JP2000162020A - Bypass pipe type liquid level gage - Google Patents

Bypass pipe type liquid level gage

Info

Publication number
JP2000162020A
JP2000162020A JP10336164A JP33616498A JP2000162020A JP 2000162020 A JP2000162020 A JP 2000162020A JP 10336164 A JP10336164 A JP 10336164A JP 33616498 A JP33616498 A JP 33616498A JP 2000162020 A JP2000162020 A JP 2000162020A
Authority
JP
Japan
Prior art keywords
pipe
tank
measuring
liquid level
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10336164A
Other languages
Japanese (ja)
Other versions
JP3375899B2 (en
Inventor
Tokio Sugi
時夫 杉
Shigetada Matsushita
重忠 松下
Mitsuru Tamai
満 玉井
Shigemi Kato
繁実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Kei Instrument KK
Original Assignee
Tokyo Keiso Co Ltd
Kei Instrument KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd, Kei Instrument KK filed Critical Tokyo Keiso Co Ltd
Priority to JP33616498A priority Critical patent/JP3375899B2/en
Publication of JP2000162020A publication Critical patent/JP2000162020A/en
Application granted granted Critical
Publication of JP3375899B2 publication Critical patent/JP3375899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bypass pipe type liq. level gage at a low cost which measures the liq. level in an approximately vertical measuring pipe (what is called a bypass type measuring pipe) mounted on the side face of a tank through a joint pipe at the top and the bottom of the tank so as to communicate with the tank, without using any movable part in the pipe, thereby obtaining the liq. level in the tank. SOLUTION: A measuring pipe 1 is disposed at the side of a tank to bypass and communicate in the tank, a reference chamber side pipe 2 bypassing and communicating in the measuring pipe 1 is provided at the lower side of this pipe 1, and signal transmitting-receiving elements for receiving ultrasonic signals transmitted from the bottoms and reflected at the liq. level in the measuring pipe and signal transmitting-receiving elements for receiving ultrasonic signals reflected at a top reflection in the reference chamber side pipe are provided respectively at the bottoms of the measuring pipe 1 and the reference chamber side pipe 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタンクの側部に取付
けて液面を測定するバイパスパイプ式液面計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bypass pipe type liquid level gauge which is attached to a side of a tank and measures a liquid level.

【0002】[0002]

【従来の技術とその問題点】貯液タンク内の液体の液面
高さを測定するいわゆるタンク液面計には種々のタイプ
があるが、その中の一種に、図4のような連通管の原理
を用いたバイパスパイプ式(外筒式ともいう)の液面計
がある。
2. Description of the Related Art There are various types of so-called tank level meters for measuring the level of a liquid in a liquid storage tank. One of them is a communication pipe as shown in FIG. There is a bypass pipe type (also called an outer cylinder type) liquid level gauge using the principle of the above.

【0003】この方式はタンクの底部、タンクの上部に
設けられた継手管によりタンクと連通する略垂直な測定
管をタンク側面に取付け、このパイプ内の液位を測定す
ることによってタンク内の液位を知るもので、図5のよ
うに上下の継手管部にバルブを取り付けることによって
バルブを閉じれば測定管全体の取り外しが可能なこと、
また、継手管の内径を小さく絞ることによってタンク内
の液面が動揺しても測定管内の液面の動揺が抑制され、
液位の測定が困難にならないことなど、種々の長所があ
り、広く実用に供せられている。
[0003] In this method, a substantially vertical measuring pipe communicating with the tank is attached to the tank side by a joint pipe provided at the bottom of the tank and at the top of the tank, and the liquid level in the tank is measured by measuring the liquid level in the pipe. It is possible to remove the entire measurement pipe by closing the valve by attaching the valve to the upper and lower joint pipes as shown in FIG. 5,
Also, by narrowing the inner diameter of the joint pipe to a small value, even if the liquid level in the tank fluctuates, the fluctuation of the liquid level in the measurement pipe is suppressed,
It has various advantages, such as that the measurement of the liquid level does not become difficult, and is widely used in practice.

【0004】この「バイパスパイプ式」という分類は、
取付構造上の分類であって、同じ「バイパスパイプ式」
であっても測定管内の液位の測定方法にはさまざまな方
式があり、代表的なものは次の三つである。
[0004] The classification "bypass pipe type"
Classification by mounting structure, same "bypass pipe type"
Even so, there are various methods for measuring the liquid level in the measuring tube, and the following three are typical.

