた。
【0003】
そして、上記超音波流量計は、制御部4からスタート信号を受けた駆動回路3が超音波振動子2を一定時間パルス駆動を行うと同時に伝搬時間測定部5は制御部4からの信号によって時間を計測し始める。パルス駆動された超音波振動子2からは超音波が送信される。超音波振動子2から送信した超音波は被測定流体中を伝搬し超音波振動子7で受信される。超音波振動子7の受信出力は、アンプ8において制御部4が設定した増幅率によって増幅される。そしてアンプ8の出力を受けた受信検知回路9で超音波の受信を判定し伝搬時間測定部5を停止させる。そして制御部4では伝搬時間測定部5から得た時間情報tから(式1)によって流速を求める(但し、伝搬時間測定部5から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速c、被測定流体の流速をvとする)。
【0004】
v=(L/t)−c …(式1)
受信信号は、緩やかに立ち上がる波形となっており、超音波振動子の温度特性や、流速によって受信信号のレベルは変化する。前記基準電圧と受信信号のレベルの関係が適正でないと受信検知回路9の動作は安定せず測定精度が悪くなる。
【0005】
また、他の測定方法として受信検知回路9の判定結果を伝搬時間測定部5ではなく、帰還回路によって駆動回路3に返し、再度送信を行う場合もあった。このような繰り返し動作を予め設定した回数行いその時間を測定し、その測定時間を基に(式2)の計算によって流速を求める方法もあった(但し、繰り返し回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする)。
【0006】
v=L/(ts/n)−c …(式2)
この方法によれば(式1)の方法に比べn倍分解度を高くして測定することができる。
【0007】
また、超音波振動子2と超音波振動子7とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める方法もある(但し、上流から下流への伝搬時間をt1、下流から上流の伝搬時間をt2とする)。
【0008】
v=L/2((1/t1)−(1/t2)) …(式3)
この方法によれば音速の変化の影響を受けずに流速を測定することが出来るので、流速、流量、距離などの測定に広く利用されている。
【0009】
【発明が解決しようとする課題】
しかしながら従来の超音波流量計では、流量変動による波形や振幅の変化、あるいはノイズなどの影響によって、受信検知しているタイミングがずれ、正確な流量計測ができない場合や、測定流量が多くなり、超音波の伝搬経路に渦などの乱れが発生し、受信信号が短い時間で大きく変動し、受信タイミングがずれ、誤測定してしまう場合があったが、誤測定と判定することができなかった。
【0010】
本発明は上記のような誤測定と正常測定を判別し、誤測定による測定精度の低下を防止することを課題とするものである。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決するため、被測定流体の流速を測定するために求めた超音波の伝搬時間と正常測定時の伝搬時間を比較し、流量測定が正常に行えたかどうかを判定する誤測定判定手段を設けることによって、誤測定による測定精度の低下を防止できる。
【0012】
【発明の実施の形態】
本発明の第1の手段による超音波流量計は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす流体の流量を求める演算部と、流量測定時の流れ方向への伝搬時間と逆流方向への伝搬時間と、正常に測定できた場合の流れ方向への伝搬時間と逆流方向への伝搬時間を記憶し、測定が正常に終了するたびに前記伝搬時間を更新する伝搬時間記憶手段と、流量測定時の流れ方向の伝搬時間と前記伝搬時間記憶手段に記憶された流れ方向の伝搬時間との変化量の絶対値と、流量測定時の逆流方向の伝搬時間と前記伝搬時間記憶手段に記憶された逆流方向の伝搬時間との変化量の絶対値を比較し、当該変化量間に所定の大きさ以上の差があった場合に誤計測と判定する誤測定判定手段を備えることによって、不規則な流量変動や電気的ノイズによる誤測定で測定精度が低下することを防止できる。また、伝搬時間の変動より不規則な流量変動や電気的ノイズによる誤測定が判別できるようになる。
【0013】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0014】
(実施例1)
図1は本発明の第1の手段による超音波流量計を示す構成図である。基本的な構成は従来例の説明と同じで、本実施例と従来例との差異は超音波振動子2、7として送受信可能なものを採用し、切り替えスイッチ10を備えることによって流れ方向と逆流方向の伝搬時間を計測できるようにしたことと、誤測定判定手段11を備えたことである。誤計測判定手段の動作について図2に基づいて説明する。まず伝搬時間測定部5で計測された流れ方向と逆流方向の伝搬時間t1、t2の平均値hを求め、あらかじめ設定された正常計測時の伝搬時間T1、T2の平均値Hとの差を求める。伝搬時間は流れの大きさによって変化するが、流速方向と逆流方向の平均値は流れの大きさに関係無く一定となる。よって前記平均値が著しく変化するということは計測系になんらかの異常があったと考えられることから、前記平均値の差が所定の値Aより大きい場合は誤計測と判断できる。ここで、Aは伝搬時間測定時の環境変化による変動を考慮した値となっている。
【0015】
(実施例2)
図3は本発明の第2の手段による超音波流量計を示す構成図である。基本的な構成は本発明の実施例1の説明と同じで、本実施例と実施例1との差異は伝搬時間記憶手段12を備えたことである。伝搬時間記憶手段12では計測が正常に終了する度に誤測定判定手段11で判定に用いる正常時の伝搬時間を更新するため、周囲の環境変化等によって伝搬時間が変化することを考慮して設定している所定の値Aを実施例1より小さくできるため、より精度よく誤測定の判定ができる。
【0016】
(実施例3)
図4は本発明の第3の手段による超音波流量計の誤測定判定手段11を示したものである。本実施例と実施例1との差異は誤測定の判定に伝搬時間の平均値を利用せずに流れ方向と逆流方向それぞれの変動値を利用することにしたことである。流量が変化した場合、流れ方向と逆流方向の伝搬時間の変化量ts1、ts2は符号が反対となるがほぼ同じ大きさになり、また、計測流体の温度が変化した場合は流れ方向と逆流方向の伝搬時間の変化量ts1、ts2は同じとなることより、流れ方向と逆流方向の伝搬時間の変化量の絶対値の差が所定の大きさA以上だと誤測定だとみなすことができる。
【0017】
以上のように本発明の各実施例によれば、次のような効果を奏する。
【0018】
従来の超音波流量計に比べて、不規則な流量変動や電気的ノイズによって流量計測が正常に終了できていないことが判定できるため、誤計測によって測定精度が低下することを防止できる。
【0019】
さらに、正常時の伝搬時間を更新することによって環境変化による伝搬時間の変動を考慮して判定基準となる所定の大きさAを大きく設定する必要がないため、より誤測定の判定精度を向上できる。
【0020】
さらにまた、超音波流量計の周囲温度が変化することによって音速自体が変化した場合も誤って誤測定と判定してしまうことがなく、測定精度の低下をさらに防止することができる。
【0021】
【発明の効果】
以上のように本発明の第1の手段による超音波流量計によれば、従来の超音波流量計に比べて、不規則な流量変動や電気的ノイズによって流量計測が正常に終了できていないことが判定できるため、誤計測によって測定精度が低下することを防止できる。また、超音波流量計の周囲温度が変化することによって音速自体が変化した場合も誤って誤測定と判定してしまうことがなく、測定精度の低下をさらに防止することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における超音波流量計の構成図
【図2】同流量の計誤測定判定手順を示す図
【図3】本発明の実施例2における超音波流量計の構成図
【図4】本発明の実施例3における超音波流量計の誤測定判定手順を示す図
【図5】従来の超音波流量計の構成図
【符号の説明】
1 測定流路
2 超音波振動子
3 駆動回路
4 制御部
5 伝搬時間測定部
6 演算部
7 超音波振動子
8 アンプ
9 受信検知回路
10 切り替えスイッチ
11 誤測定判定手段
12 伝搬時間記憶手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flowmeter.
[0002]
[Prior art]
Conventional ultrasonic flowmeters are generally as shown in FIG. This apparatus includes an ultrasonic transducer 2 installed in a measurement flow path 1 through which a fluid flows, a drive circuit 3 that drives the ultrasonic transducer 2, a control unit 4 that outputs a start signal to the drive circuit 3, an ultrasonic wave A propagation time measuring unit 5 that measures the propagation time, a calculation unit 6 that receives measurement data from the propagation time measuring unit 5, an ultrasonic transducer 7 that receives ultrasonic waves transmitted from the ultrasonic transducer 2, and an ultrasonic transducer 7 and the reception detection circuit 9 that compares the output of the amplifier 8 with the reference voltage and stops the propagation time measurement unit 5 when the magnitude relationship is inverted.
[0003]
In the ultrasonic flowmeter, the drive circuit 3 that has received the start signal from the control unit 4 performs pulse driving of the ultrasonic transducer 2 for a certain period of time, and at the same time, the propagation time measurement unit 5 receives time from the signal from the control unit 4. Start measuring. Ultrasound is transmitted from the pulse-driven ultrasonic transducer 2. The ultrasonic wave transmitted from the ultrasonic transducer 2 propagates through the fluid to be measured and is received by the ultrasonic transducer 7. The reception output of the ultrasonic transducer 7 is amplified by the amplification factor set by the control unit 4 in the amplifier 8. Then, the reception detection circuit 9 receiving the output of the amplifier 8 determines reception of the ultrasonic wave and stops the propagation time measuring unit 5. Then, the control unit 4 obtains the flow velocity from the time information t obtained from the propagation time measuring unit 5 by (Equation 1) (however, the measurement time obtained from the propagation time measuring unit 5 is t and the flow direction between the ultrasonic transducers is determined. The effective distance is L, the speed of sound c, and the flow velocity of the fluid to be measured is v).
