JP4797515B2 - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device Download PDF

Info

Publication number
JP4797515B2
JP4797515B2 JP2005251163A JP2005251163A JP4797515B2 JP 4797515 B2 JP4797515 B2 JP 4797515B2 JP 2005251163 A JP2005251163 A JP 2005251163A JP 2005251163 A JP2005251163 A JP 2005251163A JP 4797515 B2 JP4797515 B2 JP 4797515B2
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
measurement
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005251163A
Other languages
Japanese (ja)
Other versions
JP2007064792A (en
Inventor
裕史 藤井
博邦 村上
幸夫 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005251163A priority Critical patent/JP4797515B2/en
Publication of JP2007064792A publication Critical patent/JP2007064792A/en
Application granted granted Critical
Publication of JP4797515B2 publication Critical patent/JP4797515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも一対の超音波送受信器を用いて超音波の伝搬時間を計測し、被測定流体の流速や流量を演算するようにした超音波式流れ計測装置に関するものである。   The present invention relates to an ultrasonic flow measuring device that measures the propagation time of ultrasonic waves using at least a pair of ultrasonic transceivers and calculates the flow velocity and flow rate of a fluid to be measured.

従来のこの種計測装置に用いられている超音波伝搬時間の測定手段は、一対の超音波送受信器を対向して配置し、一方の超音波送受信器をバ−スト信号で駆動して超音波を送信し、他方の超音波送受信器で受信し測定していた。   The conventional means for measuring the ultrasonic propagation time used in this type of measuring apparatus is to arrange a pair of ultrasonic transmitters / receivers facing each other and drive one ultrasonic transmitter / receiver with a burst signal to generate ultrasonic waves. And received and measured by the other ultrasonic transceiver.

図5に送信側の超音波送受信器の駆動波形Aと、受信側の超音波送受信器で受信した受信波形Bを示す。横軸が時間、縦軸が電圧である。   FIG. 5 shows a drive waveform A of the transmission-side ultrasonic transceiver and a reception waveform B received by the reception-side ultrasonic transceiver. The horizontal axis is time, and the vertical axis is voltage.

図中のT0は駆動波形Aの開始時点を、T1は駆動開始後、第3波終了時点を示す。R0は受信開始時点を、R1は受信開始後、第3波終了時点を示す。   In the figure, T0 indicates the start point of the drive waveform A, and T1 indicates the end point of the third wave after the start of drive. R0 indicates the reception start time, and R1 indicates the third wave end time after the start of reception.

このように、駆動波形の第m(m=3)波目のゼロクロス点T1を起点とし、他方の超音波送受信器で受信した電気信号の第m(m=3)波目を終点R1として、前記起点T1と前記終点R1との間の時間Tpを超音波伝搬時間として計測し、この伝搬時間を用いて流体の流速を計測し、流量を演算していた(例えば、特許文献1参照)。
特開平9−33308号公報
Thus, the zero-cross point T1 of the m-th (m = 3) wave of the drive waveform is the starting point, and the m-th (m = 3) wave of the electrical signal received by the other ultrasonic transceiver is the end point R1. The time Tp between the start point T1 and the end point R1 is measured as the ultrasonic propagation time, and the flow rate of the fluid is measured using the propagation time to calculate the flow rate (see, for example, Patent Document 1).
JP-A-9-33308

しかしながら、超音波は気体の種類によって、伝播する速度が異なるため、一つの超音波式流れ計測装置で気体の種類を変えて、流速や流量を測定する場合には、測定できる分解能が異なってしまい、測定する流体ごとに計測精度が異なってしまうという課題を有していた。   However, since the propagation speed of ultrasonic waves varies depending on the type of gas, the resolution that can be measured differs when measuring the flow rate and flow rate by changing the type of gas with a single ultrasonic flow measurement device. The problem is that the measurement accuracy differs for each fluid to be measured.

