JP2003215112A - Ultrasonic wave density meter - Google Patents

Ultrasonic wave density meter

Info

Publication number
JP2003215112A
JP2003215112A JP2002014262A JP2002014262A JP2003215112A JP 2003215112 A JP2003215112 A JP 2003215112A JP 2002014262 A JP2002014262 A JP 2002014262A JP 2002014262 A JP2002014262 A JP 2002014262A JP 2003215112 A JP2003215112 A JP 2003215112A
Authority
JP
Japan
Prior art keywords
ultrasonic wave
ultrasonic
sludge
density
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002014262A
Other languages
Japanese (ja)
Inventor
Osamu Kashimura
修 鹿志村
Yasuyuki Masunaga
靖行 増永
Akira Morita
晃 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002014262A priority Critical patent/JP2003215112A/en
Publication of JP2003215112A publication Critical patent/JP2003215112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the density and concentration of sludge without disturbing an interface between a liquid and the sludge. <P>SOLUTION: Since an ultrasonic wave transmission reception sensor 1 is fixed and installed at a prescribed position in supernatant water 2, so that the interface is not disturbed. The measurement principle uses that the ultrasonic wave pulse transmitted from a sensor 1 is reflected at the interface 4 between the supernatant water 2 and the sludge 3 and the amount of the diffusion and the amount of attenuation of the ultrasonic wave pulse until being received by a reception means 6 are proportional to the density. The depth to the interface is acquired from the propagation time of the ultrasonic wave pulse by an operating means 9. The density is acquired from the depth, a reception amplitude value measured by a measurement means 7 and the standard value of the reception amplitude value stored in a storage means 14 beforehand by an operating means 12. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を用いて
液体と汚泥との界面における汚泥の密度(以下、単に汚
泥密度という)を測定する超音波密度計、および密度と
濃度の双方の測定が可能な超音波密度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic densitometer for measuring the density of sludge (hereinafter simply referred to as sludge density) at the interface between a liquid and sludge using ultrasonic waves, and measurement of both density and concentration. And an ultrasonic densitometer capable of

【0002】[0002]

【従来の技術】超音波濃度計の従来例を図5(a)に示
す。図示のように、超音波濃度計は、超音波送信部1a
と超音波受信部1bとを一定距離だけ離隔して対向さ
せ、超音波送信部1aと超音波受信部1bとの間の汚泥
による超音波の減衰が、汚泥濃度と一定の比例関係にあ
ることを利用して汚泥濃度を算出するものである。
2. Description of the Related Art A conventional example of an ultrasonic densitometer is shown in FIG. As shown in the figure, the ultrasonic densitometer includes an ultrasonic wave transmitter 1a.
And the ultrasonic wave receiving unit 1b are opposed to each other with a constant distance therebetween, and the attenuation of the ultrasonic wave by the sludge between the ultrasonic wave transmitting unit 1a and the ultrasonic wave receiving unit 1b has a constant proportional relationship with the sludge concentration. Is used to calculate the sludge concentration.

【0003】光学式濃度計の従来例を図5(b)に示
す。図示のように、光学式濃度計は、ガラス管の側面に
発光素子22aと受光素子22bとを対向して設置し、
透過と散乱による受光の減衰量が汚泥濃度と一定の比例
関係にあることを利用して汚泥濃度を算出するものであ
る。
A conventional example of an optical densitometer is shown in FIG. As shown in the figure, the optical densitometer is provided with the light emitting element 22a and the light receiving element 22b facing each other on the side surface of the glass tube,
The sludge concentration is calculated by utilizing the fact that the attenuation amount of received light due to transmission and scattering has a constant proportional relationship with the sludge concentration.