[0004]
v = (L / t) -c (Formula 1)
The received signal has a waveform that rises gently, and the level of the received signal changes depending on the temperature characteristics of the ultrasonic transducer and the flow velocity. If the relationship between the reference voltage and the level of the received signal is not appropriate, the operation of the reception detection circuit 9 is not stable and the measurement accuracy is deteriorated.
[0005]
As another measurement method, the determination result of the reception detection circuit 9 may be returned to the drive circuit 3 by the feedback circuit instead of the propagation time measurement unit 5 and transmitted again. There was also a method of performing such a repetitive operation a predetermined number of times, measuring the time, and obtaining the flow velocity by calculation of (Equation 2) based on the measurement time (provided that the number of repetitions is n, the measurement time is ts, The effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v).
[0006]
v = L / (ts / n) -c (Formula 2)
According to this method, it is possible to measure with a higher n-fold resolution than the method of (Equation 1).
[0007]
There is also a method of switching the ultrasonic transducer 2 and the ultrasonic transducer 7 and measuring the respective propagation times from upstream to downstream and downstream to upstream of the fluid to be measured, and obtaining the velocity v from (Equation 3). (However, the propagation time from upstream to downstream is t1, and the propagation time from downstream to upstream is t2.)
[0008]
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow velocity can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like.
[0009]
[Problems to be solved by the invention]
However, with conventional ultrasonic flowmeters, the timing of reception detection is shifted due to changes in waveform and amplitude due to flow fluctuations, noise, etc., and accurate flow measurement cannot be performed or the measured flow volume increases, Disturbances such as vortices occur in the propagation path of the sound wave, the received signal fluctuates greatly in a short time, the reception timing is shifted, and erroneous measurement may occur, but it cannot be determined as erroneous measurement.
[0010]
An object of the present invention is to discriminate between the above-described erroneous measurement and normal measurement, and to prevent a decrease in measurement accuracy due to the erroneous measurement.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention compares the propagation time of the ultrasonic wave obtained for measuring the flow velocity of the fluid to be measured with the propagation time during normal measurement, and determines whether or not the flow measurement has been performed normally. By providing the measurement determination means, it is possible to prevent a decrease in measurement accuracy due to erroneous measurement.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The ultrasonic flowmeter according to the first means of the present invention includes a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and an ultrasonic signal transmitted from one of the ultrasonic transducers and propagating a fluid. A propagation time measurement unit that measures the propagation time of the ultrasonic wave until the ultrasonic transducer receives, a calculation unit that obtains the flow rate of the fluid that fills between the ultrasonic transducers by calculation from the propagation time, and a flow during flow measurement The propagation time in the direction and the propagation time in the reverse flow direction, and the propagation time in the flow direction and the propagation time in the reverse flow direction when it can be measured normally are stored, and the propagation time is stored each time the measurement is normally completed. The propagation time storage means to be updated, the absolute value of the change in the flow direction propagation time during flow rate measurement and the flow direction propagation time stored in the propagation time storage means, and the reverse flow direction propagation time during flow measurement And recorded in the propagation time storage means By comparing the absolute value of the propagation time and the amount of change in the reverse flow direction, by providing an erroneous measurement determining means for determining an erroneous measurement when there is a difference greater than a predetermined magnitude between the amount of change, not It is possible to prevent measurement accuracy from deteriorating due to erroneous measurement due to regular flow fluctuations or electrical noise. In addition, it becomes possible to discriminate erroneous measurement due to irregular flow rate fluctuations and electrical noise rather than fluctuations in propagation time.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
Example 1