本発明は、前記従来の課題を解決するもので、測定する流体の音速に合わせて分解能をかえることによって、流体ごとに計測精度に差がでないようにした超音波式流れ計測装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an ultrasonic flow measurement device that changes the resolution according to the sound velocity of the fluid to be measured so that there is no difference in measurement accuracy for each fluid. With the goal.

前記従来の課題を解決するために、本発明の超音波式流れ計測装置は、流体通路の上下流側に間隔をおいて配置した少なくとも一対の超音波送受信器と、これら超音波送受信器間の超音波伝搬時間を測定する測定部と、この測定部の測定結果にもとづいて流体の流速および/または流量を演算する演算手段とを具備し、前記測定部には、複数の周波数の異なる発振回路からなり、測定流体の音速に合わせて、伝播時間測定に使用する発振回路を切り替える分解能切替手段を設けたものである。   In order to solve the above-described conventional problems, an ultrasonic flow measuring device according to the present invention includes at least a pair of ultrasonic transmitters / receivers arranged at intervals on the upstream and downstream sides of a fluid passage, and between these ultrasonic transmitters / receivers. A measurement unit that measures ultrasonic propagation time; and a calculation unit that calculates a flow velocity and / or a flow rate of a fluid based on a measurement result of the measurement unit. The measurement unit includes an oscillation circuit having a plurality of different frequencies. And a resolution switching means for switching the oscillation circuit used for the propagation time measurement according to the sound velocity of the measurement fluid.

これによって、音速の異なる流体を測定する場合でも、計測精度の差を気にすることなく、測定値の比較ができる。   Thus, even when measuring fluids having different sound speeds, the measured values can be compared without worrying about the difference in measurement accuracy.

本発明の超音波流量計は、音速の異なる気体を測定する場合でも、同じ分解能で計測できるため、精度の差を気にすることなく、複数の流体の流速や流量を測定することができる。   Since the ultrasonic flowmeter of the present invention can measure with the same resolution even when measuring gases with different sound speeds, it can measure the flow velocity and flow rate of a plurality of fluids without worrying about the difference in accuracy.

第1の発明は、被測定流体が流れる流体通路の上下流側に間隔をおいて配置した少なくとも一対の超音波送受信器と、前記一対の超音波送受信器間の超音波伝搬時間を測定する測定部と、前記超音波送受信器を駆動する為の周波数を発信する発振回路と、前記測定部の測定結果にもとづいて前記被計測流体の流速および/または流量を演算する演算手段とを具備し、前記測定部には、伝搬時間測定に使用する周波数の異なる複数の発振回路を備え、前記被測定流体の音速に合わせて、前記複数の発振回路を切り替える分解能切替手段を設けたことにより、複数の音速の異なる流体を同じ精度で測定できる。 The first invention is a measurement for measuring an ultrasonic propagation time between at least a pair of ultrasonic transmitters / receivers arranged at intervals on the upstream and downstream sides of a fluid passage through which a fluid to be measured flows, and the pair of ultrasonic transmitters / receivers. And an oscillation circuit for transmitting a frequency for driving the ultrasonic transceiver, and a calculation means for calculating the flow rate and / or flow rate of the fluid to be measured based on the measurement result of the measurement unit, wherein the measuring unit includes a plurality of oscillation circuits of frequencies different to be used for propagation time measurement, the in accordance with the sound speed of the fluid to be measured, by providing the resolution switching means for switching the plurality of oscillation circuits, a plurality It is possible to measure fluids with different sound speeds with the same accuracy.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1において、被測定流体が流れる流体通路1には流れ方向上、下流側に間隔をおいて、かつ超音波が流れに対して斜めに横切るごとく少なくとも一対の超音波送受信器2,3が配置してある。4は超音波送受信器2,3の駆動回路、5は超音波送受信器2,3の送
受信を切り替える切替回路、6は増幅回路、7は超音波パルスを検知する受信検知回路、8は超音波パルスの伝搬時間を計測する測定部、9は駆動回路4と計測部7に制御信号を出力する制御部、10は測定部8で測定した伝搬時間をもとに流体通路1に流れる流体の流速を演算し、必要に応じてそれに流体通路1の断面積と補正係数を乗じて流量を演算する演算手段である。
(Embodiment 1)
In FIG. 1, at least a pair of ultrasonic transmitters / receivers 2 and 3 are disposed in a fluid passage 1 through which a fluid to be measured flows, with an interval on the downstream side in the flow direction and as the ultrasonic waves obliquely cross the flow. It is. 4 is a drive circuit for the ultrasonic transmitters / receivers 2 and 3, 5 is a switching circuit for switching transmission / reception of the ultrasonic transmitters / receivers 2 and 3, 6 is an amplifier circuit, 7 is a reception detection circuit for detecting ultrasonic pulses, and 8 is an ultrasonic wave A measurement unit for measuring the propagation time of the pulse, 9 is a control unit for outputting a control signal to the drive circuit 4 and the measurement unit 7, and 10 is a flow velocity of the fluid flowing in the fluid passage 1 based on the propagation time measured by the measurement unit 8. And calculating the flow rate by multiplying it by the cross-sectional area of the fluid passage 1 and the correction coefficient as necessary.

一応、本実施の形態における測定装置について、まず動作、作用について説明する。例えば非測定流体を空気とし、超音波振動子2,3の使用周波数には約500kHzを選択する。   First, the operation and action of the measurement apparatus in the present embodiment will be described. For example, the non-measurement fluid is air, and the frequency used for the ultrasonic vibrators 2 and 3 is selected to be about 500 kHz.

発振回路は、例えばコンデンサと抵抗で構成され約500kHzの方形波を発信し、駆動回路4では発振回路の信号から超音波送受信器2を駆動するため方形波が3波のバースト信号からなる駆動信号を出力可能とする。また測定手段には測定流速の分解能を向上するため、例えばシングアラウンド法を用いる。   The oscillation circuit is composed of, for example, a capacitor and a resistor, and transmits a square wave of about 500 kHz. The drive circuit 4 drives the ultrasonic transmitter / receiver 2 from the signal of the oscillation circuit. Can be output. In addition, in order to improve the resolution of the measurement flow velocity, for example, a single-around method is used for the measurement means.

制御部8では駆動回路4に送信開始信号を出力すると同時に、タイマで設定された時間計測開始させる。駆動回路4は送信開始信号を受けると超音波送受信器2を駆動し、超音波パルスを送信する。   The control unit 8 outputs a transmission start signal to the drive circuit 4 and simultaneously starts measuring the time set by the timer. When receiving the transmission start signal, the drive circuit 4 drives the ultrasonic transceiver 2 and transmits an ultrasonic pulse.

送信された超音波パルスは流体通路1を流動する空気中を伝搬して他方の超音波送受信器3で受信される。受信された超音波パルスは増幅回路6で増幅された後、受信検知回路7に出力される。   The transmitted ultrasonic pulse propagates through the air flowing through the fluid passage 1 and is received by the other ultrasonic transceiver 3. The received ultrasonic pulse is amplified by the amplification circuit 6 and then output to the reception detection circuit 7.

受信検知回路7では受信信号の受信タイミングを決定し、制御部9に受信検知信号を出力する。制御部9では受信検知信号を受けると、予め設定した遅延時間td経過後に再び駆動回路4に送信開始信号を出力し、2回目の計測を行う。この動作をN回繰返した後、タイマを停止させる。演算部10ではタイマで測定した時間を測定回数のNで割り、遅延時間tdを引いて伝搬時間t1を演算する。   The reception detection circuit 7 determines the reception timing of the reception signal and outputs the reception detection signal to the control unit 9. When receiving the reception detection signal, the control unit 9 outputs a transmission start signal to the drive circuit 4 again after the elapse of a preset delay time td, and performs the second measurement. After repeating this operation N times, the timer is stopped. The calculation unit 10 calculates the propagation time t1 by dividing the time measured by the timer by the number of times N and subtracting the delay time td.

引き続き切替回路5で駆動回路4と受信検知回路7に接続する超音波送受信器を切り替え、再び制御部9では駆動回路4に送信開始信号を出力すると同時に、タイマの時間計測を開始させる。伝搬時間t1の測定と逆に、超音波送受信器3で超音波パルスを送信し、超音波送受信器2で受信する計測をN回繰返し、演算部10で伝搬時間t2を演算する。   Subsequently, the ultrasonic transmitter / receiver connected to the drive circuit 4 and the reception detection circuit 7 is switched by the switching circuit 5, and the control unit 9 again outputs a transmission start signal to the drive circuit 4 and simultaneously starts time measurement of the timer. Contrary to the measurement of the propagation time t1, an ultrasonic pulse is transmitted by the ultrasonic transmitter / receiver 3 and the measurement received by the ultrasonic transmitter / receiver 2 is repeated N times, and the calculation unit 10 calculates the propagation time t2.

ここで、超音波送受信器2,3の中心を結ぶ距離をL、空気の無風状態での音速をC、流体通路1内での流速をV、非測定流体の流れの方向と超音波送受信器2,3の中心を結ぶ線との角度をθとすると、伝搬時間t1、t2は、
t1=L/(C+Vcosθ) (1)
t2=L/(C−Vcosθ) (2)
で示される。(1)、(2)式より音速Cを消去して、流速Vを求めると
V=L/2cosθ(1/t1−1/t2) (3)
が得られる。
Here, the distance connecting the centers of the ultrasonic transmitters / receivers 2 and 3 is L, the speed of sound in a windless state of air is C, the flow velocity in the fluid passage 1 is V, the flow direction of the non-measurement fluid and the ultrasonic transmitter / receiver If the angle with the line connecting the centers of 2 and 3 is θ, the propagation times t1 and t2 are
t1 = L / (C + V cos θ) (1)
t2 = L / (C−Vcos θ) (2)
Indicated by When the velocity of sound V is calculated by eliminating the sound velocity C from the equations (1) and (2), V = L / 2 cos θ (1 / t1-1 / t2) (3)
Is obtained.

このように、L、θは既知であるので、t1とt2を測定すれば流速Vが求められる。この流速Vと流量測定部1の面積をS、補正係数をKとすれば、流量Qは
Q=KSV (4)
で演算できる。
Since L and θ are known in this way, the flow velocity V can be obtained by measuring t1 and t2. If the flow velocity V and the area of the flow rate measuring unit 1 are S and the correction coefficient is K, the flow rate Q is Q = KSV (4)
It can be calculated with.

なお、一対の超音波送受信器2,3は上記のように斜めに対向させた、いわゆるZパス型の他、上下流側に直線的に対向させた、いわゆるIパス型、および同一側に配置して途
中で反射させたものを受信する、いわゆるVパス、Wパス型などが考えられ、必要とあれば複数対の超音波送受信器を使用することも可能である。
The pair of ultrasonic transmitters / receivers 2 and 3 are arranged on the same side, so-called Z-path type, which is diagonally opposed as described above, and so-called I-path type, which is linearly opposed to the upstream and downstream sides. Thus, a so-called V-path, W-path type, etc., that receives the reflected light on the way can be considered, and if necessary, a plurality of pairs of ultrasonic transceivers can be used.

ところで、前記測定部7には分解能切替手段11を具備するものである。この分解能切替手段11には複数の周波数の異なる発振回路が設けられており、計測すべき流体の音速に合わせて伝搬時間測定に使用する発振回路を切り替えられるようにしてある。   By the way, the measurement unit 7 is provided with a resolution switching means 11. The resolution switching means 11 is provided with a plurality of oscillation circuits having different frequencies so that the oscillation circuit used for the propagation time measurement can be switched according to the sound velocity of the fluid to be measured.

すなわち、図2に示すように、音速の早い流体を計測する場合は、(a)のように周波数の高い発振回路を使用し、音速の遅い流体を計測する場合は、(b)のように周波数の低い発振回路を使用する。   That is, as shown in FIG. 2, when measuring a fluid with a high speed of sound, an oscillation circuit having a high frequency is used as shown in (a), and when measuring a fluid with a low speed of sound, as shown in (b). Use a low-frequency oscillation circuit.

したがって、音速の異なる流体での同じ計測精度で測定することができるものである。   Therefore, it is possible to measure with the same measurement accuracy with fluids having different sound speeds.

参考例1
図3において、流体の音速に合わせて1回の測定で繰り返す送受信の回数を変えて分解能を切り替える。例えば、音速が早い流体の場合は(a)のようにN回繰り返し、音速が遅い流体の場合は(b)のようにM回繰り返す。ここで、N>Mとすることによって、音速に合った分解能で伝播時間が測定できる。
( Reference Example 1 )
In FIG. 3, the resolution is switched by changing the number of times of transmission and reception repeated in one measurement according to the sound velocity of the fluid. For example, the fluid is repeated N times as shown in (a) in the case of a fluid having a high sound velocity, and is repeated M times as shown in (b) in the case of a fluid having a slow sound velocity. Here, by setting N> M, the propagation time can be measured with a resolution suitable for the speed of sound.

参考例2
図4において、流体の音速に合わせて測定間隔を変えて分解能を切り替える。例えば、音速が早い流体の場合は(a)のようにN秒、音速が遅い流体の場合は(b)のようにM秒間隔で測定する。ここで、N>Mとすることによって、音速に合った分解能で伝播時間が測定できる。
( Reference Example 2 )
In FIG. 4, the resolution is switched by changing the measurement interval in accordance with the sound velocity of the fluid. For example, the fluid is measured at intervals of N seconds as shown in (a) for a fluid with a high sound speed, and at intervals of M seconds as shown in (b) for a fluid with a slow sound speed. Here, by setting N> M, the propagation time can be measured with a resolution suitable for the speed of sound.

以上のように、本発明にかかる流れ計測装置は、複数の種類の流体を測定する場合に被測定流体の音速の違いによる影響を受けることなく、常に同じ計測精度で測定できるため、非常に高精度の超音波流量計を実現することが可能となるので、測定基準器及びガスメーターや水道メーター等の用途にも適用できる。   As described above, the flow measuring device according to the present invention is very high in measuring a plurality of types of fluids without being affected by the difference in sound velocity of the fluid to be measured, and always with the same measurement accuracy. Since it is possible to realize an ultrasonic flowmeter with high accuracy, it can also be applied to applications such as a measurement standard device, gas meter, and water meter.

本発明の実施の形態1における超音波式流れ測定装置の構成図Configuration diagram of ultrasonic flow measuring apparatus according to Embodiment 1 of the present invention 本発明の実施の形態1の分解能切り替えの説明図Explanatory drawing of resolution switching of Embodiment 1 of the present invention 本発明の参考例1の分解能切り替えの説明図Explanatory drawing of resolution switching of Reference Example 1 of the present invention 本発明の参考例2の分解能切り替えの説明図Explanatory drawing of the resolution switching of the reference example 2 of this invention 従来の超音波式流れ測定装置の送受信波形図Transmission / reception waveform diagram of a conventional ultrasonic flow measurement device

1 流体通路
2,3 超音波送受信器
8 測定部
9 制御部
10 演算手段
11 分解能切替手段
DESCRIPTION OF SYMBOLS 1 Fluid path 2, 3 Ultrasonic transmitter / receiver 8 Measuring part 9 Control part 10 Calculation means 11 Resolution switching means

Claims (1)

被測定流体が流れる流体通路の上下流側に間隔をおいて配置した少なくとも一対の超音波送受信器と、前記一対の超音波送受信器間の超音波伝搬時間を測定する測定部と、前記超音波送受信器を駆動する為の周波数を発信する発振回路と、前記測定部の測定結果にもとづいて前記被計測流体の流速および/または流量を演算する演算手段とを具備し、前記測定部には、伝搬時間測定に使用する周波数の異なる複数の発振回路を備え、前記被測定流体の音速に合わせて、前記複数の発振回路を切り替える分解能切替手段を設けた超音波式流れ測定装置。 At least a pair of ultrasonic transmitters / receivers arranged at intervals on the upstream and downstream sides of the fluid passage through which the fluid to be measured flows, a measuring unit for measuring an ultrasonic propagation time between the pair of ultrasonic transmitters / receivers, and the ultrasonic wave An oscillation circuit for transmitting a frequency for driving a transceiver, and a calculation means for calculating a flow rate and / or a flow rate of the fluid to be measured based on a measurement result of the measurement unit. comprising a plurality of oscillation circuits having different frequencies to be used for propagation time measurement, the in accordance with the sound speed of the fluid to be measured, the plurality of ultrasonic flow measuring device provided with resolution switching means for switching the oscillation circuit.
JP2005251163A 2005-08-31 2005-08-31 Ultrasonic flow measuring device Expired - Fee Related JP4797515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251163A JP4797515B2 (en) 2005-08-31 2005-08-31 Ultrasonic flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251163A JP4797515B2 (en) 2005-08-31 2005-08-31 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP2007064792A JP2007064792A (en) 2007-03-15
JP4797515B2 true JP4797515B2 (en) 2011-10-19

Family

ID=37927162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251163A Expired - Fee Related JP4797515B2 (en) 2005-08-31 2005-08-31 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP4797515B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815454B2 (en) 2007-03-14 2011-11-16 カヤバ工業株式会社 Shock absorber
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
CN103170579B (en) * 2013-04-18 2017-01-25 魏文涛 Stainless steel water meter shell and machining method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833123A (en) * 1981-08-21 1983-02-26 Fuji Electric Co Ltd Measuring device for ultrasonic wave flow rate
JP4292620B2 (en) * 1999-04-02 2009-07-08 パナソニック株式会社 Flow measuring device
JP2002131098A (en) * 2000-10-20 2002-05-09 Matsushita Electric Ind Co Ltd Fluid supply device
JP4689879B2 (en) * 2001-06-20 2011-05-25 関西ガスメータ株式会社 Ultrasonic flow velocity measurement method

Also Published As

Publication number Publication date
JP2007064792A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
WO2011083766A1 (en) Ultrasonic flowmeter
WO2011055532A1 (en) Ultrasonic flowmeter
WO2011074248A1 (en) Flow rate measuring device
JP4561088B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
WO2014006881A1 (en) Flow quantity measuring apparatus
JP2003014515A (en) Ultrasonic flowmeter
JP2017187310A (en) Ultrasonic flowmeter
JP3692689B2 (en) Flowmeter
JP3624743B2 (en) Ultrasonic flow meter
JP2008185441A (en) Ultrasonic flowmeter
WO2012157261A1 (en) Ultrasonic flow meter
JP2005300244A (en) Ultrasonic flow meter
JP2007322186A (en) Ultrasonic flow meter
JP2007064988A (en) Flowmeter
JP7203352B2 (en) ultrasonic flow meter
JP2012107874A (en) Ultrasonic flowmeter
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2000338123A (en) Ultrasonic floe speed measuring method
JP2007064988A5 (en)
JP6767628B2 (en) Flow measuring device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP2012026864A (en) Ultrasonic flowmeter
JP2012002625A (en) Flow rate measuring apparatus
JPH0117090B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees