JPH04328423A - Ultrasonic wave gas flowmeter - Google Patents

Ultrasonic wave gas flowmeter

Info

Publication number
JPH04328423A
JPH04328423A JP3124826A JP12482691A JPH04328423A JP H04328423 A JPH04328423 A JP H04328423A JP 3124826 A JP3124826 A JP 3124826A JP 12482691 A JP12482691 A JP 12482691A JP H04328423 A JPH04328423 A JP H04328423A
Authority
JP
Japan
Prior art keywords
flow rate
ultrasonic
temperature
gas
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3124826A
Other languages
Japanese (ja)
Inventor
Yutaka Kashiwase
柏瀬 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP3124826A priority Critical patent/JPH04328423A/en
Publication of JPH04328423A publication Critical patent/JPH04328423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a flow rate which in corrected by the specified temperature by using the ultrasonic wave in the gas flowing through a pipe. CONSTITUTION:A pair of ultrasonic wave probes 2 and 3 are arranged so as to face each other through fluid to be measured on the straight line which is inclined with respect to the central axis of a pipe 1 wherein gas flows. An ultrasonic wave is propagated in the forward direction and in the reverse direction with respect to the flowing direction of the fluid. The flow rate of the gas in the standard state is measured by using the time difference between the propagating times of the ultrasonic wave. Since the difference between the propagating times of the ultrasonic wave in the forward direction and in the reverse direction in the measurement is used, the effect of the common fluctuation in the fixed delay time for both directions can be removed. Since the flow rate which is corrected for temperature is obtained by using the relationship among the sound speed, the absolute temperature and the volume, mounting of a temperature transmitter is not required, and the flow rate which is corrected for the temperature can be accurately measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は例えば超音波を用いて
管路内を流れる気体の温度補正された流量を測定する超
音波気体流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic gas flow meter that uses, for example, ultrasonic waves to measure the temperature-corrected flow rate of gas flowing in a pipe.

【0002】0002

【従来の技術】図5は従来の超音波気体流量計の一例を
示すブロック図であり,1は管路,2は第1超音波プロ
ーブ,3は第2超音波プローブ,27は温度発信器,2
8は伝搬時間測定回路,29は流量演算回路,30は測
定流量の温度補正を行う温度補正回路,Dは管路1内径
,Lは管路1内の超音波伝搬路長,Vは流速である。 従来の超音波気体流量計は上記のように構成され,内径
Dの管路1の中心からθだけ傾いた軸上に第1超音波プ
ローブ2と第2超音波プローブ3を配置し,それぞれの
超音波プローブには伝搬時間測定回路28,流量演算回
路29および温度補正回路30が接続される。
[Prior Art] FIG. 5 is a block diagram showing an example of a conventional ultrasonic gas flowmeter, in which 1 is a pipe line, 2 is a first ultrasonic probe, 3 is a second ultrasonic probe, and 27 is a temperature transmitter. ,2
8 is a propagation time measurement circuit, 29 is a flow rate calculation circuit, 30 is a temperature correction circuit for temperature correction of the measured flow rate, D is the inner diameter of the pipe 1, L is the length of the ultrasonic propagation path in the pipe 1, and V is the flow velocity. be. The conventional ultrasonic gas flow meter is constructed as described above, and the first ultrasonic probe 2 and the second ultrasonic probe 3 are arranged on an axis tilted by θ from the center of the pipe line 1 with an inner diameter D, and each A propagation time measurement circuit 28, a flow rate calculation circuit 29, and a temperature correction circuit 30 are connected to the ultrasonic probe.

【0003】管路1内に音速Cの気体が流速Vにて矢示
の方向へ流れている場合,第1超音波プローブ2から第
2超音波プローブ3への超音波が伝搬するのに要する時
間tuは
[0003] When gas with a sonic velocity C is flowing in the direction of the arrow at a velocity V in the conduit 1, the time required for the ultrasound to propagate from the first ultrasonic probe 2 to the second ultrasonic probe 3 is time tu is

【数1】 第2超音波プローブ3から第1超音波プローブ2への超
音波伝搬時間tdは
[Equation 1] The ultrasonic propagation time td from the second ultrasonic probe 3 to the first ultrasonic probe 2 is

【数2】 τは固定遅延時間,すなわち超音波信号の第1波からト
リガ波まで,あるいは回路やケーブルなどによって生じ
る時間遅れの総和を示す。
[Equation 2] τ represents a fixed delay time, that is, the total time delay from the first wave of the ultrasound signal to the trigger wave or caused by circuits, cables, etc.

【0004】上記伝搬時間tu,tdを用いて流量演算
回路29にて流量を算出する。伝搬時間の逆数の差から
の流速Vは
A flow rate calculation circuit 29 calculates the flow rate using the propagation times tu and td. The flow velocity V from the difference in the reciprocal of the propagation time is

【数3】 従って流量Qは管路1の断面積をSとすると[Math 3] Therefore, if the cross-sectional area of pipe 1 is S, then the flow rate Q is

【数4】 (3)式を代入して[Math 4] (3) Substituting Eq.

【数5】 上式のとおり流量Qを得る。[Math 5] Obtain the flow rate Q according to the above formula.

【0005】ところが一般に気体の体積は温度によって
膨脹・収縮を行い
However, in general, the volume of gas expands and contracts depending on the temperature.

【数6】 ここでQ1は絶対温度T1(゜k)における体積,Q2
は絶対温度T2(゜k)における体積である。従って標
準状態の絶対温度をTnとおくと標準状態の流量Qnは
[Equation 6] Here, Q1 is the volume at absolute temperature T1 (°k), Q2
is the volume at absolute temperature T2 (°k). Therefore, if the absolute temperature in the standard state is Tn, the flow rate Qn in the standard state is

【数7】 ここでTは温度発信器27からの流量測定時の絶対温度
である。
[Equation 7] Here, T is the absolute temperature when the flow rate is measured from the temperature transmitter 27.

【0006】[0006]

【発明が解決しようとする課題】上記のような超音波気
体流量計では,気体流量の測定は管路1内気体の流れの
順方向ならびに逆方向における超音波伝搬時間の逆数の
差と温度補正された音速Cを用いて行う。上記測定の超
音波伝搬時間には固定遅延時間τが含まれている。超音
波伝搬時間は送信回路から超音波プローブ,超音波伝搬
路長L,超音波プローブから受信回路により形成される
超音波伝搬路にかかわり,例えばφ100管路1におい
ては上記値は約400μs,しかし流量測定にかかわる
順方向と逆方向との伝搬時間差△tは管路1寸法や流速
に依存するが約30〜40μsである。超音波伝搬路に
生ずる固定遅延時間τは超音波プローブの管路1への実
装後には測定できない上,その値は超音波プローブ毎に
異なるため管路1への実装前に測定し設定値として記憶
して置かなければならない。
[Problems to be Solved by the Invention] In the above-mentioned ultrasonic gas flowmeter, the gas flow rate is measured using the difference in the reciprocal of the ultrasonic propagation time in the forward and reverse directions of the gas flow in the pipe 1 and temperature correction. This is done using the sound velocity C. The ultrasonic propagation time in the above measurement includes a fixed delay time τ. The ultrasonic propagation time is related to the ultrasonic propagation path formed from the transmitting circuit to the ultrasonic probe, the ultrasonic propagation path length L, and the ultrasonic probe to the receiving circuit. For example, for φ100 pipe 1, the above value is about 400 μs, but The propagation time difference Δt between the forward direction and the reverse direction involved in flow rate measurement is approximately 30 to 40 μs, although it depends on the dimensions of the pipe line 1 and the flow rate. The fixed delay time τ that occurs in the ultrasonic propagation path cannot be measured after the ultrasonic probe is installed in conduit 1, and its value differs for each ultrasonic probe, so it must be measured before installation in conduit 1 and used as the set value. Must be remembered.

【0007】また固定遅延時間τは振動子の弾性定数が
変わりその結果共振周波数が変化して時間差測定におけ
る固定遅延時間τが変動して,上記設定値との間に偏差
が生じスケールファクタが変化するため流量測定精度が
低下する。更に算出された気体流量は温度補正が行われ
る。このため管路1内気体温度測定に用いる温度発信器
27ならびにこれの管路1への装着のための取付具と温
度補正回路30を設けなければならないという問題点が
あった。
[0007] Also, the fixed delay time τ changes as the elastic constant of the vibrator changes, resulting in a change in the resonant frequency, which causes the fixed delay time τ in time difference measurement to fluctuate, resulting in a deviation from the above set value and a change in the scale factor. Therefore, the accuracy of flow rate measurement decreases. Furthermore, the calculated gas flow rate is subjected to temperature correction. Therefore, there was a problem in that it was necessary to provide a temperature transmitter 27 used to measure the temperature of the gas inside the pipe 1, a fitting for mounting it on the pipe 1, and a temperature correction circuit 30.

【0008】この発明はかかる問題点を解決するために
なされたもので,超音波伝搬路の固定遅延時間τの測定
ならびに管路1に気体温度測定のための温度発信器の装
着を行うことなく温度補正された気体流量が得られる超
音波気体流量計を得ることを目的とする。
The present invention was made to solve these problems, and it is possible to measure the fixed delay time τ of the ultrasonic propagation path and to install a temperature transmitter in the pipe 1 to measure the gas temperature. The purpose of this invention is to obtain an ultrasonic gas flow meter that can obtain temperature-corrected gas flow rates.

【0009】[0009]

【課題を解決するための手段】この発明に係る超音波気
体流量計は,管路内気体の流れに対する順方向ならびに
逆方向の超音波伝搬時間を測定する伝搬時間測定回路と
,管路寸法や管路への超音波プローブ取付姿態ならびに
標準状態の温度指定にかかわる定数を設定する係数設定
器と,伝搬時間測定回路にて測定された順方向および逆
方向の伝搬時間から得られた伝搬時間差と係数設定器に
て設定された定数に基づいて温度補正された気体流量へ
の変換を行う流量演算回路を設けたものである。
[Means for Solving the Problems] The ultrasonic gas flowmeter according to the present invention includes a propagation time measurement circuit that measures the ultrasonic propagation time in the forward and reverse directions with respect to the flow of gas in the pipe, and the pipe dimensions and A coefficient setter that sets the constants related to the installation position of the ultrasonic probe in the pipeline and the temperature specification in the standard state, and the propagation time difference obtained from the forward and reverse propagation times measured by the propagation time measurement circuit. A flow rate calculation circuit is provided that performs conversion into a temperature-corrected gas flow rate based on a constant set by a coefficient setter.

【0010】0010

【作用】この発明においては,気体が流れている管路の
中心軸に対して傾斜した直線上に対向配置された一対の
超音波プローブを用いて,両者の間を流れる気体の方向
に対して順方向および逆方向の超音波伝搬時間を測定し
,これらから得られた伝搬時間差ならびに管路寸法や管
路へのプローブ取付姿態などの係数に基づき流量演算回
路において温度補正された気体流量を測定する。
[Operation] In this invention, a pair of ultrasonic probes are placed opposite each other on a straight line inclined with respect to the central axis of the pipe through which the gas flows, and the ultrasonic probes are arranged oppositely in the direction of the gas flowing between them. Measures the ultrasonic propagation time in the forward and reverse directions, and measures the gas flow rate, which is temperature-corrected in the flow rate calculation circuit based on the propagation time difference obtained from these and coefficients such as pipe dimensions and how the probe is attached to the pipe. do.

【0011】上記測定においては,順方向ならびに逆方
向への超音波伝搬時間の伝搬時間差を用いるため,超音
波伝搬路の固定遅延時間は両者に共通な温度その他に起
因する変動の影響が除去できる。また温度による気体の
体積の変化を温度発信器を用いることなく補正すること
ができる。
[0011] In the above measurement, since the propagation time difference between the forward and reverse ultrasonic propagation times is used, the fixed delay time of the ultrasonic propagation path can eliminate the influence of fluctuations caused by temperature and other factors that are common to both. . Further, changes in gas volume due to temperature can be corrected without using a temperature transmitter.

【0012】0012

【実施例】この発明の一実施例を添付図面を参照して詳
細に説明する。図1はこの発明の一実施例を示すブロッ
ク図であり,1,2,3,C,V,D,θ,τは上記従
来流量計と同一で,同一符号は同一または相当部分を示
す。5は超音波伝搬時間を測定する伝搬時間測定回路,
6は管路1寸法や管路1への超音波プローブの取付姿態
ならびに温度と音速との関連を示す諸定数を設定する係
数設定器,7は気体の流れる順方向ならびに逆方向の伝
搬時間差△tに基づき流量を算出する流量演算回路,8
は減算器,9は乗算器を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, in which 1, 2, 3, C, V, D, θ, and τ are the same as those in the conventional flowmeter, and the same symbols indicate the same or corresponding parts. 5 is a propagation time measurement circuit that measures ultrasonic propagation time;
6 is a coefficient setting device for setting various constants indicating the dimensions of the pipe 1, the attachment state of the ultrasonic probe to the pipe 1, and the relationship between temperature and sound speed; 7 is a propagation time difference △ in the forward and reverse directions of gas flow; Flow rate calculation circuit that calculates the flow rate based on t, 8
9 indicates a subtracter, and 9 indicates a multiplier.

【0013】上記のように構成された超音波気体流量計
においては,気体が流れている管路1の中心軸に対して
傾斜した直線上に被測定流体を介して対向させて実装し
た,第1超音波プローブ2から第2超音波プローブ3へ
超音波が伝搬するのに要する時間の移動平均値tu,お
よび逆に第2超音波プローブ3から第1超音波プローブ
2へ超音波が伝搬する際の時間の移動平均値tdが下記
のとおり求められる。
In the ultrasonic gas flowmeter configured as described above, the first sensor is mounted so as to face the fluid to be measured on a straight line inclined with respect to the central axis of the pipe 1 through which the gas flows. The moving average value tu of the time required for the ultrasound to propagate from the first ultrasound probe 2 to the second ultrasound probe 3, and conversely for the ultrasound to propagate from the second ultrasound probe 3 to the first ultrasound probe 2. The moving average value td of the actual time is determined as follows.

【0014】音速Cの気体が流速Vで流れている場合,
第1超音波プローブ2から第2超音波プローブ3へ超音
波が伝搬するのに要する時間tuは
[0014] When a gas with a sonic speed of C is flowing with a flow velocity of V,
The time tu required for the ultrasound to propagate from the first ultrasound probe 2 to the second ultrasound probe 3 is

【数8】 第2超音波プローブ3から第1超音波プローブ2への超
音波の伝搬時間tdは
[Equation 8] The propagation time td of the ultrasound from the second ultrasound probe 3 to the first ultrasound probe 2 is

【数9】 流量演算回路7においてそれぞれの超音波伝搬時間tu
,tdから流量を算出する,すなわち伝搬時間差△tは
[Equation 9] In the flow rate calculation circuit 7, each ultrasonic propagation time tu
, calculate the flow rate from td, that is, the propagation time difference △t is

【数10】[Math. 10]

【0015】空気の流量測定においては,C=340(
m/s),V=30(m/s),θ=(60°)のとき
In measuring the air flow rate, C=340(
m/s), V=30(m/s), θ=(60°),

【数11】 C2の対してV2cos2θは0.19%程度なので省
略する。従って
[Equation 11] Since V2cos2θ is about 0.19% of C2, it will be omitted. therefore

【数12】 また流量Qは管路1の断面積をsとすると[Math. 12] In addition, the flow rate Q is calculated by assuming that the cross-sectional area of pipe 1 is s.

【数13】 流速の式を代入して[Math. 13] Substituting the equation for flow velocity

【数14】[Math. 14]

【0016】ここで空気の音速Cは次式で示される[0016] Here, the sound speed C of air is expressed by the following equation.

【数
15】 aは比例係数,Tは流体の絶対温度(°k),従って
[Formula 15] a is the proportionality coefficient, T is the absolute temperature of the fluid (°k), and therefore


数16】 標準状態における流量Qnは
[
Equation 16] The flow rate Qn in the standard state is

【数17】 となり標準状態の絶対温度を規定すると気体の温度に依
存せず伝搬時間差△tのみに比例する気体流量を得る。
[Equation 17] If the absolute temperature in the standard state is defined, a gas flow rate that does not depend on the gas temperature and is proportional only to the propagation time difference Δt can be obtained.

【0017】気体の流れの順・逆方向における超音波伝
搬時間tu,tdは伝搬時間測定回路5にて測定され移
動平均などによる平均値となり,流量演算回路7の減算
器8を経て両者の超音波伝搬時間差△tを得る。管路1
寸法や管路1へのプローブ取付姿態ならびに標準状態で
の温度の指定などの定数を設定する係数設定器6からの
出力と共に乗算器9に加わる。温度補正された気体流量
Qnが得られる。
The ultrasonic propagation times tu and td in the forward and reverse directions of the gas flow are measured by the propagation time measuring circuit 5 and are averaged by a moving average, etc., and the supersonic waves of the two are passed through the subtractor 8 of the flow rate calculation circuit 7. Obtain the sound wave propagation time difference Δt. Conduit 1
It is applied to the multiplier 9 together with the output from the coefficient setter 6 which sets constants such as dimensions, the manner in which the probe is attached to the conduit 1, and the designation of the temperature in the standard state. A temperature-corrected gas flow rate Qn is obtained.

【0018】図2は固定遅延時間の一例を示す説明図で
あり,プローブに用いられる振動子の音−電変換時の立
上り特性の一例を示し,s1は正常時における振動子の
立上り特性,s2は閾値を示し閾値を超えた信号により
回路が動作し,信号が基線s3と交叉する位置までの立
上り時間を固定遅延時間τとする。s4は振動子の他の
立上り特性を示している。
FIG. 2 is an explanatory diagram showing an example of a fixed delay time, and shows an example of the rise characteristic of a transducer used in a probe during sound-to-electrical conversion, where s1 is the rise characteristic of the transducer under normal conditions, and s2 indicates a threshold value, and the circuit is operated by a signal exceeding the threshold value, and the rise time until the signal intersects the base line s3 is defined as a fixed delay time τ. s4 indicates another rise characteristic of the vibrator.

【0019】特性s4における振動子の立上り特性は固
定遅延時間τに対して更に振動子特性や接合構造などの
相違により△τ1の遅延が生じる。また振動子はその厚
さが動作周波数の半波長λ/2に等しい寸法にて共振し
,この感度のよい状態で通常使用されているが,しかし
気体温度により音速が変わるのでこのとき厚さ一定の振
動子は波長即ち共振周波数が変化する。この状態におい
ても固定遅延時間τが変わり同様に△τ2の遅延が生じ
る。従って△τ=△τ1+△τ2の遅延が発生するが,
超音波伝搬路の順方向ならびに逆方向の時間差の演算に
より遅延は相殺され測定精度へ影響を与えない。
The rise characteristic of the vibrator in the characteristic s4 has a delay of Δτ1 with respect to the fixed delay time τ due to differences in the vibrator characteristics, bonding structure, etc. In addition, the resonator resonates when its thickness is equal to half the wavelength λ/2 of the operating frequency, and is normally used in this highly sensitive state.However, since the sound speed changes depending on the gas temperature, the thickness remains constant. The wavelength, or resonant frequency, of the oscillator changes. In this state as well, the fixed delay time τ changes and a delay of Δτ2 similarly occurs. Therefore, a delay of △τ = △τ1 + △τ2 occurs, but
By calculating the time difference between the forward and reverse directions of the ultrasonic propagation path, the delay is canceled out and does not affect measurement accuracy.

【0020】図3は超音波気体流量計の一例を示すブロ
ック図,図4は超音波気体流量計動作のタイムチャート
を示し,1,2,3,5,6,7,8,9,は上記実施
例と同一で,クロックパルス発生器15にて駆動された
タイマ16からのタイマ指令s4により第1切換器17
は超音波の管路1内伝搬方向を切換える。
FIG. 3 is a block diagram showing an example of an ultrasonic gas flowmeter, and FIG. 4 is a time chart of the operation of the ultrasonic gas flowmeter. Same as the above embodiment, the first switch 17 is operated by the timer command s4 from the timer 16 driven by the clock pulse generator 15.
switches the propagation direction of the ultrasonic waves in the conduit 1.

【0021】例えば送信回路18からの送信波s5によ
り第1超音波プローブ2を付勢し,管路1内流体の流れ
の逆方向へ伝搬した超音波は第2超音波プローブ3にて
受波され,再び第1切換器17を経て受信回路19に加
わり受信波s6を得る。上記タイマ指令s4と受信波s
6は共にフリップフロップ回路20へ加わり,超音波伝
搬時間を持続時間とする方形波s7を発生する。カウン
タ21は上記方形波s7のクロックパルスによる計数を
行い,その出力は第1切換器17と同期して作動する第
2切換器22を経て第1測定回路23へ加わる。
For example, the first ultrasonic probe 2 is energized by the transmitted wave s5 from the transmitting circuit 18, and the ultrasonic waves propagated in the opposite direction of the fluid flow in the conduit 1 are received by the second ultrasonic probe 3. The signal then passes through the first switch 17 and enters the receiving circuit 19 again to obtain a received wave s6. The above timer command s4 and received wave s
6 are both applied to a flip-flop circuit 20 to generate a square wave s7 whose duration is the ultrasound propagation time. The counter 21 performs counting using the clock pulse of the square wave s7, and its output is applied to the first measuring circuit 23 via the second switch 22 which operates in synchronization with the first switch 17.

【0022】つぎのタイマ指令s4により第1切換器1
7ならびに第2切換器22は共にその動作が反転し,送
信回路18からの送信波s5により第2超音波プローブ
4を付勢すると,管路1内流体の流れの順方向へ超音波
が伝搬する。同様に超音波伝搬時間に該当するクロック
パルスが計数され第2測定回路24へ加わる。
[0022] The first switch 1 is activated by the next timer command s4.
7 and the second switching device 22 reverse their operations, and when the second ultrasonic probe 4 is energized by the transmission wave s5 from the transmission circuit 18, the ultrasonic waves propagate in the forward direction of the fluid flow in the pipe line 1. do. Similarly, clock pulses corresponding to the ultrasound propagation time are counted and applied to the second measurement circuit 24.

【0023】上記のとりタイマ指令s4により管路1内
の順方向と逆方向への超音波伝搬時間から得られたクロ
ックパルスは,逐次第1測定回路23での順方向測定s
8ならびに第2測定回路24での逆方向測定s9にて,
移動平均が行われ伝搬時間の平均値を出力する。流量測
定回路7では管路1内の気体の流れの順方向ならびに逆
方向における超音波伝搬の時間差と係数設定器6からの
定数により温度補正された流量測定を行う。
The clock pulses obtained from the ultrasonic propagation time in the forward and reverse directions in the conduit 1 by the above-described timer command s4 are sequentially measured in the forward direction by the first measuring circuit 23.
8 and the reverse direction measurement s9 in the second measurement circuit 24,
A moving average is performed and the average value of the propagation time is output. The flow measurement circuit 7 performs temperature-corrected flow measurement using the time difference of ultrasonic propagation in the forward and reverse directions of the gas flow in the pipe line 1 and the constant from the coefficient setter 6.

【0024】係数設定器6にて標準状態における絶対温
度を規定することにより標準状態における流量Qnが得
られる。上記のように温度補正された流量Qnの測定に
際しては,気体温度の測定が不要になるとともに固定遅
延時間τの影響が回避できる。なお上記演算をソフトウ
ェアで実行してもよい。
By defining the absolute temperature in the standard state using the coefficient setter 6, the flow rate Qn in the standard state can be obtained. When measuring the temperature-corrected flow rate Qn as described above, it is not necessary to measure the gas temperature, and the influence of the fixed delay time τ can be avoided. Note that the above calculation may be performed by software.

【0025】[0025]

【発明の効果】この発明は以上説明したとおり,管路内
気体の流れの順,逆方向の超音波伝搬時間から得られた
伝搬時間差ならびに測定にかかわる諸定数を設定する係
数設定器に基づいて気体流量の演算を行う流量演算回路
を設ける簡単な構造により,温度発信器を用いることな
く温度補正された流量測定ができる。装置毎に異る固定
遅延時間を出荷時に実測して固定値として設定する必要
がない。設定後の固定遅延時間の変動にともなう流量演
算誤差の発生が防止でき流量測定精度が向上できるとい
う効果がある。
[Effects of the Invention] As explained above, the present invention is based on a coefficient setting device that sets the propagation time difference obtained from the ultrasonic propagation time in the forward and reverse directions of the gas flow in the pipe and various constants related to measurement. With a simple structure that includes a flow rate calculation circuit that calculates the gas flow rate, temperature-corrected flow rate measurements can be performed without using a temperature transmitter. There is no need to actually measure the fixed delay time, which differs for each device, at the time of shipment and set it as a fixed value. This has the effect of preventing flow rate calculation errors from occurring due to fluctuations in the fixed delay time after setting, and improving flow rate measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例を示すブロック図[Fig. 1] Block diagram showing one embodiment of this invention

【図2】
固定遅延時間の一例を示す説明図
[Figure 2]
Explanatory diagram showing an example of fixed delay time

【図3】超音波気体流
量計の一例を示すブロック図
[Figure 3] Block diagram showing an example of an ultrasonic gas flowmeter

【図4】超音波気体流量計
動作のタイムチャート
[Figure 4] Time chart of ultrasonic gas flowmeter operation

【図5】従来の超音波気体流量計
の一例を示すブロック図
[Figure 5] Block diagram showing an example of a conventional ultrasonic gas flowmeter

【符号の説明】[Explanation of symbols]

1    管路 2    第1超音波プローブ 3    第2超音波プローブ 5    伝搬時間測定回路 6    係数設定器 7    流量演算回路 1 Pipeline 2 First ultrasonic probe 3 Second ultrasonic probe 5 Propagation time measurement circuit 6 Coefficient setter 7 Flow rate calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  気体が流れる管路の中心軸に対して傾
斜した直線上に一対の超音波プローブを被測定流体を介
して対抗させて実装し,両者の間を流れる流体の向きに
対して順方向および逆方向になるように超音波を伝えさ
せそれぞれの方向毎の超音波伝搬時間より気体の流量を
測定する超音波気体流量計において,管路内気体の流れ
に対する順方向ならびに逆方向の超音波伝搬時間を測定
する伝搬時間測定回路と,管路寸法や管路への超音波プ
ローブ取付姿態ならびに標準状態の温度指定にかかわる
定数を設定する係数設定器と,上記伝搬時間測定回路に
て測定された順方向および逆方向の伝搬時間から得られ
た伝搬時間差と上記係数設定器にて設定された定数に基
づいて温度補正された気体流量への変換を行う流量演算
回路とを備えたことを特徴とする気体流量計。
[Claim 1] A pair of ultrasonic probes are mounted opposite to each other with the fluid to be measured interposed on a straight line inclined with respect to the central axis of a conduit through which gas flows, and the direction of the fluid flowing between them is In an ultrasonic gas flowmeter that transmits ultrasonic waves in the forward and reverse directions and measures the gas flow rate from the ultrasonic propagation time in each direction, the forward and reverse directions of the gas flow in the pipe are measured. A propagation time measurement circuit that measures the ultrasonic propagation time, a coefficient setting device that sets constants related to the pipe dimensions, the way the ultrasonic probe is attached to the pipe, and the temperature specification in the standard state, and the propagation time measurement circuit described above. Equipped with a flow rate calculation circuit that converts the propagation time difference obtained from the measured forward and reverse propagation times into a temperature-corrected gas flow rate based on the constant set by the coefficient setting device. A gas flowmeter featuring:
JP3124826A 1991-04-27 1991-04-27 Ultrasonic wave gas flowmeter Pending JPH04328423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124826A JPH04328423A (en) 1991-04-27 1991-04-27 Ultrasonic wave gas flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124826A JPH04328423A (en) 1991-04-27 1991-04-27 Ultrasonic wave gas flowmeter

Publications (1)

Publication Number Publication Date
JPH04328423A true JPH04328423A (en) 1992-11-17

Family

ID=14895063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124826A Pending JPH04328423A (en) 1991-04-27 1991-04-27 Ultrasonic wave gas flowmeter

Country Status (1)

Country Link
JP (1) JPH04328423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243421A (en) * 1996-03-07 1997-09-19 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
CN108387279A (en) * 2018-04-09 2018-08-10 河北科鼎机电科技有限公司 A kind of liquid flow measurement device and measurement method based on sound wave matrix

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243421A (en) * 1996-03-07 1997-09-19 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
CN108387279A (en) * 2018-04-09 2018-08-10 河北科鼎机电科技有限公司 A kind of liquid flow measurement device and measurement method based on sound wave matrix

Similar Documents

Publication Publication Date Title
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
JPH0447770B2 (en)
JPH1048009A (en) Ultrasound temperature current meter
JP2002286559A (en) Arrangement and method for acoustic measurement of fluid temperature
JP3427762B2 (en) Ultrasonic flow meter
JPH1151725A (en) Ultrasonic flowmeter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JPH04328423A (en) Ultrasonic wave gas flowmeter
JP3469405B2 (en) Temperature measurement device
JPH08304135A (en) Flow-rate measuring apparatus
JPH09304139A (en) Measuring apparatus for flow rate
JPH04328424A (en) Ultrasonic wave gas flowmeter
JP3422100B2 (en) Flow measurement device
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JPH0561571B2 (en)
JP7448330B2 (en) Time measurement circuit and ultrasonic flow meter
JPH0791996A (en) Ultrasonic flowmeter
JP2000329597A (en) Ultrasonic flowmeter
JP4485641B2 (en) Ultrasonic flow meter
JP2000329597A5 (en)
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPH0584849B2 (en)
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JPH07139982A (en) Ultrasonic flowmeter
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method