FIG. 1 is a block diagram showing an ultrasonic flowmeter according to the first means of the present invention. The basic configuration is the same as in the description of the conventional example. The difference between the present example and the conventional example is that the ultrasonic transducers 2 and 7 can transmit and receive, and the changeover switch 10 is provided so that the flow direction and the reverse flow are reversed. That is, the propagation time in the direction can be measured and the erroneous measurement determination means 11 is provided. The operation of the erroneous measurement determination unit will be described with reference to FIG. First, the average value h of the propagation times t1 and t2 in the flow direction and the reverse flow direction measured by the propagation time measurement unit 5 is obtained, and the difference between the preset average value H of the propagation times T1 and T2 during normal measurement is obtained. . Although the propagation time varies depending on the flow size, the average value in the flow velocity direction and the reverse flow direction is constant regardless of the flow size. Therefore, if the average value changes significantly, it is considered that there is some abnormality in the measurement system. Therefore, if the difference between the average values is larger than the predetermined value A, it can be determined that the measurement is incorrect. Here, A is a value that takes into account fluctuations due to environmental changes during propagation time measurement.
[0015]
(Example 2)
FIG. 3 is a block diagram showing an ultrasonic flowmeter according to the second means of the present invention. The basic configuration is the same as that of the first embodiment of the present invention, and the difference between the present embodiment and the first embodiment is that a propagation time storage means 12 is provided. The propagation time storage means 12 is set in consideration of changes in the propagation time due to changes in the surrounding environment, etc., because the normal propagation time used for judgment by the erroneous measurement judgment means 11 is updated every time measurement ends normally. Since the predetermined value A can be made smaller than that of the first embodiment, erroneous measurement can be determined with higher accuracy.
[0016]
(Example 3)
FIG. 4 shows the erroneous measurement determination means 11 of the ultrasonic flowmeter according to the third means of the present invention. The difference between the present embodiment and the first embodiment is that the fluctuation values in the flow direction and the reverse flow direction are used for determination of erroneous measurement without using the average value of the propagation time. When the flow rate changes, the propagation time changes ts1 and ts2 in the flow direction and the reverse flow direction have the same sign but opposite in magnitude, and when the temperature of the measurement fluid changes, the flow direction and the reverse flow direction Since the propagation time changes ts1 and ts2 are the same, if the difference between the absolute values of the propagation time changes in the flow direction and the reverse flow direction is greater than or equal to the predetermined magnitude A, it can be regarded as an erroneous measurement.
[0017]
As described above, according to each embodiment of the present invention, the following effects can be obtained.
[0018]
Compared to conventional ultrasonic flowmeters, it can be determined that flow measurement has not been completed normally due to irregular flow fluctuations or electrical noise, so that it is possible to prevent measurement accuracy from being lowered due to erroneous measurement.
[0019]
In addition, by updating the normal propagation time, it is not necessary to set a large predetermined size A as a determination reference in consideration of fluctuations in the propagation time due to environmental changes, so the determination accuracy of erroneous measurement can be further improved. .
[0020]
Furthermore, even if the sound speed itself changes due to a change in the ambient temperature of the ultrasonic flowmeter, it is not erroneously determined as an erroneous measurement, and a decrease in measurement accuracy can be further prevented.
[0021]
【The invention's effect】
As described above, according to the ultrasonic flowmeter according to the first means of the present invention, the flow measurement cannot be normally terminated due to irregular flow fluctuations or electrical noise as compared with the conventional ultrasonic flowmeter. Therefore, it is possible to prevent the measurement accuracy from being lowered due to erroneous measurement. Further, even when the sound speed itself changes due to the change in the ambient temperature of the ultrasonic flowmeter, it is not erroneously determined to be an erroneous measurement, and it is possible to further prevent a decrease in measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an ultrasonic flowmeter in Embodiment 1 of the present invention. FIG. 2 is a diagram showing a procedure for determining erroneous measurement of the same flow. FIG. 3 is a configuration of an ultrasonic flowmeter in Embodiment 2 of the present invention. FIG. 4 is a diagram showing an erroneous measurement determination procedure of an ultrasonic flow meter in Embodiment 3 of the present invention. FIG. 5 is a configuration diagram of a conventional ultrasonic flow meter.
DESCRIPTION OF SYMBOLS 1 Measurement flow path 2 Ultrasonic vibrator 3 Drive circuit 4 Control part 5 Propagation time measurement part 6 Calculation part 7 Ultrasonic vibrator 8 Amplifier 9 Reception detection circuit 10 Changeover switch 11 Incorrect measurement determination means 12 Propagation time memory means

