JP2013064643A - Method and apparatus for correcting zero point of ultrasonic flowmeter - Google Patents

Method and apparatus for correcting zero point of ultrasonic flowmeter Download PDF

Info

Publication number
JP2013064643A
JP2013064643A JP2011203358A JP2011203358A JP2013064643A JP 2013064643 A JP2013064643 A JP 2013064643A JP 2011203358 A JP2011203358 A JP 2011203358A JP 2011203358 A JP2011203358 A JP 2011203358A JP 2013064643 A JP2013064643 A JP 2013064643A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
ultrasonic
downstream
upstream
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011203358A
Other languages
Japanese (ja)
Inventor
Yasushi Mizukoshi
靖 水越
Fujio Hori
富士雄 堀
Nobuhiro Nakamura
暢宏 中村
Kenichiro Yuasa
健一郎 湯浅
Takashi Owaku
崇 大和久
Yasuhiro Fujii
泰宏 藤井
Takehiro Masuda
雄大 増田
Hiroshi Ishida
宏 石田
Takahiro Sakano
貴裕 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Toyo Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd, Toyo Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011203358A priority Critical patent/JP2013064643A/en
Publication of JP2013064643A publication Critical patent/JP2013064643A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for correcting a zero point of an ultrasonic flowmeter, which can timely correct the zero point without requiring difficult environment setting such as passage blockage and pressure adjustment.SOLUTION: The ultrasonic flowmeter zero point correcting method and its apparatus for detecting a flow rate of fluid by installing a pair of ultrasonic sensors 2, 2 oppositely each other on the upstream and downstream of a passage 1 includes a flow rate correction step for converting a reflection time difference between forward reflection time and reverse reflection time of a measurement wave W into an offset value and updating a level of the offset value as a zero point of a flow rate to be guided by the ultrasonic flowmeter.

Description

超音波式流量計に関するものであって、特に、流量ゼロの状況を正確に検出する零点補正方法及びその装置に関する。   The present invention relates to an ultrasonic flow meter, and more particularly, to a zero correction method and apparatus for accurately detecting a zero flow condition.

超音波流量計では、流体が流通する流路の上流及び下流に、一対の超音波センサを、当該流路を横切り、且つ相互に対向する位置関係で設置し、流体が流れる方向(順方向)に送信波形を通過させる際の所要時間と、流体の流れに逆らう方向(逆方向)に送信波形を通過させる際の所要時間の差に基いて流体の流量を検出するものである。   In an ultrasonic flow meter, a pair of ultrasonic sensors are installed in a positional relationship across the flow path and facing each other upstream and downstream of the flow path through which the fluid flows, and the direction in which the fluid flows (forward direction) The flow rate of the fluid is detected on the basis of the difference between the time required to pass the transmission waveform and the time required to pass the transmission waveform in the direction opposite to the fluid flow (reverse direction).

しかし、前記所要時間は、超音波センサの特性差によって誤差があり、また、当該誤差に起因して、当該所要時間から導かれた流体の流量にオフセットが生じる。そして、当該オフセットは、継時・経年変化も生じ、正確な流量の計測に困難を来す原因となる(例えば特許文献3参照)。   However, the required time has an error due to a characteristic difference of the ultrasonic sensor, and due to the error, an offset occurs in the flow rate of the fluid derived from the required time. And the said offset also arises a secular change and a secular change, and causes the difficulty in the measurement of exact flow volume (for example, refer patent document 3).

従来、この様なオフセットの補正法が種々提供されており、下記特許文献1には、所定の期間を零点計測期間と設定し、この期間中に超音波センサで計測した最低の流量をガス流量の零点とする手法が記され、特許文献2には、ガス非使用時に、そのガス流路を遮断し、その状態下ガス流路遮断部より下流側のガス圧力を検出して、圧力効果の有無を確認し、圧力降下なしと確認された場合に流量計測を実行し、その際の流量を零点に設定する手法が記されている。   Conventionally, various offset correction methods have been provided. In Patent Document 1 below, a predetermined period is set as a zero point measurement period, and the minimum flow rate measured by the ultrasonic sensor during this period is the gas flow rate. The method of setting the zero point of the gas is described, and in Patent Document 2, when the gas is not used, the gas flow path is shut off, and the gas pressure downstream of the gas flow path shut-off portion is detected in that state, thereby A method is described in which the presence / absence is confirmed, and when it is confirmed that there is no pressure drop, the flow rate is measured and the flow rate at that time is set to the zero point.