【0004】[0004]

【発明が解決しようとする課題】図5(a)に示す超音
波濃度計は、超音波送受信センサ1を人または上下駆動
機構により上下動させて位置を検出していることから、
液体中を浮遊する浮遊物が沈降して形成された汚泥界面
をかき乱すという問題がある。また、図5(b)に示す
光学式濃度計も光学式センサを上下動させて位置を検出
していることから、同様の問題が生じる。
The ultrasonic densitometer shown in FIG. 5 (a) detects the position by moving the ultrasonic transmission / reception sensor 1 up and down by a person or a vertical drive mechanism.
There is a problem that the suspended matter floating in the liquid settles and disturbs the sludge interface formed. Further, since the optical densitometer shown in FIG. 5B also moves the optical sensor up and down to detect the position, the same problem occurs.

【0005】したがって、この発明の課題は、汚泥界面
をかき乱すおそれを無くし、正確な測定を可能にするこ
とにある。
Therefore, an object of the present invention is to eliminate the possibility of disturbing the sludge interface and to enable accurate measurement.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、液体中の所定位置に固定
して設置され超音波パルスを液体中の汚泥に向けて送信
しその反射パルスを受信する少なくとも1つの超音波送
受信装置と、前記反射パルスの振幅値を測定する振幅値
測定手段と、前記超音波パルスの送信開始から受信され
るまでの液体中の伝搬時間を測定する伝搬時間測定手段
と、その伝搬時間から汚泥界面までの深さを演算する深
さ演算手段と、その汚泥界面の深さと受信振幅値と受信
振幅値の校正値とから汚泥密度を算出する密度演算手段
とを有することを特徴とする。
In order to solve such a problem, in the invention of claim 1, an ultrasonic pulse is fixedly installed at a predetermined position in the liquid and an ultrasonic pulse is transmitted toward sludge in the liquid. At least one ultrasonic transmission / reception device that receives a reflected pulse, an amplitude value measuring unit that measures an amplitude value of the reflected pulse, and a propagation time in a liquid from the start of transmission of the ultrasonic pulse to the reception thereof. Propagation time measurement means, depth calculation means for calculating the depth from the propagation time to the sludge interface, density calculation for calculating sludge density from the depth of the sludge interface, reception amplitude value and calibration value of reception amplitude value And means.

【0007】請求項1の発明においては、前記受信振幅
値の校正値を記憶する校正値記憶手段を設けることがで
き(請求項2の発明)、この請求項2の発明において
は、前記超音波送受信装置から送信される超音波パルス
を一定の距離で受信する超音波受信手段と、この超音波
受信手段からの出力にもとづき校正値を演算する校正値
演算手段とを設け、演算された校正値を前記校正値記憶
手段に記憶することができる(請求項3の発明)。
In the invention of claim 1, calibration value storage means for storing the calibration value of the received amplitude value can be provided (invention of claim 2), and in the invention of claim 2, the ultrasonic wave is used. An ultrasonic wave receiving means for receiving an ultrasonic wave pulse transmitted from a transmitting / receiving device at a constant distance, and a calibration value calculating means for calculating a calibration value based on the output from this ultrasonic wave receiving means are provided, and the calculated calibration value Can be stored in the calibration value storage means (the invention of claim 3).

【0008】請求項3の発明においては、前記超音波受
信手段を超音波パルスの進行方向に移動させる移動機構
を設けることができ(請求項4の発明)、請求項3また
は4の発明においては、前記超音波受信手段は反射板で
あることができる(請求項5の発明)。
In the invention of claim 3, a moving mechanism for moving the ultrasonic wave receiving means in the traveling direction of the ultrasonic pulse can be provided (invention of claim 4), and in the invention of claim 3 or 4, The ultrasonic wave receiving means may be a reflector (the invention of claim 5).

【0009】請求項1ないし5の発明においては、前記
密度演算手段からの出力に基づき、一定量の水に対する
汚泥重量から汚泥濃度を演算する濃度演算手段を設ける
ことができる(請求項6の発明)。
According to the first to fifth aspects of the invention, concentration calculating means for calculating the sludge concentration from the sludge weight for a certain amount of water can be provided based on the output from the density calculating means (the invention of the sixth aspect). ).

【0010】[0010]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。
1 is a block diagram showing a first embodiment of the present invention.