Claims (1)

超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす流体の流量を求める演算部と、流量測定時の流れ方向への伝搬時間と逆流方向への伝搬時間と、正常に測定できた場合の流れ方向への伝搬時間と逆流方向への伝搬時間を記憶し、測定が正常に終了するたびに前記伝搬時間を更新する伝搬時間記憶手段と、流量測定時の流れ方向の伝搬時間と前記伝搬時間記憶手段に記憶された流れ方向の伝搬時間との変化量の絶対値と、流量測定時の逆流方向の伝搬時間と前記伝搬時間記憶手段に記憶された逆流方向の伝搬時間との変化量の絶対値を比較し、当該変化量間に所定の大きさ以上の差があった場合に誤計測と判定する誤測定判定手段を備えた超音波流量計。A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and an ultrasonic propagation time until the other ultrasonic transducer receives an ultrasonic signal transmitted from one ultrasonic transducer and propagating through a fluid. A propagation time measurement unit for measuring, a calculation unit for obtaining a flow rate of the fluid that fills between the ultrasonic transducers by calculation from the propagation time, a propagation time in the flow direction and a propagation time in the reverse flow direction during flow measurement , Propagation time storage means for storing the propagation time in the flow direction and the propagation time in the reverse flow direction when the measurement can be normally performed, and updating the propagation time every time measurement is normally completed, and the flow direction during flow measurement The absolute value of the amount of change between the propagation time in the flow direction and the propagation time in the flow direction stored in the propagation time storage means, the propagation time in the reverse flow direction during flow rate measurement, and the propagation in the reverse flow direction stored in the propagation time storage means Absolute amount of change with time Comparing the values, ultrasonic flowmeter having the erroneous measurement determining means for determining an erroneous measurement when there is a difference greater than a predetermined magnitude between the amount of change.
JP36985299A 1999-12-27 1999-12-27 Ultrasonic flow meter Expired - Lifetime JP3622613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36985299A JP3622613B2 (en) 1999-12-27 1999-12-27 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36985299A JP3622613B2 (en) 1999-12-27 1999-12-27 Ultrasonic flow meter

Publications (3)

Publication Number Publication Date
JP2001183195A JP2001183195A (en) 2001-07-06
JP2001183195A5 JP2001183195A5 (en) 2005-02-17
JP3622613B2 true JP3622613B2 (en) 2005-02-23

Family

ID=18495480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36985299A Expired - Lifetime JP3622613B2 (en) 1999-12-27 1999-12-27 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3622613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049658A1 (en) * 2017-09-08 2019-03-14 パナソニックIpマネジメント株式会社 Flow rate measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141613B2 (en) * 2009-03-25 2013-02-13 パナソニック株式会社 Ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049658A1 (en) * 2017-09-08 2019-03-14 パナソニックIpマネジメント株式会社 Flow rate measuring device

Also Published As

Publication number Publication date
JP2001183195A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US5835884A (en) Method of determining a characteristic of a fluid
US7073395B2 (en) Ultrasonic flowmeter and ultrasonic flow rate measuring method
JP2006308449A (en) Apparatus for measuring flow of fluid
JP2007187506A (en) Ultrasonic flowmeter
JP4792653B2 (en) Flowmeter
JP4561088B2 (en) Ultrasonic flow meter
JP3622613B2 (en) Ultrasonic flow meter
WO2014006881A1 (en) Flow quantity measuring apparatus
JP3624642B2 (en) Fluid measuring device
JP5141613B2 (en) Ultrasonic flow meter
JP3624743B2 (en) Ultrasonic flow meter
JP2001183195A5 (en)
JPH11304559A (en) Flow rate measuring apparatus
JP4075526B2 (en) Ultrasonic flow meter
JP2000329597A5 (en)
JP2003329502A (en) Ultrasonic wave flowmeter and method of self-diagnosing the same
JP2005300244A (en) Ultrasonic flow meter
JP2007064988A (en) Flowmeter
JP7320776B2 (en) ultrasonic flow meter
JPH0117090B2 (en)
JP2007064988A5 (en)
JPS61100616A (en) Apparatus for measuring flow amount
JP3651110B2 (en) Ultrasonic current meter
JP4140095B2 (en) Ultrasonic current meter
RU2195635C1 (en) Method of measurement of level of liquid and loose media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R151 Written notification of patent or utility model registration

Ref document number: 3622613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

EXPY Cancellation because of completion of term