特開2000−111043号公報JP 2000-111043 A 特開2002−116076号公報JP 2002-116076 A 特許第3888946号公報Japanese Patent No. 3888946

しかし、前記従来の方法に観られる様に、ゼロ流量を計測し補正を行うには、配管に接続されていない製造時に行うか、又は配管に接続されている場合にあっては、ガス器具の使用を停止し、且つ配管の圧力変動の影響を受けないように遮断弁を閉じる等により、超音波センサが介在する配管にガスが流通していない環境を作り出して行わなければならなかった。
通常の使用環境においては、何時ガスが流通し遮断しているかが判断できないことから、設置状態において零点を正確に補正することが困難であった。
However, as seen in the above-mentioned conventional method, in order to measure and correct the zero flow rate, it is performed at the time of manufacturing not connected to the pipe, or when connected to the pipe, It has been necessary to create an environment in which no gas is flowing in the pipe through which the ultrasonic sensor is interposed, such as by closing the shut-off valve so as not to be affected by the pressure fluctuation of the pipe, by stopping use.
In a normal use environment, it is difficult to accurately correct the zero in the installed state because it cannot be determined when the gas is flowing and shut off.

本発明は、上記実情に鑑みてなされたものであって、流路の流通を遮断し、流路内の圧力を常圧にするという極めて困難な環境設定を経ることなく、適時に零点補正を行うことができる超音波流量計の零点補正方法及びその装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and zero-point correction is performed in a timely manner without going through extremely difficult environmental settings such as blocking the flow of the flow path and setting the pressure in the flow path to normal pressure. It is an object of the present invention to provide a zero point correction method and apparatus for an ultrasonic flow meter that can be performed.

上記課題を解決するためになされた本発明による超音波流量計の零点補正方法は、流路の上流及び下流に、一対の超音波センサを、当該流路を横切り、且つ相互に対向する位置関係となるように設置し、流体が流れる方向に計測波を通過させる際の所要時間と、流体の流れに逆らう方向に計測波を通過させる際の所要時間の往路差に基いて流体の流量を検出する超音波式流量計の零点補正方法において、
上流側の超音波センサを送信モードに設定し、上流側の超音波センサから下流側の超音波センサに向けて計測波を発信し、次いで、上流側の超音波センサを受信モードに設定し、前記計測波を、発信元の上流側の超音波センサで受信し、発信から受信に至る順往復時間を検出する第一の時間計測ステップと、
下流側の超音波センサを送信モードに設定し、下流側の超音波センサから流側の超音波センサに向けて計測波を発信し、次いで、下流側の超音波センサを受信モードに設定し、前記計測波を、発信元の下流側の超音波センサで受信し、発信から受信に至る逆往復時間を検出する第二の時間計測ステップと、
順往復時間と逆往復時間の往復時間差を流量計測のオフセット値に換算し、当該オフセット値のレベルを、超音波流量計が導くべき流量の零点として更新する流量補正ステップを経ることを特徴とする。
An ultrasonic flowmeter zero correction method according to the present invention made to solve the above-described problem is a positional relationship between a pair of ultrasonic sensors upstream and downstream of a flow path and across the flow path and facing each other. The flow rate of the fluid is detected based on the difference between the time required to pass the measurement wave in the direction of fluid flow and the time required to pass the measurement wave in the direction against the fluid flow. In the zero-point correction method of the ultrasonic flowmeter that
The upstream ultrasonic sensor is set to the transmission mode, the measurement wave is transmitted from the upstream ultrasonic sensor to the downstream ultrasonic sensor, and then the upstream ultrasonic sensor is set to the reception mode. The measurement wave is received by an ultrasonic sensor on the upstream side of the transmission source, and a first time measurement step for detecting a forward and backward time from transmission to reception; and
Set the downstream ultrasonic sensor to the transmission mode, transmit the measurement wave from the downstream ultrasonic sensor to the flow side ultrasonic sensor, and then set the downstream ultrasonic sensor to the reception mode. A second time measuring step of receiving the measurement wave by an ultrasonic sensor downstream of a transmission source and detecting a reverse round trip time from transmission to reception;
A flow rate correction step is performed in which the difference between the round trip time between the forward and reverse round trip times is converted into an offset value for flow rate measurement, and the level of the offset value is updated as a zero point of the flow rate to be guided by the ultrasonic flowmeter. .

上記課題を解決するためになされた本発明による超音波式流量計の零点補正装置は、流路の上流及び下流に、一対の超音波センサを、当該流路を横切り、且つ相互に対向する位置関係となるように設置し、流体が流れる方向に計測波を通過させる際の所要時間と、流体の流れに逆らう方向に計測波を通過させる際の所要時間の往路差に基いて流体の流量を検出する超音波式流量計の零点補正装置において、
上流側の超音波センサを送信モードに設定し、上流側の超音波センサから下流側の超音波センサに向けて計測波を発信し、上流側の超音波センサを受信モードに設定し、発信した計測波を発信元の上流側の超音波センサで受信する処理と、
下流側の超音波センサを送信モードに設定し、下流側の超音波センサから上流側の超音波センサに向けて計測波を発信し、下流側の超音波センサを受信モードに設定し、発信した計測波を発信元の下流側の超音波センサで受信する処理を行う流量計測手段と、
上流側の超音波センサの発信時と同センサの受信時を受けて発信から受信に至る順往復時間を算出すると共に、下流側の超音波センサの発信時と上流側の超音波センサの受信時を受けて発信から受信に至る逆往復時間を算出し、順往復時間と逆往復時間の往復時間差を導き当該往復時間差を流量計測のオフセット値に換算し、当該オフセット値のレベルを流量検出手段が導くべき流量の零点として更新する演算手段を備えることを特徴とする。
補正制御手段の稼働に際し計測波の発信出力を補正用出力に増加させる出力調整手段を備える零点補正装置としても良い。
An ultrasonic flowmeter zero correction apparatus according to the present invention, which has been made to solve the above-described problems, includes a pair of ultrasonic sensors upstream and downstream of a flow path, positions that cross the flow path and face each other. The flow rate of the fluid is determined based on the difference between the time required to pass the measurement wave in the direction of fluid flow and the time required to pass the measurement wave in the direction against the fluid flow. In the zero point correction device of the ultrasonic flow meter to detect,
Set the ultrasonic sensor on the upstream side to the transmission mode, transmit the measurement wave from the ultrasonic sensor on the upstream side to the ultrasonic sensor on the downstream side, set the ultrasonic sensor on the upstream side to the reception mode, and transmit The process of receiving the measurement wave with the ultrasonic sensor upstream of the transmission source,
The downstream ultrasonic sensor is set to the transmission mode, the measurement wave is transmitted from the downstream ultrasonic sensor to the upstream ultrasonic sensor, the downstream ultrasonic sensor is set to the reception mode and transmitted. A flow rate measuring means for performing processing for receiving a measurement wave by an ultrasonic sensor on the downstream side of the transmission source;
Calculates the forward / return time from transmission to reception when receiving the upstream ultrasonic sensor and receiving the same, and when transmitting the downstream ultrasonic sensor and receiving the upstream ultrasonic sensor The reverse round trip time from transmission to reception is calculated, the round trip time difference between the forward round trip time and the reverse round trip time is derived, the round trip time difference is converted into the flow measurement offset value, and the flow rate detection means determines the level of the offset value. Computation means for updating as the zero point of the flow rate to be guided is provided.
A zero-point correction device may be provided that includes output adjustment means for increasing the transmission output of the measurement wave to the correction output when the correction control means is operated.

順往復時間と逆往復時間は、環境及び経路が同じで、且つ流体の流れから同じ影響を受けるので、流路の流通の有無にかかわらず理論上は同じである。しかし、上下センサの特性上の相異から、流路の流通の有無にかかわらず共通のオフセット値が生じることとなる。
当該オフセット値を零点補正に用いれば、流路の流通を遮断し、流路内の圧力を常圧にするという極めて困難な環境設定を経ることなく、適時に零点補正を行うことができることとなる。
The forward and backward reciprocation times are theoretically the same regardless of the flow of the flow path because they have the same environment and path and are affected by the same flow of fluid. However, due to the difference in the characteristics of the upper and lower sensors, a common offset value occurs regardless of the presence or absence of the flow of the flow path.
If the offset value is used for zero point correction, zero point correction can be performed in a timely manner without going through extremely difficult environment settings such as blocking the flow of the flow path and setting the pressure in the flow path to normal pressure. .

(A):本発明による超音波式流量計に採用した零点補正方法の一例を示すブロック図、及び(B):本発明による超音波式流量計の原理を示したタイミングチャートである。(A): A block diagram showing an example of a zero point correction method employed in the ultrasonic flow meter according to the present invention, and (B): a timing chart showing the principle of the ultrasonic flow meter according to the present invention. 本発明による超音波式流量計測方法における超音波センサの配置例及び動作例を示した説明図である。It is explanatory drawing which showed the example of arrangement | positioning and operation | movement of an ultrasonic sensor in the ultrasonic flow measurement method by this invention. 本発明による超音波式流量計の零点補正方法における処理の一例を示したフローチャートである。It is the flowchart which showed an example of the process in the zero point correction method of the ultrasonic flowmeter by this invention.

以下、本発明による超音波流量計の零点補正方法及びその装置の実施の形態を図面に基づき詳細に説明する。
図1は、流体(この例ではガス)が流通する流路(例えば管路)1を斜めに横切る形で一対の超音波センサ(以下センサと記す)2,2を配置した超音波式流量計の一例を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an ultrasonic flowmeter zero correction method and apparatus according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 shows an ultrasonic flowmeter in which a pair of ultrasonic sensors (hereinafter referred to as sensors) 2 and 2 are arranged obliquely across a flow path (for example, a pipe line) 1 through which a fluid (gas in this example) flows. An example is shown.

この例は、一方のセンサ2からバースト波(計測波)Wを発信し、他方のセンサ2で当該バースト波Wを受信し、発信から受信に至るまでの所要時間を計測することによって、流路1を流通するガスの流量を計測する為に、前記一対の超音波センサ2,2と、当該超音波センサ2,2の動作を流量計測モードで制御する流量計測制御手段8と、当該超音波センサ2,2の動作を零点補正モードで制御する零点補正制御手段3と、両センサ2,2の出力を用いて演算を施す演算手段7を備え、当該演算手段7にその演算結果に基いて、前記零点補正制御手段3とともに流量計測に用いる零点の補正に寄与する往復時間検出手段4、オフセット検出手段5、及び零点補正手段6を備える。   In this example, a burst wave (measurement wave) W is transmitted from one sensor 2, the burst wave W is received by the other sensor 2, and the time required from transmission to reception is measured, thereby the flow path In order to measure the flow rate of the gas flowing through 1, a pair of ultrasonic sensors 2 and 2, a flow measurement control means 8 for controlling the operation of the ultrasonic sensors 2 and 2 in a flow measurement mode, and the ultrasonic wave A zero-point correction control means 3 for controlling the operation of the sensors 2 and 2 in a zero-point correction mode and an arithmetic means 7 for performing an operation using the outputs of both sensors 2 and 2 are provided in the arithmetic means 7 based on the calculation result. In addition to the zero point correction control unit 3, a round trip time detection unit 4, an offset detection unit 5, and a zero point correction unit 6 that contribute to correction of a zero point used for flow rate measurement are provided.

[流量計測モード]
この計測は、流体が流れる方向(順方向)にバースト波Wを通過させる際の所要時間と、流体の流れに逆らう方向(逆方向)にバースト波Wを通過させる際の所要時間の差を検出し、当該差に基いて流体の流量を導く。
[Flow measurement mode]
This measurement detects the difference between the time required to pass the burst wave W in the fluid flow direction (forward direction) and the time required to pass the burst wave W in the direction opposite to the fluid flow (reverse direction). Then, the flow rate of the fluid is derived based on the difference.

その際、流量計測制御手段8は、先ず、上流側の超音波センサ(以下「上センサ」と記す)2を送信モードにし、下流側の超音波センサ(以下「下センサ」と記す)2を受信モードに設定する処理を経て、上センサ2から下センサ2に向けてバースト波Wを発信する。演算手段7は、上センサ2の発信時と下センサ2の受信時を受けて、発信から受信に至る所要時間(以下「順所要時間」と記す)を算出する。
続いて、流量計測制御手段8は、下センサ2を送信モードにし、上センサ2を受信モードに設定する処理を経て、下センサ2から上センサ2に向けてバースト波Wを発信する。演算手段7は、下センサ2の発信時と上センサ2の受信時を受けて、発信から受信に至る所要時間(以下「逆所要時間」と記す)を算出する。
演算手段7は、順所要時間と逆所要時間の往路時間差を導き、当該往路時間差を流体の流量に換算して出力する。
At that time, the flow rate measurement control means 8 first sets the upstream ultrasonic sensor (hereinafter referred to as “upper sensor”) 2 to the transmission mode and the downstream ultrasonic sensor (hereinafter referred to as “lower sensor”) 2. The burst wave W is transmitted from the upper sensor 2 toward the lower sensor 2 through the process of setting the reception mode. The calculating means 7 receives the time of transmission of the upper sensor 2 and the time of reception of the lower sensor 2 and calculates a required time from transmission to reception (hereinafter referred to as “order required time”).
Subsequently, the flow rate measurement control unit 8 transmits a burst wave W from the lower sensor 2 to the upper sensor 2 through a process of setting the lower sensor 2 to the transmission mode and setting the upper sensor 2 to the reception mode. The calculating means 7 receives the time of transmission of the lower sensor 2 and the time of reception of the upper sensor 2 and calculates a required time from transmission to reception (hereinafter referred to as “reverse required time”).
The calculating means 7 derives the forward time difference between the forward required time and the reverse required time, and converts the forward time difference into the flow rate of the fluid and outputs it.

[零点補正モード]
零点補正制御手段3は、先ず、上センサ2を送信モードに設定する処理を経て、上センサ2から下センサ2に向けてバースト波Wを発信する。
次いで、上センサ2を受信モードに設定する処理を経て、先に発信したバースト波Wを、発信元の上センサ2で受信する。
往復時間検出手段4は、上センサ2の発信時と同センサ2の受信時を受けて、発信から受信に至る所要時間(以下「順往復時間」と記す)を算出する。
[Zero correction mode]
First, the zero point correction control means 3 transmits a burst wave W from the upper sensor 2 to the lower sensor 2 through processing for setting the upper sensor 2 to the transmission mode.
Next, the process of setting the upper sensor 2 to the reception mode, the burst wave W transmitted first is received by the upper sensor 2 of the transmission source.
The round trip time detection means 4 calculates the time required from transmission to reception (hereinafter referred to as “forward round trip time”) in response to the transmission of the upper sensor 2 and the reception of the sensor 2.

続いて、零点補正制御手段3は、下センサ2を送信モードに設定する処理を経て、下センサ2から上センサ2に向けてバースト波Wを発信する。
次いで、下センサ2を受信モードに設定する処理を経て、先に発信したバースト波Wを、発信元の下センサ2で受信する。
往復時間検出手段4は、下センサ2の発信時と上センサ2の受信時を受けて、発信から受信に至る所要時間(以下「逆往復時間」と記す)を算出する。
この際、往復であることを以て発信から受信に至る経路が倍増することに鑑み、バースト波Wの発信出力を補正用出力に増加させ、流量計測モードにおいては、当該バースト波Wの発信出力を計測用出力に下げるなどの機能を奏する出力調整手段を設けることが望ましい。尚、当該例にあっては、零点補正制御手段3及び流量計測制御手段8に、各超音波センサ2,2の送受信モードと共に、計測波Wの出力(振幅)を調整する出力調整手段を具備する。
Subsequently, the zero point correction control means 3 transmits a burst wave W from the lower sensor 2 to the upper sensor 2 through processing for setting the lower sensor 2 to the transmission mode.
Next, the burst wave W transmitted first is received by the lower sensor 2 of the transmission source through the process of setting the lower sensor 2 to the reception mode.
The round trip time detection means 4 receives the time of transmission of the lower sensor 2 and the time of reception of the upper sensor 2 and calculates the required time from transmission to reception (hereinafter referred to as “reverse round trip time”).
At this time, in consideration of the fact that the path from transmission to reception doubles due to the round trip, the transmission output of the burst wave W is increased to the correction output, and the transmission output of the burst wave W is measured in the flow rate measurement mode. It is desirable to provide an output adjusting means that provides a function such as lowering the output. In this example, the zero point correction control means 3 and the flow rate measurement control means 8 are provided with output adjustment means for adjusting the output (amplitude) of the measurement wave W together with the transmission / reception modes of the ultrasonic sensors 2 and 2. To do.

オフセット検出手段5は、順往復時間と逆往復時間の往復時間差を導き、当該往復時間差を流量計測のオフセット値に換算して出力する。例えば、零点補正モードにおける順往復時間と逆往復時間の往復時間差を導き、工場出荷時における順往復時間と逆往復時間の往復時間差を減じて得た値をオフセット値として用いればよい。   The offset detection means 5 derives a round trip time difference between the forward and backward round trip times, and converts the round trip time difference into an offset value for flow rate measurement and outputs it. For example, a value obtained by deriving the round trip time difference between the forward and backward round trip times in the zero point correction mode and subtracting the round trip time difference between the forward round trip time and the reverse round trip time at the time of factory shipment may be used as the offset value.

零点補正手段6は、オフセット検出手段5が出力したオフセット値のレベルを、当該超音波流量計が流量計測モード下において導くべき流量の零点として更新し、以後の流量計測モードにおける演算手段での演算処理(例えば当該オフセット値を流量計測モードにおける所要時間から減ずる等の処理を施せばよい)に用いる。   The zero point correcting means 6 updates the level of the offset value output from the offset detecting means 5 as the zero point of the flow rate that the ultrasonic flowmeter should guide in the flow rate measurement mode, and performs the calculation by the calculation means in the subsequent flow rate measurement mode. It is used for processing (for example, processing such as subtracting the offset value from the required time in the flow rate measurement mode may be performed).

1 流路,
2 超音波センサ,
3 零点補正制御手段,
4 往復時間検出手段,
5 オフセット検出手段,
6 零点補正手段,
7 演算手段,
8 流量計測制御手段,

1 channel,
2 ultrasonic sensors,
3 Zero point correction control means,
4 round trip time detection means,
5 offset detection means,
6 Zero correction means,
7 calculation means,
8 Flow measurement control means,

Claims (3)

流路(1)の上流及び下流に、一対の超音波センサ(2,2)を、当該流路(1)を横切り、且つ相互に対向する位置関係となるように設置し、流体が流れる方向に計測波(W)を通過させる際の所要時間と、流体の流れに逆らう方向に計測波(W)を通過させる際の所要時間の往路差に基いて流体の流量を検出する超音波式流量計の零点補正方法において、
上流側の超音波センサ(2)を送信モードに設定し、上流側の超音波センサ(2)から下流側の超音波センサ(2)に向けて計測波(W)を発信し、次いで、上流側の超音波センサ(2)を受信モードに設定し、前記計測波(W)を、発信元の上流側の超音波センサ(2)で受信し、発信から受信に至る順往復時間を検出する第一の時間計測ステップと、
下流側の超音波センサ(2)を送信モードに設定し、下流側の超音波センサ(2)から流側の超音波センサ(2)に向けて計測波(W)を発信し、次いで、下流側の超音波センサ(2)を受信モードに設定し、前記計測波(W)を、発信元の下流側の超音波センサ(2)で受信し、発信から受信に至る逆往復時間を検出する第二の時間計測ステップと、
順往復時間と逆往復時間の往復時間差を流量計測のオフセット値に換算し、当該オフセット値のレベルを、超音波流量計が導くべき流量の零点として更新する流量補正ステップを経ることを特徴とする超音波流量計の零点補正方法。
A direction in which the fluid flows by installing a pair of ultrasonic sensors (2, 2) upstream and downstream of the flow path (1) so as to cross the flow path (1) and to face each other. Ultrasonic flow rate that detects the flow rate of fluid based on the difference between the time required to pass the measurement wave (W) and the time required to pass the measurement wave (W) in the direction against the fluid flow In the zero correction method of the meter,
The upstream ultrasonic sensor (2) is set to the transmission mode, the measurement wave (W) is transmitted from the upstream ultrasonic sensor (2) toward the downstream ultrasonic sensor (2), and then the upstream The ultrasonic sensor (2) on the side is set to the reception mode, the measurement wave (W) is received by the ultrasonic sensor (2) on the upstream side of the transmission source, and the forward and backward time from transmission to reception is detected. A first time measurement step;
The downstream ultrasonic sensor (2) is set to the transmission mode, the measurement wave (W) is transmitted from the downstream ultrasonic sensor (2) to the flow ultrasonic sensor (2), and then downstream. The ultrasonic sensor (2) on the side is set to the reception mode, the measurement wave (W) is received by the ultrasonic sensor (2) on the downstream side of the transmission source, and the reverse round trip time from transmission to reception is detected. A second time measurement step;
A flow rate correction step is performed in which the difference between the round trip time between the forward and reverse round trip times is converted into an offset value for flow rate measurement, and the level of the offset value is updated as a zero point of the flow rate to be guided by the ultrasonic flowmeter. Ultrasonic flow meter zero correction method.
流路(1)の上流及び下流に、一対の超音波センサ(2,2)を、当該流路(1)を横切り、且つ相互に対向する位置関係となるように設置し、流体が流れる方向に計測波(W)を通過させる際の所要時間と、流体の流れに逆らう方向に計測波(W)を通過させる際の所要時間の往路差に基いて流体の流量を検出する超音波式流量計の零点補正装置において、
上流側の超音波センサ(2)を送信モードに設定し、上流側の超音波センサ(2)から下流側の超音波センサ(2)に向けて計測波(W)を発信し、上流側の超音波センサ(2)を受信モードに設定し、発信した計測波(W)を発信元の上流側の超音波センサ(2)で受信する処理と、
下流側の超音波センサ(2)を送信モードに設定し、下流側の超音波センサ(2)から上流側の超音波センサ(2)に向けて計測波(W)を発信し、下流側の超音波センサ(2)を受信モードに設定し、発信した計測波(W)を発信元の下流側の超音波センサ(2)で受信する処理を行う零点補正制御手段(3)と、
上流側の超音波センサ(2)の発信時と同センサ(2)の受信時を受けて発信から受信に至る順往復時間を検出すると共に、下流側の超音波センサ(2)の発信時と上流側の超音波センサ(2)の受信時を受けて発信から受信に至る逆往復時間を検出する往復時間検出手段(4)と、
順往復時間と逆往復時間の往復時間差を導き当該往復時間差を流量計測のオフセット値に換算するオフセット検出手段(5)と、
当該オフセット値のレベルを超音波式流量計が導くべき流量の零点として更新する零点補正手段(6)を備えることを特徴とする超音波式流量計の零点補正装置。
A direction in which the fluid flows by installing a pair of ultrasonic sensors (2, 2) upstream and downstream of the flow path (1) so as to cross the flow path (1) and to face each other. Ultrasonic flow rate that detects the flow rate of fluid based on the difference between the time required to pass the measurement wave (W) and the time required to pass the measurement wave (W) in the direction against the fluid flow In the total zero correction device,
The upstream ultrasonic sensor (2) is set to the transmission mode, and the measurement wave (W) is transmitted from the upstream ultrasonic sensor (2) to the downstream ultrasonic sensor (2). A process of setting the ultrasonic sensor (2) to the reception mode and receiving the transmitted measurement wave (W) by the ultrasonic sensor (2) on the upstream side of the transmission source;
The downstream ultrasonic sensor (2) is set to the transmission mode, the measurement wave (W) is transmitted from the downstream ultrasonic sensor (2) toward the upstream ultrasonic sensor (2), and the downstream ultrasonic sensor (2) is transmitted. A zero point correction control means (3) for performing processing for setting the ultrasonic sensor (2) to the reception mode and receiving the transmitted measurement wave (W) by the ultrasonic sensor (2) on the downstream side of the transmission source;
When the upstream ultrasonic sensor (2) is transmitted and when the sensor (2) is received, the forward and backward time from transmission to reception is detected, and the downstream ultrasonic sensor (2) is transmitted. A round trip time detecting means (4) for detecting a reverse round trip time from transmission to reception upon receipt of the upstream ultrasonic sensor (2);
An offset detection means (5) for deriving a round trip time difference between the forward and reverse round trip times and converting the round trip time difference into an offset value for flow measurement;
A zero point correction device for an ultrasonic flow meter, comprising zero point correction means (6) for updating the level of the offset value as a zero point of a flow rate to be guided by the ultrasonic flow meter.
補正制御手段(3)の稼働に際し計測波(W)の発信出力を補正用出力に増加させる出力調整手段を備える前記請求項2に記載の超音波式流量計の零点補正装置。


The zero point correction device for an ultrasonic flowmeter according to claim 2, further comprising output adjusting means for increasing the transmission output of the measurement wave (W) to the correction output when the correction control means (3) is operated.


JP2011203358A 2011-09-16 2011-09-16 Method and apparatus for correcting zero point of ultrasonic flowmeter Pending JP2013064643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203358A JP2013064643A (en) 2011-09-16 2011-09-16 Method and apparatus for correcting zero point of ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203358A JP2013064643A (en) 2011-09-16 2011-09-16 Method and apparatus for correcting zero point of ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2013064643A true JP2013064643A (en) 2013-04-11

Family

ID=48188278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203358A Pending JP2013064643A (en) 2011-09-16 2011-09-16 Method and apparatus for correcting zero point of ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2013064643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495231A (en) * 2021-09-10 2021-10-12 深圳市柯雷科技开发有限公司 Zero-bias-temperature-drift-free direct-current magnetic field measurement system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167918A (en) * 1982-03-29 1983-10-04 Toshiba Corp Ultrasonic wave flow speed measuring device
JPH1019619A (en) * 1996-06-28 1998-01-23 Osaka Gas Co Ltd Method of ultrasonic measuring flow velocity
JP2002318145A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Flow meter
JP2006292370A (en) * 2005-04-05 2006-10-26 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009031134A (en) * 2007-07-27 2009-02-12 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009276226A (en) * 2008-05-15 2009-11-26 Ricoh Elemex Corp Ultrasonic flowmeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167918A (en) * 1982-03-29 1983-10-04 Toshiba Corp Ultrasonic wave flow speed measuring device
JPH1019619A (en) * 1996-06-28 1998-01-23 Osaka Gas Co Ltd Method of ultrasonic measuring flow velocity
JP2002318145A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Flow meter
JP2006292370A (en) * 2005-04-05 2006-10-26 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009031134A (en) * 2007-07-27 2009-02-12 Ricoh Elemex Corp Ultrasonic flowmeter
JP2009276226A (en) * 2008-05-15 2009-11-26 Ricoh Elemex Corp Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495231A (en) * 2021-09-10 2021-10-12 深圳市柯雷科技开发有限公司 Zero-bias-temperature-drift-free direct-current magnetic field measurement system and method

Similar Documents

Publication Publication Date Title
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
US8671775B2 (en) Flow rate measuring device
JP7012218B2 (en) Gas security device
JP2013064643A (en) Method and apparatus for correcting zero point of ultrasonic flowmeter
JP5982640B2 (en) Large flow rate measuring device
JP5141613B2 (en) Ultrasonic flow meter
JP6225325B2 (en) Gas shut-off device
JP2006343292A (en) Ultrasonic flowmeter
US10591330B2 (en) Flow rate measurement device
JP5974280B2 (en) Large flow rate measuring device
JP5946673B2 (en) Gas shut-off device
JP2008180741A (en) Flow measuring instrument
JP5195553B2 (en) Flow measuring device
JP4534262B2 (en) Gas shut-off device
JP4083367B2 (en) Gas security device
JP5990770B2 (en) Ultrasonic measuring device
JP6602247B2 (en) Ultrasonic meter and control method thereof
JP4178625B2 (en) Gas shut-off device
JP4390350B2 (en) Gas meter
JP2020051935A (en) Gas meter and control method thereof
KR102437772B1 (en) Apparatus and method for measuring flow rate using pressure sensor
JP4285056B2 (en) Fluid flow measuring device
JP4117996B2 (en) Gas meter flow derivation method and gas meter
JP3888946B2 (en) Ultrasonic meter device
JP4888464B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708