【0011】図示のように、この発明による超音波濃度
計は、大きくは超音波送受信センサ1,変換器5および
表示装置10から構成されている。なお、変換器5には
送信受信手段6、振幅値測定手段7、伝搬時間測定手段
8、深さ演算手段9、密度演算手段12、濃度演算手段
13および校正値記憶手段14等が設けられている。ま
た、符号2は上澄水、3は汚泥、11は沈殿池を示す。
As shown in the figure, the ultrasonic densitometer according to the present invention mainly comprises an ultrasonic wave transmitting / receiving sensor 1, a converter 5 and a display device 10. The converter 5 is provided with transmission / reception means 6, amplitude value measurement means 7, propagation time measurement means 8, depth calculation means 9, density calculation means 12, concentration calculation means 13, calibration value storage means 14, and the like. There is. Reference numeral 2 indicates clear water, 3 indicates sludge, and 11 indicates a sedimentation basin.

【0012】超音波送受信センサ1は上澄水2の液体中
に固定されており、送信信号を一定の間隔で汚泥3と汚
泥界面4方向に発信し、汚泥界面にて反射した反射波を
超音波送受信センサ1で受信して変換器5に入力し、各
種演算手段を経て表示装置10で結果を表示する。超音
波送受信センサ1を1個だけ示したが、複数個用いても
良い。
The ultrasonic wave transmission / reception sensor 1 is fixed in the liquid of the supernatant water 2 and transmits a transmission signal to the sludge 3 and the sludge interface 4 at regular intervals, and ultrasonic waves are reflected waves reflected at the sludge interface. It is received by the transmission / reception sensor 1 and input to the converter 5, and the result is displayed on the display device 10 through various calculation means. Although only one ultrasonic transmission / reception sensor 1 is shown, a plurality of ultrasonic transmission / reception sensors 1 may be used.

【0013】上記の構成において、変換器5に入力され
た受信信号は、例えば図2に示すように、超音波パルス
の送信開始から受信されるまでの液体中の伝搬時間tと
受信振幅値vの2つの情報を持っており、送信受信手段
6を経た振幅値測定手段7において受信振幅値vが測定
され、伝搬時間測定手段8において伝搬時間tを測定
後、深さ演算手段9にて深さが算出される。ここに、深
さLは汚泥界面4で超音波が反射されて戻ってくる(往
復する)間に進む距離の半分として表わされる。
In the above configuration, the reception signal input to the converter 5 is, for example, as shown in FIG. 2, the propagation time t in the liquid from the start of transmission of the ultrasonic pulse to the reception, and the reception amplitude value v. The received amplitude value v is measured by the amplitude value measuring means 7 which has passed through the transmitting / receiving means 6, the propagation time t is measured by the propagation time measuring means 8, and the depth is calculated by the depth calculating means 9. Is calculated. Here, the depth L is represented as half of the distance traveled while the ultrasonic wave is reflected back at the sludge interface 4 (reciprocates).

【0014】 深さL=C0×t/2 C0:液体中の音
速、t:伝搬時間 密度演算手段12は、深さ演算手段9と校正値記憶手段
14からのデータに基づき、密度を算出する。以下、そ
の求め方について説明する。
Depth L = C 0 × t / 2 C 0 : Sound velocity in liquid, t: Propagation time density calculation means 12 calculates the density based on the data from the depth calculation means 9 and the calibration value storage means 14. calculate. Hereinafter, how to obtain it will be described.

【0015】一般に、超音波が伝搬する液体(ここでは
上澄水)の密度ρ0と伝搬速度C0の積で示される音響イ
ンピーダンス(ρ0×C0)と、浮遊物の沈降状態にある
液体(ここでは汚泥)の密度ρ1と伝搬速度C1の積で示
される音響インピーダンス(ρ1×C1)のように、音響
インピーダンスに差がある場合、その境界(汚泥界面)
で反射が発生する。反射波の大きさは、反射率R1で決
定される。
Generally, the acoustic impedance (ρ 0 × C 0 ) represented by the product of the density ρ 0 of the liquid (here, supernatant water) in which the ultrasonic wave propagates and the propagation velocity C 0 , and the liquid in the sedimentation state of the suspended matter. If there is a difference in acoustic impedance, such as the acoustic impedance (ρ 1 × C 1 ) shown by the product of the density ρ 1 of (here, sludge) and the propagation velocity C 1 , the boundary (sludge interface)
Reflection occurs at. The magnitude of the reflected wave is determined by the reflectance R 1 .

【0016】以上のことから、受信電圧V1は基準距離
からの拡散減衰係数α1(これは、α 1=kLのように深
さLの関数として表わされる。k:定数)と、汚泥の散
乱や吸収による減衰係数α2と、反射面での反射率R
1と、基準距離での電圧値(校正値)V0とを用いて次の
ように表現される。
From the above, the reception voltage V1Is the reference distance
Diffusion damping coefficient from α1(This is α 1= As deep as kL
Is expressed as a function of L. k: constant) and sludge dispersal
Damping coefficient α due to disturbance and absorption2And the reflectance R on the reflecting surface
1And the voltage value (calibration value) V at the reference distance0And with
Is expressed as

【0017】 V1=α1×α2×R1×V0=α1α20(Z1−Z0)/(Z1+Z0) =α1α20(ρ1×C1−ρ0×C0)/(ρ1×C1+ρ0×C0) 上記式より、反射面での音響インピーダンスを求める
と、 Z1=ρ1×C1 =ρ0×C0(1+V1/α1α20)/(1−V1/α1α20) となる。
V 1 = α 1 × α 2 × R 1 × V 0 = α 1 α 2 V 0 (Z 1 −Z 0 ) / (Z 1 + Z 0 ) = α 1 α 2 V 01 × C 1 −ρ 0 × C 0 ) / (ρ 1 × C 1 + ρ 0 × C 0 ) When the acoustic impedance at the reflecting surface is calculated from the above equation, Z 1 = ρ 1 × C 1 = ρ 0 × C 0 ( 1 + V 1 / α 1 α 2 V 0) / become (1-V 1 / α 1 α 2 V 0).

【0018】汚泥中の音速が一定、または、密度と比例
関係にあることから密度ρ1を次式で求めることができ
る。
Since the sound velocity in sludge is constant or is proportional to the density, the density ρ 1 can be calculated by the following equation.

【0019】 ρ1=ρ0(C0/C1)(1+V1/α1α20)/(1−
1/α1α20) つまり、汚泥または液体と汚泥との界面における密度
を、深さLと受信電圧振幅値V1(受信振幅値に比例す
る)と校正電圧値V0(受信振幅値の校正値に比例す
る)とから求めることができる。なお、C0,C1はここ
では一定値として扱っている。
Ρ 1 = ρ 0 (C 0 / C 1 ) (1 + V 1 / α 1 α 2 V 0 ) / (1-
V 1 / α 1 α 2 V 0 ) That is, the density at the interface between sludge or liquid and sludge is determined by depth L, reception voltage amplitude value V 1 (proportional to reception amplitude value), and calibration voltage value V 0 (reception It is proportional to the calibration value of the amplitude value). Note that C 0 and C 1 are treated as constant values here.

【0020】密度計算後は、濃度演算手段13により濃
度を算出する。濃度〔mg/L〕は一定量(L)の水に
対する汚泥重量(mg)として、次式で算出する。
After the density calculation, the density calculation means 13 calculates the density. The concentration [mg / L] is calculated by the following formula as the sludge weight (mg) for a fixed amount (L) of water.

【0021】 濃度〔mg/L〕=(ρ1〔Kg/m3〕−ρ0〔Kg/
3〕)×103 図3はこの発明の第2の実施の形態を示す構成図であ
る。
Concentration [mg / L] = (ρ 1 [Kg / m 3 ] −ρ 0 [Kg /
m 3 ]) × 10 3 FIG. 3 is a block diagram showing the second embodiment of the present invention.

【0022】これは、図1に示すものに対し校正値測定
手段15と校正値演算手段16とを付加して構成した点
が特徴である。校正値測定手段15は図示のように、超
音波受信装置15aと移動機構15bとからなり、校正
モード時に超音波受信装置15aを移動機構15bによ
り、超音波送受信センサ1の下に基準距離だけ離れた位
置に移動させて、超音波送受信センサ1からの送信信号
を超音波受信装置15aに受信させ、振幅値測定手段7
に送って振幅値を測定し、これから校正値演算手段16
にて校正値を求めて校正値記憶手段14に記憶するもの
で、図1に示すものが常に一定の校正値を記憶するのに
対し、ここでは校正値がその都度更新されることにな
る。
This is characterized in that a calibration value measuring means 15 and a calibration value calculating means 16 are added to those shown in FIG. The calibration value measuring means 15 is composed of an ultrasonic wave receiving device 15a and a moving mechanism 15b as shown in the figure, and the ultrasonic wave receiving device 15a is separated from the ultrasonic wave transmitting / receiving sensor 1 by a reference distance by the moving mechanism 15b in the calibration mode. The ultrasonic wave receiving device 15a receives the transmission signal from the ultrasonic wave transmission / reception sensor 1, and the amplitude value measuring means 7 is moved.
To the calibration value calculating means 16
The calibration value is obtained and stored in the calibration value storage means 14. While the one shown in FIG. 1 always stores a constant calibration value, the calibration value is updated each time here.

【0023】図4はこの発明の第3の実施の形態を示す
構成図である。
FIG. 4 is a block diagram showing a third embodiment of the present invention.

【0024】これは、図3の超音波受信装置15aを音
速と密度が既知の反射板(例えばステンレスやテフロン
(登録商標)等からなる)15cに置き換え、これを利
用して送信信号の基準距離からの振幅値を求め、校正値
を得るようにした他は図3の場合と同様なので、詳細は
省略する。
This is achieved by replacing the ultrasonic wave receiving device 15a of FIG. 3 with a reflection plate (made of, for example, stainless steel or Teflon (registered trademark)) 15c having a known sound velocity and density, and using this, a reference distance of a transmission signal. Since the amplitude value from is obtained and the calibration value is obtained, the details are omitted because it is the same as the case of FIG.

【0025】[0025]

【発明の効果】この発明によれば、汚泥界面を攪拌する
ことなく汚泥密度または濃度と汚泥界面深さを測定でき
るので、測定精度を向上させることができる。また、上
下動のための機構が不要になるので、構成が簡単とな
り、コストが低減される。さらには、従来市販されてい
る超音波による距離測定方式の汚泥界面計に対し、密度
演算手段,濃度演算手段および校正値記憶手段を付加す
るだけでよいため、構成も簡単となり、コストも低減で
きる。
According to the present invention, since the sludge density or concentration and the sludge interface depth can be measured without stirring the sludge interface, the measurement accuracy can be improved. Moreover, since a mechanism for moving up and down is not required, the structure is simple and the cost is reduced. Furthermore, since it is only necessary to add density calculation means, concentration calculation means, and calibration value storage means to the commercially available ultrasonic distance measurement type sludge interface meter, the configuration is simple and the cost can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】この発明における伝搬時間,受信振幅値の説明
図である。
FIG. 2 is an explanatory diagram of a propagation time and a reception amplitude value according to the present invention.

【図3】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】この発明の第3の実施の形態を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a third embodiment of the present invention.

【図5】従来例を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1…超音波送受信センサ、2…上澄水、3…汚泥、4…
汚泥界面、5…変換器、6…送信受信手段、7…振幅値
測定手段、8…伝搬時間測定手段、9…深さ演算手段、
10…表示手段、11…沈殿池、12…密度演算手段、
13…濃度演算手段、14…校正値記憶手段、15…校
正値測定手段、16…校正値演算手段。
1 ... Ultrasonic wave transmitting / receiving sensor, 2 ... Clear water, 3 ... Sludge, 4 ...
Sludge interface, 5 ... Transducer, 6 ... Transmission / reception means, 7 ... Amplitude value measurement means, 8 ... Propagation time measurement means, 9 ... Depth calculation means,
10 ... Display means, 11 ... Sedimentation tank, 12 ... Density calculation means,
13 ... Concentration calculating means, 14 ... Calibration value storing means, 15 ... Calibration value measuring means, 16 ... Calibration value calculating means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 晃 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2G047 AA02 BA03 BB01 BC02 BC03 BC15 BC18 EA10 EA20 GF06 GG20 GG33 GJ21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Morita             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F term (reference) 2G047 AA02 BA03 BB01 BC02 BC03                       BC15 BC18 EA10 EA20 GF06                       GG20 GG33 GJ21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液体中の所定位置に固定して設置され超
音波パルスを液体中の汚泥に向けて送信しその反射パル
スを受信する少なくとも1つの超音波送受信装置と、前
記反射パルスの振幅値を測定する振幅値測定手段と、前
記超音波パルスの送信開始から受信されるまでの液体中
の伝搬時間を測定する伝搬時間測定手段と、その伝搬時
間から汚泥界面までの深さを演算する深さ演算手段と、
その汚泥界面の深さと受信振幅値と受信振幅値の校正値
とから汚泥密度を算出する密度演算手段とを有すること
を特徴とする超音波密度計。
1. An at least one ultrasonic transmitting / receiving device fixedly installed at a predetermined position in a liquid for transmitting an ultrasonic pulse toward sludge in the liquid and receiving a reflected pulse thereof, and an amplitude value of the reflected pulse. Amplitude value measuring means for measuring, the propagation time measuring means for measuring the propagation time in the liquid from the start of transmission of the ultrasonic pulse to the reception, and the depth for calculating the depth from the propagation time to the sludge interface Calculation means,
An ultrasonic density meter, comprising: a sludge interface depth, a reception amplitude value, and a density calculation means for calculating a sludge density from a calibration value of the reception amplitude value.
【請求項2】 前記受信振幅値の校正値を記憶する校正
値記憶手段を設けたことを特徴とする請求項1に記載の
超音波密度計。
2. The ultrasonic density meter according to claim 1, further comprising a calibration value storage means for storing a calibration value of the reception amplitude value.
【請求項3】 前記超音波送受信装置から送信される超
音波パルスを一定の距離で受信する超音波受信手段と、
この超音波受信手段からの出力にもとづき校正値を演算
する校正値演算手段とを設け、演算された校正値を前記
校正値記憶手段に記憶することを特徴とする請求項2に
記載の超音波密度計。
3. An ultrasonic wave receiving means for receiving an ultrasonic wave pulse transmitted from the ultrasonic wave transmitting / receiving device at a constant distance,
3. The ultrasonic wave according to claim 2, further comprising: a calibration value calculation means for calculating a calibration value based on the output from the ultrasonic wave reception means, and storing the calculated calibration value in the calibration value storage means. Density meter.
【請求項4】 前記超音波受信手段を超音波パルスの進
行方向に移動させる移動機構を設けたことを特徴とする
請求項3に記載の超音波密度計。
4. The ultrasonic density meter according to claim 3, further comprising a moving mechanism for moving the ultrasonic wave receiving means in a traveling direction of an ultrasonic wave pulse.
【請求項5】 前記超音波受信手段は反射板であること
を特徴とする請求項3または4に記載の超音波密度計。
5. The ultrasonic density meter according to claim 3, wherein the ultrasonic wave receiving means is a reflecting plate.
【請求項6】 前記密度演算手段からの出力に基づき、
一定量の水に対する汚泥重量から汚泥濃度を演算する濃
度演算手段を設けたことを特徴とする請求項1ないし5
のいずれかに記載の超音波密度計。
6. Based on the output from the density computing means,
6. A concentration calculation means for calculating the sludge concentration from a certain amount of sludge weight for water is provided.
The ultrasonic density meter according to any one of 1.
JP2002014262A 2002-01-23 2002-01-23 Ultrasonic wave density meter Pending JP2003215112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014262A JP2003215112A (en) 2002-01-23 2002-01-23 Ultrasonic wave density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014262A JP2003215112A (en) 2002-01-23 2002-01-23 Ultrasonic wave density meter

Publications (1)

Publication Number Publication Date
JP2003215112A true JP2003215112A (en) 2003-07-30

Family

ID=27650999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014262A Pending JP2003215112A (en) 2002-01-23 2002-01-23 Ultrasonic wave density meter

Country Status (1)

Country Link
JP (1) JP2003215112A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017614A (en) * 2004-07-02 2006-01-19 Koden Electronics Co Ltd Device and method for determining liquid
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2008304282A (en) * 2007-06-06 2008-12-18 Honda Electronic Co Ltd Ultrasonic densimeter
JP2010507141A (en) * 2006-10-13 2010-03-04 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Improved field device calibration
WO2023029479A1 (en) * 2021-09-03 2023-03-09 苏州威摩尔智能科技有限公司 Method for ultrasonic testing liquid level and turbidity of sewage water tank
US11788988B1 (en) * 2022-05-26 2023-10-17 Zhejiang University System and method for measuring sludge moisture content by ultrasound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017614A (en) * 2004-07-02 2006-01-19 Koden Electronics Co Ltd Device and method for determining liquid
JP4620397B2 (en) * 2004-07-02 2011-01-26 株式会社光電製作所 Liquid discrimination device and method
JP2007196108A (en) * 2006-01-25 2007-08-09 Penta Ocean Constr Co Ltd Water quality improvement method and its apparatus
JP2010507141A (en) * 2006-10-13 2010-03-04 フィッシャー−ローズマウント・システムズ・インコーポレーテッド Improved field device calibration
US8364431B2 (en) 2006-10-13 2013-01-29 Fisher-Rosemount Systems, Inc. Field device calibration
JP2008304282A (en) * 2007-06-06 2008-12-18 Honda Electronic Co Ltd Ultrasonic densimeter
WO2023029479A1 (en) * 2021-09-03 2023-03-09 苏州威摩尔智能科技有限公司 Method for ultrasonic testing liquid level and turbidity of sewage water tank
US11788988B1 (en) * 2022-05-26 2023-10-17 Zhejiang University System and method for measuring sludge moisture content by ultrasound

Similar Documents

Publication Publication Date Title
GB2362468A (en) Quantity gauging system
JP2003215112A (en) Ultrasonic wave density meter
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
KR101421137B1 (en) Ultrasonic level meter
US20150212220A1 (en) Acoustic piston track
JP3052532B2 (en) Ultrasonic transmission inspection equipment
JPH08219854A (en) Ultrasonic liquid level meter
JPH0618316A (en) Measuring apparatus for position of liquid surface
JPS5848817A (en) Ultrasonic flow meter
US5936160A (en) Method and apparatus for measuring sound velocity in liquid
JP2841783B2 (en) Ultrasonic level meter
JPS58223023A (en) Liquid interface detecting device
JP2944187B2 (en) Ultrasonic inclinometer
JPH07318397A (en) Ultrasonic liquid gage
JP3512512B2 (en) Ultrasonic flow velocity measuring device
RU53001U1 (en) ELECTRONIC-ACOUSTIC LIQUID MEASUREMENT DEVICE
JPS6073311A (en) Ultrasonic-wave water-level measuring apparatus
JPS5947259B2 (en) Sonic detection method for suspensions
JP2000162020A (en) Bypass pipe type liquid level gage
JP2001183354A (en) Ultrasonic concentration meter
JP2004177190A (en) Ultrasonic sludge interface meter
JPH08334321A (en) Ultrasonic distance-measuring apparatus
RU2069314C1 (en) Method of measurement of flow rate of liquids with variable level and liquid flowmeter
JP2001133319A (en) Acoustic velocity measuring device
RU2692409C1 (en) Method of measuring liquid level