【0005】・透明な測定管を用いて外部から液面を直
視するいわゆるサイトグラス式。 ・測定管の液中に、マグネット内蔵のフロートを浮か
べ、フロートの位置(高さ)をパイプの側方から磁気検
出形位置センサにて検知して液位を求めるいわゆるバイ
パスフロート式(図6)。 ・測定管の液中に、液よりも見かけ比重(重さ÷体積)
の大きい液面感得体(ディスプレーサ)を吊り下げ、液
面感得体に働く浮力を検出して液位を求めるいわゆるデ
ィスプレースメント式(図7)。
A so-called sight glass type in which the liquid level is directly viewed from the outside using a transparent measuring tube. -A float with a built-in magnet floats in the liquid in the measuring tube, and the position (height) of the float is detected from the side of the pipe by a magnetic detection type position sensor to determine the liquid level, a so-called bypass float type (Fig. 6). .・ Apparent specific gravity (weight ÷ volume) in liquid in measuring tube
A so-called displacement formula (FIG. 7) in which a liquid level sensor (displacer) having a large value is suspended and the buoyancy acting on the liquid surface sensor is detected to determine the liquid level.

【0006】これらの方式のものではそれぞれ長所、短
所があり、目的に応じて選択使用されているが、サイト
グラス式は測定管の強度、耐久性が金属パイプに比べて
劣ることから、測定管が破損して液が流出しても危険性
の小さいタンクに限られる。
[0006] Each of these methods has advantages and disadvantages, and is selectively used according to the purpose. However, the sight glass method is inferior in strength and durability to the measurement pipe compared to the metal pipe. Is limited to tanks with low risk even if the liquid breaks out and liquid flows out.

【0007】バイパスフロート式、ディスプレースメン
ト式はパイプが金属製で完全密閉構造にすることができ
るため、安全性の面では優れているが、測定管の中に可
動部を有するため、長期の耐久性や、液が異常に動揺し
た際の保全に関しては問題があり、可動部を持たない方
式の「バイパスパイプ式液面計」の実現がユーザから強
く望まれている。
[0007] The bypass float type and the displacement type are excellent in terms of safety because the pipe is made of metal and can have a completely sealed structure. However, since the measuring pipe has a movable part, it has a long-term durability. However, there is a problem in terms of performance and maintenance when the liquid is abnormally shaken, and there is a strong demand from users for the realization of a "bypass pipe type liquid level meter" having no moving parts.

【0008】可動部のない一般的な液面計には、(1)
超音波式、(2)電波式、(3)光学式の3方式のもの
があるが、バイパスパイプ式液面計へ適用するにはそれ
ぞれ次ぎのような問題点があり、実用化には至ってな
い。
[0008] A general liquid level gauge having no moving parts includes (1)
There are three types: ultrasonic type, (2) radio wave type, and (3) optical type. However, there are the following problems when applied to a bypass pipe type liquid level meter, and they have been put to practical use. Absent.

【0009】すなわち、(1)の超音波式では、原理的
に超音波の伝播速度(音速)が液位を求める上で既知で
なければならないが、音速は伝播物質の温度、密度に大
きく依存する。
That is, in the ultrasonic method of (1), the propagation speed (sound speed) of the ultrasonic wave must be known in principle to determine the liquid level, but the sound speed greatly depends on the temperature and density of the propagation material. I do.

【0010】バイパスパイプ式液面計の適用対象の多く
は密閉タンクであり、タンク内の圧力、温度が一定でな
いため、タンク頂から液面までの空間を超音波が往復す
るのに要する時間によって液位を求める通常の超音波液
面計の測定方式では、別途に温度、圧力を測定して空間
の音速を正確に推定しない限り精度が悪く、実用にはな
らない。したがって温度計、圧力計、音速の推定計算回
路などを付加せねばならず、コストが大幅に上昇する。
Many applications of the bypass pipe type liquid level gauge are closed tanks, and the pressure and temperature in the tank are not constant. Therefore, the time required for the ultrasonic wave to reciprocate in the space from the tank top to the liquid level depends on the time required. The measurement method of an ordinary ultrasonic liquid level meter for obtaining the liquid level is inferior in accuracy and is not practical unless the temperature and pressure are separately measured to accurately estimate the sound velocity in the space. Therefore, it is necessary to add a thermometer, a pressure gauge, a circuit for estimating and calculating the speed of sound, and the cost is greatly increased.

【0011】一方、(2)の電波式は超音波式と異な
り、伝播速度は温度、密度によって影響を受けることは
殆どなく、オープンな空間では高精度の液面計として実
用化されている。
On the other hand, the radio wave type (2) differs from the ultrasonic type in that the propagation speed is hardly affected by temperature and density, and is practically used as a highly accurate liquid level gauge in an open space.

【0012】しかし、測定管が金属製の場合、内径が小
さく、かつ内面の曲率の大きい測定管では、液面からの
直接の反射波と測定管内面を経由する間接反射波の弁別
が技術的に難しいこと、測定管が非金属の場合、電波が
外部に放射されて、他の電子機器に障害を与える恐れが
あること、超音波式に比べてコストが高いこと、などの
理由により実用化されたものはない。
However, when the measuring tube is made of metal, in a measuring tube having a small inner diameter and a large inner surface curvature, it is technically necessary to discriminate between a directly reflected wave from the liquid surface and an indirect reflected wave passing through the inner surface of the measuring tube. Practical use because the measurement tube is non-metallic, radio waves may be radiated to the outside and damage other electronic devices, and the cost is higher than the ultrasonic type. Nothing was done.

【0013】また、(3)の光学式はレンズ系で光束を
任意に調節できるため、電波式のような反射波弁別の難
しさはないが、発光部、受光部の液の結露やゴミの付着
に弱いこと、しかも液面のわずかな動揺で反射光が減衰
することなど、測定環境に関する制約が多く、適用対象
が限られる。
In the optical method (3), since the light flux can be arbitrarily adjusted by a lens system, there is no difficulty in discriminating reflected waves as in the radio wave method. There are many restrictions on the measurement environment, such as weakness to adhesion and attenuated reflected light due to slight fluctuations in the liquid surface, and its application is limited.

【0014】[0014]

【目的】本発明は、タンクの上部と底部の継手管を介し
てタンクの側面に取り付けられ、タンク内と連通する略
垂直な測定管(いわゆるバイパス形測定管)内の液位
を、同パイプ内に可動部を用いない方法で測定してタン
ク内の液位を求めるコストの安いバイパスパイプ式液面
計を提供できるようにした。
[Object] The present invention aims to measure the liquid level in a substantially vertical measuring pipe (a so-called bypass type measuring pipe) attached to the side of a tank via a joint pipe at the top and bottom of the tank and communicating with the inside of the tank. The present invention can provide a low-cost bypass pipe-type liquid level gauge for measuring the liquid level in a tank by measuring the liquid level without using a movable part.

【0015】[0015]

【本発明の手段】本発明の液面計は、タンク内へバイパ
ス連通せしめてタンクの側方に設ける測定管の下部側方
に同測定管内と連通する基準室側管を設けて、測定管及
び基準室側管の各底部に、各底部から発信されて測定管
内の液面で反射された超音波信号を受信する信号送・受
信素子と、基準室側管内の上部反射面で反射された超音
波信号を受信する信号送・受信素子をぞれぞれ設けたも
のとしてある。
According to the liquid level gauge of the present invention, a reference chamber side pipe communicating with the inside of the measuring pipe is provided at the lower side of the measuring pipe which is connected to the tank by bypass and provided on the side of the tank. And a signal transmission / reception element for receiving an ultrasonic signal transmitted from each bottom and reflected on the liquid surface in the measurement tube, and reflected on an upper reflection surface in the reference room side tube at each bottom of the reference room side tube. It is assumed that a signal transmitting / receiving element for receiving an ultrasonic signal is provided.

【0016】より具体的には、測定管及び基準室側管の
各底部に、一対の超音波送信素子と受信素子設けるか、
あるいは1個で送信と受信の機能を備える圧電素子をそ
れぞれ設けたものとしてある。
More specifically, whether a pair of ultrasonic transmitting element and receiving element are provided at each bottom of the measuring pipe and the reference chamber side pipe,
Alternatively, a single piezoelectric element having transmission and reception functions is provided.

【0017】また、信号送・受信素子は制御演算回路に
接続し、この回路では、測定管の底部から発信された超
音波信号が測定管内の液面で反射されて底部の送・受信
素子に達するまでの時間t2 と、基準室側管の底部から
発信された超音波信号が基準室側管内の上部反射面で反
射して底部の信号送・受信素子に達するまでの時間t 1
を検出し、基準室側管における底部の信号送・受信素子
面から上部反射面までの定数である高さaから、タンク
内の液位LをL=a・t2 /t1の演算で求める制御演
算回路に接続したものとしてある。
Further, the signal transmitting / receiving elements are included in the control arithmetic circuit.
This circuit connects the ultra
The sound wave signal is reflected from the liquid level in the measuring tube and the bottom part is sent and received
Time t to reach the elementTwo And from the bottom of the reference chamber side tube
The transmitted ultrasonic signal is reflected by the upper reflecting surface in the reference room side tube.
The time t until the light reaches the bottom signal transmitting / receiving element 1 
And the signal transmission / reception element at the bottom of the reference chamber side tube
From the height a, which is a constant from the surface to the upper reflective surface, the tank
L = atTwo / T1Control performance calculated by
It is connected to the arithmetic circuit.

【0018】[0018]

【実施例】<実施例1>図1のように、上側部と下側部
にタンク内へ連通せしめる継手管1a,1bを有するバ
イパス用の測定管1の下端に、上方に向かって超音波を
放射する素子3aと、上方から入射する超音波を検出す
る素子3bをそれぞれ設ける。
<Embodiment 1> As shown in FIG. 1, an ultrasonic wave is directed upward from the lower end of a bypass measuring pipe 1 having joint pipes 1a and 1b communicating with the inside of a tank at an upper part and a lower part. And an element 3b for detecting ultrasonic waves incident from above.

【0019】測定管1の下部側方には、基準室となるバ
イパス基準室側管2を、その上側部と下側部を連通部2
a,2bで測定管1内と導通せしめて設け、この基準室
側管2の内底面は測定管1の内底面と同一面としてあ
る。この基準室側管2の下部にも超音波を放射する素子
4a、入射する超音波を検出する素子4bを設けてあ
る。なお、基準室側管2は測定管1の外側方の任意の位
置に設ければよい。
A bypass reference chamber side pipe 2 serving as a reference chamber is provided at a lower side of the measurement pipe 1, and an upper part and a lower part thereof are connected to a communication part 2.
The inside of the reference chamber side tube 2 is flush with the inner bottom surface of the measurement tube 1 by providing the inside of the measurement tube 1 at a and 2b. An element 4a that emits ultrasonic waves and an element 4b that detects incident ultrasonic waves are also provided below the reference chamber side tube 2. Note that the reference chamber side tube 2 may be provided at an arbitrary position outside the measurement tube 1.

【0020】継手管でタンクの側方部に取り付けたバイ
パス用の測定管1内の液面が上方にある場合、同パイプ
下端の超音波を放射する素子3aから上方に超音波を放
射(発信)させると、超音波は測定管内の液中を伝播す
る。超音波は液面まで進み、液面で反射されて測定管内
を下方に伝播し、測定管下端に戻り、これを検出素子3
bが検出する。
When the liquid level in the bypass measuring pipe 1 attached to the side of the tank with the joint pipe is above, the ultrasonic wave is emitted upward from the ultrasonic emitting element 3a at the lower end of the pipe (transmitted). ), The ultrasonic wave propagates in the liquid in the measuring tube. The ultrasonic wave travels to the liquid surface, is reflected by the liquid surface, propagates down the inside of the measuring tube, returns to the lower end of the measuring tube, and transmits it to the detecting element 3.
b detects.

【0021】一方、基準室側管2の下端部に設けた超音
波を放射する素子4aから上部の反射面2c(基準室側
管の上部内面)に向けて超音波を放射(発信)させる
と、超音波は基準室側管内の液中を伝播し、前記反射面
2cで反射されて基準室側管の端部に戻り、これを検出
素子4bが検出する。
On the other hand, when an ultrasonic wave is emitted (transmitted) from the ultrasonic wave emitting element 4a provided at the lower end of the reference room side tube 2 toward the upper reflecting surface 2c (upper inner surface of the reference room side tube). The ultrasonic wave propagates in the liquid in the reference chamber side pipe, is reflected by the reflection surface 2c, returns to the end of the reference chamber side pipe, and is detected by the detection element 4b.

【0022】図3は超音波放射素子3a、4aに印加し
たパルス状電圧と、検出素子3b、4bが反射波を受信
したときの出力電圧の一例である。同図に示すように、
基準室側管2の底部放射素子4aから発信した超音波が
同側管2の上部反射面2cで反射されて検出素子4bが
受信するまでの時間をt1、測定管1の底部放射素子3
aから発信した超音波が同測定管内の液面で反射されて
検出素子3bが受信するまでの時間をt2 とすると、基
準室側管2の素子(4a,4b)から反射面2c(同パ
イプの上部内面)までの距離は一定で既知であるから、
その距離をaとすると、 V×t1 =2a V×t2 =2L (V:超音波の伝播速度、L:素子から液面までの距
離)となる。
FIG. 3 shows an example of pulsed voltages applied to the ultrasonic radiation elements 3a, 4a and output voltages when the detection elements 3b, 4b receive reflected waves. As shown in the figure,
The time from when the ultrasonic wave transmitted from the bottom radiating element 4a of the reference chamber side tube 2 is reflected by the upper reflecting surface 2c of the same side tube 2 until it is received by the detecting element 4b is t 1 , and the bottom radiating element 3 of the measuring tube 1
When the time until ultrasonic wave transmitted from a receives the detection element 3b is reflected by the liquid surface of the measurement pipe and t 2, elements of the reference chamber side tube 2 (4a, 4b) from the reflecting surface 2c (the The distance to the upper inner surface of the pipe) is constant and known,
If the distance is a, V × t 1 = 2a V × t 2 = 2L (V: ultrasonic wave propagation velocity, L: distance from the element to the liquid surface).

【0023】したがって、測定管1内の底部素子(3
a,3b)の位置を基準にした液位Lは L=a×t2 /t1 ・・・・・・・(I) の演算により求められる。
Therefore, the bottom element (3) in the measuring tube 1
The liquid level L based on the position of a, 3b) is obtained by the calculation of L = a × t 2 / t 1 (I).

【0024】しかして超音波の伝播速度が変化してもそ
の影響を受けないし、素子と測定管内の液の間の隔壁を
超音波が伝播する速度は、一般に液の音速Vと同じでは
ないが、隔壁が著しく厚くないならば、上記の計算式で
生じる音速の違いによる誤差はわずかで無視できる。
However, even if the propagation speed of the ultrasonic wave changes, it is not affected by the change, and the speed at which the ultrasonic wave propagates through the partition wall between the element and the liquid in the measuring tube is generally not the same as the sound speed V of the liquid. If the partition is not very thick, the error due to the difference in sound speed caused by the above formula is negligible.

【0025】上記演算は例えば図示のごとき切換回路、
発信回路、受信回路、測定・演算回路を備える制御演算
回路で次のように行われる。 (1) 測定回路からの制御信号によって駆動される切換回
路7bによって放射素子4aに発信回路を接続するとと
もに切換回路7aによって検出素子4bに受信回路を接
続し、前記発信回路により放射素子4aにパルス状の電
圧を印加して超音波を発信させる。放射素子4aから液
中に発信された超音波は、基準室側管2の反射面に到達
し、ここで反射されて下方に伝播する。 (2) 測定回路は、発信回路が放射素子4aにパルス状電
圧を印加した瞬間にタイマーをスタートさせる。 (3) 上記の下方に伝播する超音波を検出素子4bにより
受信する。この時受信回路によって検出される電気信号
は検出素子の出力を増幅したものであり、その波形は図
3と同様になる。 (4) 測定回路は、受信回路が基準室側管の反射面からの
超音波を受信した瞬間にタイマーをストップさせ、伝播
時間t1 を計測する。 (5) 切換回路7bによって放射素子3aを発信回路に接
続するとともに切換回路7aによって検出素子3bを受
信回路に接続し、前記(1) 〜(4) と同様の手順を放射素
子3aおよび検出素子3bについて行って、測定管の液
面から反射された超音波の伝播時間t2 を計測する。 (6) 測定回路は、(4) および(5)で得たt1 および
2 を前記の計算式(I)に代入して放射素子および検
出素子から測定管内の液面までの距離Lを求める。測定
管内の液位はタンクの液位に常に等しいから、タンクの
液位を次式(II)によって得る。 タンクの液位=L−h ・・・・・(II) h;素子の表面と液位0平面との距離
The above operation is performed, for example, by a switching circuit as shown in FIG.
The operation is performed as follows in a control operation circuit including a transmission circuit, a reception circuit, and a measurement / operation circuit. (1) A transmitting circuit is connected to the radiating element 4a by a switching circuit 7b driven by a control signal from the measuring circuit, and a receiving circuit is connected to the detecting element 4b by the switching circuit 7a, and the radiating element 4a is pulsed by the transmitting circuit. An ultrasonic wave is transmitted by applying a voltage in the form of an arrow. The ultrasonic wave transmitted into the liquid from the radiating element 4a reaches the reflecting surface of the reference chamber side tube 2, where it is reflected and propagates downward. (2) The measuring circuit starts the timer at the moment when the transmitting circuit applies the pulsed voltage to the radiating element 4a. (3) The ultrasonic wave propagating downward is received by the detection element 4b. At this time, the electric signal detected by the receiving circuit is obtained by amplifying the output of the detecting element, and its waveform is similar to that of FIG. (4) measurement circuit, a timer to stop the the moment the receiving circuit receives the ultrasonic wave from the reflecting surface of the reference chamber side pipe, measures the propagation time t 1. (5) The radiating element 3a is connected to the transmitting circuit by the switching circuit 7b, and the detecting element 3b is connected to the receiving circuit by the switching circuit 7a. The procedure similar to the above (1) to (4) is performed. and performed on 3b, measuring the ultrasound propagation time reflected from the liquid surface of the measurement pipe t 2. (6) The measuring circuit substitutes t 1 and t 2 obtained in (4) and (5) into the above-mentioned equation (I) to determine the distance L from the radiating element and the detecting element to the liquid level in the measuring tube. Ask. Since the liquid level in the measuring tube is always equal to the liquid level in the tank, the liquid level in the tank is obtained by the following equation (II). Tank level = L-h (II) h; distance between element surface and level 0 plane

【0026】<実施例2>圧電素子の場合、パルス電圧
を印加することにより超音波を放射する機能と、入射さ
れた超音波を検知する機能とを兼ね備えているので、切
換回路によって発信回路と受信回路のどちらか一方を素
子に接続するようにすれば、1個の圧電素子で両機能を
実現することができるので、その実施例を図2に示す。
<Embodiment 2> In the case of a piezoelectric element, it has both a function of emitting ultrasonic waves by applying a pulse voltage and a function of detecting incident ultrasonic waves. If one of the receiving circuits is connected to the element, both functions can be realized by one piezoelectric element, and an embodiment thereof is shown in FIG.

【0027】同図に示すように、バイパス測定管1の下
端及び基準室側管2の下端にそれぞれ圧電素子5A,5
Bを密着させて固定する。図ではスプリング6で押し付
けているが、接着してもよい。
As shown in the figure, the piezoelectric elements 5A and 5A are provided at the lower end of the bypass measuring pipe 1 and the lower end of the reference chamber side pipe 2, respectively.
B is adhered and fixed. Although it is pressed by the spring 6 in the figure, it may be bonded.

【0028】圧電素子5A、5Bには切換回路、発信回
路と受信回路、測定・演算回路からなる制御演算回路に
接続されていて、圧電素子5A、5Bは切換により超音
波の発信、受信の何れかを行い、液位測定は制御演算回
路により次ぎのように行われる。 (1) 測定回路からの制御信号によって駆動される切換回
路7aおよび7bによって圧電素子5Bに発信回路を接
続し、圧電素子5Bにパルス状の電圧を印加して超音波
を発信させる。 (2) 圧電素子5Bに接続する回路を切換回路7bにより
受信回路に切換え、基準室側管2の反射面に到達して反
射された超音波を圧電素子により受信し、伝播時間t1
を計測する。 (3) 前記(1)、(2) と同様に圧電素子5Aを発信回路、
受信回路に順次接続して、伝播時間t2 を計測する。 (4) 測定回路は、(1) 〜(3) で得た伝播時間t1 、t2
から前記計算式(I)により液面までの距離Lを求め、
さらに前記(II)式によってタンクの液位を得る。
The piezoelectric elements 5A and 5B are connected to a control operation circuit including a switching circuit, a transmission circuit and a reception circuit, and a measurement / operation circuit. The piezoelectric elements 5A and 5B are switched to transmit or receive ultrasonic waves. The liquid level measurement is performed by the control arithmetic circuit as follows. (1) A transmitting circuit is connected to the piezoelectric element 5B by switching circuits 7a and 7b driven by a control signal from the measuring circuit, and a pulse-like voltage is applied to the piezoelectric element 5B to transmit ultrasonic waves. (2) The circuit connected to the piezoelectric element 5B is switched to the receiving circuit by the switching circuit 7b, and the ultrasonic wave that reaches the reflecting surface of the reference tube 2 and is reflected by the piezoelectric element is received by the piezoelectric element, and the propagation time t 1
Is measured. (3) Similar to the above (1) and (2), the piezoelectric element 5A is connected to an oscillation circuit,
Sequentially connected to the receiving circuit, measures the propagation time t 2. (4) The measurement circuit calculates the propagation times t 1 and t 2 obtained in (1) to (3).
From the above, the distance L to the liquid surface is obtained by the above-mentioned calculation formula (I),
Further, the liquid level of the tank is obtained by the above formula (II).

【0029】[0029]

【発明の効果】本発明は可動部がないため、長期の耐久
性や、液が異常に動揺した際の保全に関しては殆ど問題
がなく、ユーザから強く要望されている可動部を持たな
い方式の「バイパスパイプ式液面計」を提供できる。
Since the present invention has no moving parts, there is almost no problem with respect to long-term durability and maintenance when the liquid is abnormally shaken, and there is no moving part strongly demanded by users. "Bypass pipe level gauge" can be provided.

【0030】バイパスパイプ式液面計の適用対象の多く
は密閉タンクであり、タンク内の圧力、温度が一定でな
いため、タンク頂から液面までの空間を超音波が往復す
るのに要する時間によって液位を求める従来の超音波液
面測定方式では、別途に温度、圧力を測定して空間の音
速を正確に推定しない限り精度が悪く、したがって温度
計、圧力計、音速の推定計算回路などを付加せねばなら
ず、コストが大幅に上昇するが、本発明は、検出信号が
液中の伝播信号だけであり、タンク頂から液面までの空
間を超音波が往復するのに要する時間によって液位を求
めるものではないので、温度計、圧力計、音速の推定計
算回路などを付加する必要はなく、製造コストの大幅低
減が期せる。
Most of the applications of the bypass pipe type liquid level meter are closed tanks, and since the pressure and temperature in the tank are not constant, the time required for the ultrasonic wave to reciprocate in the space from the tank top to the liquid level depends on the time required. In the conventional ultrasonic liquid level measurement method for determining the liquid level, the accuracy is poor unless the temperature and pressure are separately measured to accurately estimate the sound velocity in the space.Therefore, the thermometer, pressure gauge, sound speed estimation calculation circuit, etc. However, in the present invention, the detection signal is only a propagation signal in the liquid, and the liquid is determined by the time required for the ultrasonic wave to reciprocate in the space from the tank top to the liquid surface. Since the position is not determined, there is no need to add a thermometer, a pressure gauge, a circuit for estimating the speed of sound, and the like, so that the manufacturing cost can be greatly reduced.

【0031】また、伝播時間t1 からタンク内液の超音
波伝播速度Vを知ることができるので、タンク内液の温
度、濃度(薬液の場合)など、伝播速度Vに依存タンク
内液の物理量をも同時に求めることができるという付加
的利点もある。
Further, since the ultrasonic wave propagation velocity V of the liquid in the tank can be known from the propagation time t 1 , the physical quantity of the liquid in the tank depends on the propagation velocity V, such as the temperature and concentration of the liquid in the tank (for a chemical liquid). There is an additional advantage that can be obtained at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る液面計をタンクに装着した状態を
示す縦断面図。
FIG. 1 is a longitudinal sectional view showing a state in which a liquid level gauge according to the present invention is mounted on a tank.

【図2】本発明に係る他の実施例の液面計をタンクに装
着した状態を示す縦断面図。
FIG. 2 is a longitudinal sectional view showing a state where a liquid level gauge according to another embodiment of the present invention is mounted on a tank.

【図3】素子への印加電圧と受信による素子の出力電圧
の一例を示すグラフ。
FIG. 3 is a graph showing an example of an applied voltage to an element and an output voltage of the element due to reception.

【図4】従来のバイパスパイプ式液面計の一例を示す縦
断面図。
FIG. 4 is a longitudinal sectional view showing an example of a conventional bypass pipe type liquid level meter.

【図5】従来のバイパスパイプ式液面計の他の例を示す
縦断面図。
FIG. 5 is a longitudinal sectional view showing another example of a conventional bypass pipe type liquid level meter.

【図6】従来のバイパスパイプ式(バイパスフロート
式)液面計の例を示す縦断面図。
FIG. 6 is a longitudinal sectional view showing an example of a conventional bypass pipe type (bypass float type) liquid level gauge.

【図7】従来のバイパスパイプ式(ディスプレースメン
ト式)液面計の一例を示す縦断面図。
FIG. 7 is a longitudinal sectional view showing an example of a conventional bypass pipe type (displacement type) liquid level gauge.

【符号の説明】[Explanation of symbols]

1 測定管 2 基準室側管 3a 超音波放射素子 3b 超音波検出素子 4a 超音波放射素子 4b 超音波検出素子 5A、5B 圧電素子 6 スプリング 7a,7b 切換回路 DESCRIPTION OF SYMBOLS 1 Measurement tube 2 Reference room side tube 3a Ultrasonic radiation element 3b Ultrasonic detection element 4a Ultrasonic radiation element 4b Ultrasonic detection element 5A, 5B Piezoelectric element 6 Spring 7a, 7b Switching circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉井 満 東京都多摩市貝取2−2−6−202 (72)発明者 加藤 繁実 東京都板橋区相生町1−13−309 Fターム(参考) 2F014 AA17 AB04 FB01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuru Tamai 2-2-6-202 Kaitori, Tama-shi, Tokyo (72) Inventor Shigemi Kato 1-13-309 Aioicho, Itabashi-ku, Tokyo F-term (reference) 2F014 AA17 AB04 FB01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タンク内へバイパス連通せしめてタンクの
側方に設ける測定管の下部側方に同測定管内と連通する
基準室側管を設けて、測定管及び基準室側管の各底部
に、各底部から発信されて測定管内の液面で反射された
超音波信号を受信する信号送・受信素子と、基準室側管
内の上部反射面で反射された超音波信号を受信する信号
送・受信素子をぞれぞれ設けてなるバイパスパイプ式液
面計。
1. A reference chamber side pipe communicating with the inside of a measuring pipe is provided at a lower side of a measuring pipe provided on the side of the tank by bypass communication into the tank, and provided at each bottom of the measuring pipe and the reference chamber side pipe. A signal transmitting / receiving element for receiving an ultrasonic signal transmitted from each bottom and reflected on the liquid surface in the measuring tube, and a signal transmitting / receiving element for receiving an ultrasonic signal reflected on the upper reflecting surface in the reference chamber side tube. A bypass pipe-type liquid level gauge that is provided with each receiving element.
【請求項2】タンク内へバイパス連通せしめてタンクの
側方に設ける測定管の下部側方に同測定管内と連通する
基準室側管を設けて、測定管及び基準室側管の各底部
に、各底部から発信されて測定管内の液面で反射された
超音波信号を受信する信号送・受信素子と、基準室側管
内の上部反射面で反射された超音波信号を受信する信号
送・受信素子をぞれぞれ設け、これらの信号送・受信素
子を、測定管底部の信号送・受信素子から測定管の液中
に発した超音波信号が測定管内の液面で反射して測定管
底部の信号送・受信素子に達するまでの時間t2 と、基
準室側管底部の信号送・受信素子から基準室側管の液中
に発した超音波信号が基準室側管内の上部反射面で反射
して基準室側管底部の信号送・受信素子に達するまでの
時間t1 と、基準室側管における信号送・受信素子面か
ら上部反射面までの定数である高さaとから、タンク内
の液位Lを L=a・t2 /t1の演算で求める制御演算回路に接続
してなるバイパスパイプ式液面計。
2. A reference chamber side pipe which is communicated with the inside of a measuring pipe provided at a lower side of a measuring pipe provided on the side of the tank by bypass communication into the tank, and is provided at each bottom of the measuring pipe and the reference chamber side pipe. A signal transmitting / receiving element for receiving an ultrasonic signal transmitted from each bottom and reflected on the liquid surface in the measuring tube, and a signal transmitting / receiving element for receiving an ultrasonic signal reflected on the upper reflecting surface in the reference chamber side tube. Each receiving element is provided, and these signal transmitting / receiving elements are measured by the ultrasonic signal emitted from the signal transmitting / receiving element at the bottom of the measuring pipe into the liquid in the measuring pipe reflected by the liquid level in the measuring pipe. The time t 2 until the signal reaches the signal transmitting / receiving element at the bottom of the tube, and the ultrasonic signal emitted from the signal transmitting / receiving element at the bottom of the reference room side tube into the liquid of the reference room side tube is reflected at the upper part in the reference room side tube. The time t 1 from the reflection on the surface to the signal transmitting / receiving element at the bottom of the tube on the reference room side, and the time on the reference room side From the height a, which is a constant from the signal transmitting / receiving element surface to the upper reflecting surface of the pipe, is connected to a control operation circuit for obtaining the liquid level L in the tank by the calculation of L = at 2 / t 1. By-pass pipe level gauge.
JP33616498A 1998-11-26 1998-11-26 Bypass pipe level gauge Expired - Fee Related JP3375899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33616498A JP3375899B2 (en) 1998-11-26 1998-11-26 Bypass pipe level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33616498A JP3375899B2 (en) 1998-11-26 1998-11-26 Bypass pipe level gauge

Publications (2)

Publication Number Publication Date
JP2000162020A true JP2000162020A (en) 2000-06-16
JP3375899B2 JP3375899B2 (en) 2003-02-10

Family

ID=18296343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33616498A Expired - Fee Related JP3375899B2 (en) 1998-11-26 1998-11-26 Bypass pipe level gauge

Country Status (1)

Country Link
JP (1) JP3375899B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286745A (en) * 2003-03-19 2004-10-14 Robert Bosch Gmbh Device for measuring filling level of liquid in vessel
CN103292867A (en) * 2013-05-13 2013-09-11 江苏杰创科技有限公司 External non-contact measurement barrel type ultrasonic liquid level meter
JP2015502536A (en) * 2011-11-21 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Fuel monitoring radio system
DE102022208284B3 (en) 2022-08-09 2023-12-28 Vitesco Technologies GmbH Fluid container and fluid container device for fluids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286745A (en) * 2003-03-19 2004-10-14 Robert Bosch Gmbh Device for measuring filling level of liquid in vessel
JP2015502536A (en) * 2011-11-21 2015-01-22 ザ・ボーイング・カンパニーTheBoeing Company Fuel monitoring radio system
CN103292867A (en) * 2013-05-13 2013-09-11 江苏杰创科技有限公司 External non-contact measurement barrel type ultrasonic liquid level meter
DE102022208284B3 (en) 2022-08-09 2023-12-28 Vitesco Technologies GmbH Fluid container and fluid container device for fluids

Also Published As

Publication number Publication date
JP3375899B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
CA1123946A (en) Ultrasonic transducer with reference reflector
US6631639B1 (en) System and method of non-invasive discreet, continuous and multi-point level liquid sensing using flexural waves
CN106338332B (en) System and method for measuring sound velocity in liquid or gaseous medium
EP0566708B1 (en) Measurement system
US8689624B2 (en) Level sensor system for propane tanks and or the likes
EP1962066B1 (en) Fluid level measurement device
US7843199B2 (en) Level meter
NO321656B1 (en) Method of determining volume flow
US8919193B2 (en) Ultrasonic liquid level detector
US20170160126A1 (en) Device For Determining a Speed of a Sound Signal in a Fluid
US20050241391A1 (en) Targeted guided wire level measuring device
US6584860B1 (en) Flow probe insertion gauge
RU2298769C2 (en) Device for determining and/or controlling volume and/or mass medium discharge in reservoir
US20100132453A1 (en) Bottom up contact type ultrasonic continuous level sensor
JP3375899B2 (en) Bypass pipe level gauge
US10677757B2 (en) Method for acoustically determining properties of a medium, and device for acoustically determining properties of a medium, comprising a reflective element
US6865137B2 (en) Method for pulse offset calibration in time of flight ranging systems
US20240310195A1 (en) Ultrasonic measuring cell and method for measuring the volume flow of a liquid in a tube
WO2006134358A1 (en) Acoustic wave sensor for sensing fluid level
EP3492884B1 (en) Ultrasonic fluid measurement calibration probe and method of calibrating an ultrasonic fluid measurement system
JP2003215112A (en) Ultrasonic wave density meter
US5936160A (en) Method and apparatus for measuring sound velocity in liquid
JP4212374B2 (en) Ultrasonic flow meter
JP5167927B2 (en) Tilt angle sensor and tilt angle sensor device
JP2001133319A (en) Acoustic velocity measuring device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees