JP2006133238A - Flow rate measuring means - Google Patents

Flow rate measuring means Download PDF

Info

Publication number
JP2006133238A
JP2006133238A JP2005374449A JP2005374449A JP2006133238A JP 2006133238 A JP2006133238 A JP 2006133238A JP 2005374449 A JP2005374449 A JP 2005374449A JP 2005374449 A JP2005374449 A JP 2005374449A JP 2006133238 A JP2006133238 A JP 2006133238A
Authority
JP
Japan
Prior art keywords
flow rate
zero point
zero
change
point correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005374449A
Other languages
Japanese (ja)
Inventor
Yukio Nagaoka
行夫 長岡
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005374449A priority Critical patent/JP2006133238A/en
Publication of JP2006133238A publication Critical patent/JP2006133238A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform zero-point correction when fluid varies physically, thereby increasing the accuracy of flow rate measurement. <P>SOLUTION: This flow rate measuring means includes a flow rate computing means 5 for computing a flow rate from signals of a flow rate detection means 1, and a zero-point assay means 8 for detecting and correcting the zero value of the flow rate detection means 1. Since the zero-point assay means 8 is operated upon detection of the physical change of the fluid, the zero-point correction is performed automatically only during the physical change so as to eliminate unnecessary zero-point correction and to enable accurate detection of a minute flow rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気体や液体などの流体の流量を計測することができる流量計測装置に関するものである。   The present invention relates to a flow rate measuring device capable of measuring the flow rate of a fluid such as gas or liquid.

気体や液体などの流体の流速や流量を測定する装置には多くの方式が知られているが、特にエレクトロニクス技術の進歩により信頼性の高い超音波を利用する流速・流量測定装置の開発が目覚ましい。そして超音波を利用した流速・流量測定装置は燃料ガスのメータ,工業用計測器,医療用の血流計,海洋や大気中の流速の測定など多方面にわたる活用分野がある。この超音波を利用する流速・流量測定装置には直接超音波を利用する場合のみならず、他の測定原理に基づく測定装置の検出部として間接的に利用する場合がある。
量測定装置に限らず流速・流量測定装置には流量センサ,抵抗値センサ,温度センサ,電圧センサなど多くのセンサが利用されている。そしてこれらの電気信号を発信するセンサは、外部の條件に影響されて感度が変化したりすることがある。その為、燃料ガスのメータ等に使用される流量測定装置は僅かな流量変化例えば3リットル/時のような微少変化でもこれを測定する事が要求されていて、この様な微少変化を正確に把握することが出来る為には測定のゼロ点補正を行うことができる測定装置としなければならない。
There are many known methods for measuring the flow rate and flow rate of fluids such as gas and liquid, but the development of flow rate and flow rate measurement devices that use highly reliable ultrasonic waves is particularly remarkable due to advances in electronics technology. . Ultrasonic flow velocity and flow rate measuring devices are used in many fields, such as fuel gas meters, industrial measuring instruments, medical blood flow meters, and measurement of the flow velocity in the ocean and the atmosphere. The flow velocity / flow rate measuring device using ultrasonic waves is not only used directly as ultrasonic waves but also indirectly used as a detection unit of a measuring device based on another measurement principle.
Many sensors such as a flow rate sensor, a resistance value sensor, a temperature sensor, and a voltage sensor are used for the flow velocity / flow rate measurement device as well as the quantity measurement device. And the sensor which transmits these electric signals may be influenced by an external condition and a sensitivity may change. For this reason, a flow measuring device used for a fuel gas meter or the like is required to measure even a slight flow rate change, for example, a slight change such as 3 liters / hour. In order to be able to grasp it, the measurement device must be capable of correcting the zero point of the measurement.

以上の観点から、例えば特許文献1に開示された技術は、ゼロ点補正を行うのが適切か否か所定時間間隔をおいて判断し、その判断に基づいてゼロ点補正を実行する手段を備えたガス流量計であり、有用な技術としてガス器具業界では高く評価されている。
特開平8−271307号公報
From the above viewpoint, for example, the technique disclosed in Patent Document 1 includes a unit that determines whether it is appropriate to perform zero point correction at predetermined time intervals and performs zero point correction based on the determination. This gas flow meter is highly regarded in the gas appliance industry as a useful technology.
JP-A-8-271307

しかしながら、前記従来の構成では、所定時間の間隔をおいてゼロ点補正を実施する必要があるかどうかを判断し、その上で必要な時にゼロ点補正を実施するものである為、ゼロ点補正をする必要がない時にも所定時間間隔でゼロ点補正の必要性の有無を判断する必要があり、勿論所定の間隔の時間にならなければゼロ点補正がされないことにもなる。   However, in the conventional configuration, it is determined whether or not the zero point correction needs to be performed at a predetermined time interval, and then the zero point correction is performed when necessary. Even when it is not necessary, it is necessary to determine whether or not the zero point correction is necessary at a predetermined time interval. Of course, the zero point correction is not performed unless the predetermined time interval is reached.

そこで、本発明は前記従来例の問題点に鑑み、環境変化を受けてセンサの測定性能に影響が出た場合を含み、ゼロ点補正が必要な時には、その必要性の発生に速応してゼロ点補正を自動的にするようにする事を課題とするものである。   Therefore, in view of the problems of the conventional example, the present invention includes a case where the measurement performance of the sensor is affected due to environmental changes, and when the zero point correction is necessary, the occurrence of the necessity is promptly addressed. An object is to automatically perform zero point correction.

前記従来の課題を解決するために、本発明の流量計測装置は、流体流路に設けられた流量検出手段と、前記流量検出手段の信号により流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段と、ゼロ点補正要因検出手段と、前記ゼロ点補正要因検出手段の信号の変化に応じて前記ゼロ点検定手段を作動させるゼロ点制御手段とを備え、前記ゼロ点補正要因検出手段が、流路内の流体の成分変化による物理的変化を検出する流体物理性質検出手段とされたものである。   In order to solve the conventional problem, a flow rate measuring device according to the present invention includes a flow rate detection unit provided in a fluid flow path, a flow rate calculation unit that calculates a flow rate based on a signal of the flow rate detection unit, and the flow rate detection unit. Zero point detecting means for detecting the zero value of the flow rate and correcting the zero value by the flow rate calculating means, zero point correcting factor detecting means, and the zero point correcting means according to a change in the signal of the zero point correcting factor detecting means The zero point correction factor detecting means is a fluid physical property detecting means for detecting a physical change due to a change in the component of the fluid in the flow path.

従って流体物理性質が変化してゼロ点補正が必要となった時には、ゼロ点補正要因検出手段の信号の変化に応じたゼロ点補正が自動的にできる為、ゼロ点補正の必要がない時にゼロ点補正必要の有無を時間間隔をあけて度々判断するような必要はなく、ゼロ点補正の必要が生じた時に、その必要に即応してゼロ点補正ができる機能を有するものである。   Therefore, when the fluid physics changes and the zero point correction becomes necessary, the zero point correction according to the change of the signal of the zero point correction factor detection means can be automatically performed. It is not necessary to frequently determine whether or not the point correction is necessary with a time interval. When the zero point correction is necessary, the zero point correction can be performed immediately in response to the necessity.

本発明の流量計測装置によれば、流体の成分が変わって流体の密度,比熱,音速が変化してもゼロ点の補正によって流量測定精度を保つことができる。   According to the flow rate measuring device of the present invention, even if the fluid component changes and the density, specific heat, and sound velocity of the fluid change, the flow rate measurement accuracy can be maintained by correcting the zero point.

本発明は、例えば、都市ガス,プロパンガス等の燃料ガスのメータに実施して極めて有用である。理由は燃料ガスにおけるメータは1時間当り3リットルを越える流量変化を的確に把握することが、わが国においては必要とされているからである。すなわち1時間当り何千,何万リットルと大量に変化する様な場合の流量を測定する場合には、測定装置の正確さは夫程要求されるものではないが、測定装置のセンサが外部環境によって性能の変化を生じたりして、燃料ガスの実使用量を正確に把握することができなくなることがある。そこで本発明は、流量の変化が極めて少い場合から1時間当り何万リットルと云う様な広範囲にわたって、ゼロ点補正によって正確に流量を計測できる便利なものとしたのである。以上の趣旨に沿う正確な流量を計測する必要のある各分野において本発明は実施して有効なものである。   The present invention is very useful when applied to a fuel gas meter such as city gas and propane gas. The reason is that it is necessary in Japan to accurately grasp the change in flow rate of fuel gas meters exceeding 3 liters per hour. In other words, when measuring flow rates in the case of thousands or tens of thousands of liters per hour, the accuracy of the measuring device is not required, but the sensor of the measuring device is not connected to the external environment. May cause a change in performance, and it may not be possible to accurately grasp the actual amount of fuel gas used. Therefore, the present invention is convenient because the flow rate can be accurately measured by the zero point correction over a wide range from a very small change in flow rate to tens of thousands of liters per hour. The present invention is effective when implemented in each field where it is necessary to measure an accurate flow rate in accordance with the above purpose.

本発明は、流路に設けられた流量検出手段と、前記流量検出手段の信号により流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段と、ゼロ点補正要因検出手段と、前記ゼロ点補正要因検出手段の信号の変化に応じてゼロ点検定手段を作動させるゼロ点制御手段とを備えた流量計測装置とすることにより、ゼロ点補正をゼロ点補正要因検出手段の信号の変化に応じてゼロ点検定手段を自動的に作動させて流量演算手段にてゼロ値を補正することができる。   The present invention includes a flow rate detection means provided in a flow path, a flow rate calculation means for calculating a flow rate based on a signal from the flow rate detection means, a zero value of the flow rate detection means, and a zero value detected by the flow rate calculation means. A flow rate measuring device comprising: a zero point verification unit for correcting; a zero point correction factor detection unit; and a zero point control unit for operating the zero point verification unit according to a change in a signal of the zero point correction factor detection unit. Thus, the zero point correction can be automatically operated by the zero point correction means in accordance with the change in the signal of the zero point correction factor detection means, and the zero value can be corrected by the flow rate calculation means.

そして、ゼロ点補正要因検出手段は、流路近傍の温度を計測する温度検出手段とすることにより、流路の温度に起因するゼロ点の補正を自動的に行い、温度変化があっても正確に流量を計測することができる。   The zero point correction factor detecting means is a temperature detecting means for measuring the temperature in the vicinity of the flow path, thereby automatically correcting the zero point due to the temperature of the flow path, so that even if there is a temperature change, it is accurate. The flow rate can be measured.

また、ゼロ点補正要因検出手段は、流路近傍の湿度を計測する湿度検出手段とすることにより、流路における湿度に起因するゼロ点の補正を自動的に行い、湿度変化があっても正確に流量を計測することができる。   In addition, the zero point correction factor detection means is a humidity detection means that measures the humidity in the vicinity of the flow path, automatically corrects the zero point due to the humidity in the flow path, and is accurate even if there is a humidity change. The flow rate can be measured.

また、ゼロ点補正要因検出手段は、流量検出手段の電源電圧を計測する電圧検出手段とすることにより、流量検出手段の電源電圧の変動に起因するゼロ点の補正を自動的に行うので、電池電源による駆動によっても正確に流量を計測することができる。   Further, the zero point correction factor detecting means automatically corrects the zero point caused by the fluctuation of the power supply voltage of the flow rate detecting means by using the voltage detecting means for measuring the power supply voltage of the flow rate detecting means. The flow rate can be accurately measured by driving with a power source.

また、ゼロ点補正要因検出手段は、流量検出手段の信号レベルを計測する信号レベル検出手段とすることにより、流量検出手段の受信信号のレベル変化によって発生するゼロ点の補正を自動的に行い、温度変化や湿度変化あるいは経年変化などによる誤差の発生を総合的に判断して補正するので、環境変化に対して長期間高い流量測定精度を保つことができる。   Further, the zero point correction factor detection means automatically corrects the zero point generated by the level change of the reception signal of the flow rate detection means by using the signal level detection means for measuring the signal level of the flow rate detection means, Since the generation of errors due to temperature change, humidity change, or secular change is comprehensively judged and corrected, high flow rate measurement accuracy can be maintained for a long time against environmental changes.

また、ゼロ点補正要因検出手段は、振動を検出する感震手段とすることにより、地震や衝突による衝撃によって流量検出手段に誤差が発生してもゼロ点が変動するのを自動的に防止することができるので、信頼性が高い。   In addition, the zero point correction factor detecting means automatically prevents the zero point from fluctuating even if an error occurs in the flow rate detecting means due to an impact caused by an earthquake or a collision by using a vibration sensing means. Because it can be reliable.

また、ゼロ点補正要因検出手段は、外部とのデータを送受信する通信手段とすることにより、外部よりリモートコントロールによって任意にゼロ点を補正し、例えば流体の漏洩チェックをする時に事前に外部よりゼロ点を補正することができるので漏洩検出の精度を高めることができる。   In addition, the zero point correction factor detecting means is a communication means for transmitting / receiving data to / from the outside, so that the zero point is arbitrarily corrected by remote control from the outside. Since the points can be corrected, the accuracy of leak detection can be increased.

また、ゼロ点補正要因検出手段は流路内部の流体の成分変化による物理的変化を検出する流体物理性質検出手段とすることにより、流体の成分が変って流体の密度,比熱,音速が変化してもゼロ点の補正によって流量精度を保って流体物理性質の変化があっても自動的に対応できる。   Also, the zero point correction factor detection means is a fluid physical property detection means that detects physical changes caused by changes in the fluid components inside the flow path, so that the fluid components change and the fluid density, specific heat, and sound velocity change. Even if there is a change in fluid physical properties, the flow rate accuracy can be maintained by correcting the zero point.

また、ゼロ点補正要因検出手段は、流路内部の流体の圧力を検出する圧力検出手段とすることにより、流量がゼロでないときにゼロ点を補正することを未然に防止して、誤ったゼロ点補正による流量測定精度の低下を防止することができる。   In addition, the zero point correction factor detection means is a pressure detection means for detecting the pressure of the fluid inside the flow path, thereby preventing the zero point from being corrected when the flow rate is not zero, thereby preventing an erroneous zero. It is possible to prevent a decrease in flow rate measurement accuracy due to point correction.

また、流路に設けられた流量検出手段と、前記流量検出手段の信号により流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段と、前記流量演算手段の値が異常値を示したと判断したとき前記ゼロ点検定手段を作動させるゼロ点制御手段を備える構成とすることにより、流量値が異常を示したと判断されるときのみゼロ点を補正するので、異常時には直ちに対応できるばかりでなく、不要なゼロ点補正を行う必要がなく電源の消費を低減できる。   Also, a flow rate detecting means provided in the flow path, a flow rate calculating means for calculating a flow rate based on a signal of the flow rate detecting means, and detecting a zero value of the flow rate detecting means and correcting the zero value by the flow rate calculating means It is determined that the flow rate value indicates an abnormality by including a zero point control unit that operates the zero point verification unit when the zero point verification unit and the value of the flow rate calculation unit indicate an abnormal value. Since the zero point is corrected only when an error occurs, not only can an immediate action be taken in the event of an abnormality, but unnecessary zero point correction need not be performed, and power consumption can be reduced.

また、流量演算手段の値が所定値以下を連続して計測したときに異常値を示したと判断するように構成することにより、通常は計測されない流量値以下の場合にはゼロ値の変化と判断し、ゼロ点補正を行うので微少な流体漏洩時にも正確な流量計測によって直ちに流体漏洩を検出することができ安全性が高い。   In addition, it is determined that an abnormal value is indicated when the value of the flow rate calculation means is continuously measured below a predetermined value, so that a change of zero value is determined when the flow rate value is not normally measured. In addition, since zero point correction is performed, fluid leakage can be detected immediately by accurate flow rate measurement even when a minute fluid leakage occurs, and safety is high.

また、流路を介在して相互に対向して配設された第1振動子と第2振動子とを備えていて、前記第1振動子と第2振動子との間の信号伝搬時間を計測する計測回路と、その計測回路の信号に基づいて流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段を作動させるゼロ点制御手段とを具備し、前記ゼロ点制御手段は前記信号伝搬時間の変化に応じてゼロ点検定手段を作動させるようにすることにより第1振動子や第2振動子の感度変化や温度変化を信号伝搬時間で判断してゼロ点を補正することができるのでゼロ点の補正時期を適切にして高い流量計測精度を保つことができる。   A first vibrator and a second vibrator disposed opposite to each other with a flow path interposed therebetween, and the signal propagation time between the first vibrator and the second vibrator is Operates a measurement circuit to measure, a flow rate calculation means for calculating a flow rate based on a signal of the measurement circuit, and a zero point verification means for detecting the zero value of the flow rate detection means and correcting the zero value by the flow rate calculation means A zero point control means for causing the zero point control means to actuate the zero point verification means in response to a change in the signal propagation time, thereby changing the sensitivity of the first vibrator and the second vibrator, Since the temperature change can be judged from the signal propagation time and the zero point can be corrected, a high flow rate measurement accuracy can be maintained by appropriately adjusting the zero point correction timing.

なお、各特定要件は複数組み合わせることにより、一層測定信頼性の高い流量測定装置とすることができる。   In addition, it can be set as the flow volume measuring apparatus with higher measurement reliability by combining several specific requirements.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1の(a)は、本発明の第1の実施の形態に関する流量計測装置の構成ブロック図,図1の(b)は流量検出手段の模式図である。
(Embodiment 1)
FIG. 1A is a configuration block diagram of a flow rate measuring apparatus according to the first embodiment of the present invention, and FIG. 1B is a schematic diagram of a flow rate detecting means.

図1において白抜矢印で示す流路Aにおける流量検出手段1は同図(b)に示すように流体管路2の一部に第1超音波振動子3と第2超音波振動子4とを流体の流れの方向に相対して設けて構成されている。第1超音波振動子3から流れ方向に超音波を発生し、この超音波を第2超音波振動子4で検出すると再び第1超音波振動子3から超音波を発生させ、この繰り返しを行ってその時間を計測する。次いで逆に第2超音波振動子から流体の流れに逆らって超音波を発生し同様の繰り返し時間を計測する。そして両者の時間の差から流体の速度を演算し、流体管路2の断面積と前記流体の速度より流量演算手段5によって流量を算出する。   In FIG. 1, the flow rate detection means 1 in the flow path A indicated by the white arrow is provided with a first ultrasonic transducer 3 and a second ultrasonic transducer 4 in a part of the fluid conduit 2 as shown in FIG. Are provided so as to be opposed to the direction of fluid flow. When an ultrasonic wave is generated in the flow direction from the first ultrasonic transducer 3 and this ultrasonic wave is detected by the second ultrasonic transducer 4, an ultrasonic wave is generated again from the first ultrasonic transducer 3 and this is repeated. And measure the time. Then, on the contrary, ultrasonic waves are generated against the fluid flow from the second ultrasonic transducer, and the same repetition time is measured. Then, the velocity of the fluid is calculated from the difference between the two times, and the flow rate is calculated by the flow rate calculation means 5 from the cross-sectional area of the fluid conduit 2 and the velocity of the fluid.

一方流体管路2の適所における流路近傍の温度を計測するゼロ点補正要因検出手段としての温度検出手段6による計測値の変化により、ゼロ点制御手段7は流量演算手段5のゼロ点補正値を電気信号によって発信するゼロ点検定手段8を作動させて流量演算手段5のゼロ点を補正する。なお9は遮断弁を示す。   On the other hand, the zero point control means 7 causes the zero point correction value of the flow rate calculation means 5 due to a change in the measured value by the temperature detection means 6 as a zero point correction factor detection means for measuring the temperature in the vicinity of the flow path at an appropriate place in the fluid conduit 2. Is activated by an electric signal to correct the zero point of the flow rate calculation means 5. Reference numeral 9 denotes a shut-off valve.

以上のゼロ点補正のフローを図2に示す。図2において、ステップ1では前回補正時の温度Tを記録する。そしてステップ2において図1を参照して述べた様に流路近傍の温度を計測し、その計測値T と記録されている温度T との差が所定値αより大きいかどうかをステップ3で判断する。T −T の値が所定値αより大きければステップ4で遮断弁を閉塞して流量をステップ5で計測しその計測値よりステップ6でゼロ変動値を算出し、ステップ7でゼロ点補正を実行する。然る後ステップ8で遮断弁を開く。この温度T を新しいT として保存する。 The flow of the above zero point correction is shown in FIG. 2, records the temperature T 1 of the at Step 1 previous correction. Then with reference to measure the temperature of the flow path near As mentioned 1 at step 2, step 3 the difference between the temperatures T 1, which is recorded as the measured value T 2 is whether greater than the predetermined value α Judge with. If the value of T 1 -T 2 is larger than the predetermined value α, the shut-off valve is closed in step 4, the flow rate is measured in step 5, a zero fluctuation value is calculated in step 6 from the measured value, and zero point correction is performed in step 7. Execute. Thereafter, in step 8, the shut-off valve is opened. Save this temperature T 2 as a new T 1.

以上は温度によるゼロ点補正を示したが、同様にして湿度によるゼロ点補正を行うことができる。   Although the above shows the zero point correction based on the temperature, the zero point correction based on the humidity can be similarly performed.

(実施の形態2)
図3は本発明の他の実施の形態に関する流量計測装置の構成ブロック図で、前記する実施例1と同じ構成部分と同じ構成部分については同一符号を付与し詳細な説明は実施の形態1の場合と同じである為、省略する。
(Embodiment 2)
FIG. 3 is a block diagram of a flow rate measuring apparatus according to another embodiment of the present invention. The same reference numerals are given to the same components as those of the first embodiment, and the detailed description of the first embodiment is as follows. Since it is the same as the case, it is omitted.

そして、ゼロ点補正要因検出手段が実施の形態1においては温度検出手段6であったり湿度検出手段であったりしたのが、実施の形態2においては電圧検出手段6aである点が、実施の形態1と異る点である。流量計測装置には遮断弁9を開閉する為の電源をはじめ流量検出手段1、流量演算手段5、ゼロ点検定手段8、ゼロ点制御手段7などの各種手段また超音波振動子とか、各種センサなどに電源を必要とし、商用電源に限らず電池電源10を利用することが多い。   The zero point correction factor detection means is the temperature detection means 6 or the humidity detection means in the first embodiment, but is the voltage detection means 6a in the second embodiment. This is a point different from 1. The flow rate measuring device includes a power source for opening and closing the shut-off valve 9, various means such as a flow rate detection means 1, a flow rate calculation means 5, a zero point verification means 8, a zero point control means 7, an ultrasonic transducer, and various sensors. In many cases, a battery power source 10 is used in addition to a commercial power source.

そこで、電池消耗による電池電源10の電圧変化を実施の形態2においてはゼロ点補正要因検出手段である電圧検出手段6aで把握し、その電圧変動に応じてゼロ点検定手段8をトリガーとして働くゼロ点制御手段7が作動信号を発信するものである。従って電池に限らず電源電圧の変化に応じて実施の形態2ではゼロ点補正を自動的に達成することができる。   In view of this, the voltage change of the battery power supply 10 due to battery consumption is grasped by the voltage detection means 6a which is the zero point correction factor detection means in the second embodiment, and the zero point verification means 8 works as a trigger according to the voltage fluctuation. The point control means 7 transmits an operation signal. Therefore, the zero point correction can be automatically achieved in the second embodiment in accordance with the change of the power supply voltage as well as the battery.

(実施の形態3)
図4は本発明の他の実施の形態に関する流量計測装置の構成ブロック図で、前記する実施の形態1における構成部分と同じ構成部分については作用も同じであるため同一符号を付与し詳細な説明は省略する。
(Embodiment 3)
FIG. 4 is a block diagram showing the configuration of a flow rate measuring apparatus according to another embodiment of the present invention. The same components as those in the first embodiment described above have the same functions, and therefore detailed description will be given. Is omitted.

そして実施の形態3はゼロ点補正要因検出手段としてレベル検出手段6bを備えている点が実施の形態1とは異る。   The third embodiment is different from the first embodiment in that the level detection means 6b is provided as zero point correction factor detection means.

実施の形態3ではレベル検出手段6bを備えているため、流量検出手段1の受信信号のレベル変化によって発生するゼロ点の補正を自動的に行い、温度変化や湿度変化ならびに経年による特性変化などに起因する誤差の発生を総合的に判断して補正することができる。   In the third embodiment, since the level detecting means 6b is provided, the zero point generated by the level change of the reception signal of the flow rate detecting means 1 is automatically corrected to the temperature change, the humidity change, and the characteristic change due to aging. It is possible to comprehensively determine and correct the occurrence of the error due to it.

(実施の形態4)
図5は本発明の実施の形態4に関する流量計測装置の構成ブロック図で、前記実施の形態1ないし3における構成部分と同じ構成部分については作用も同じであるため同一符号
を付与して詳細な説明は省略する。
(Embodiment 4)
FIG. 5 is a block diagram showing the configuration of the flow rate measuring apparatus according to the fourth embodiment of the present invention. The same components as those in the first to third embodiments have the same operation, and therefore, the same reference numerals are given to the detailed components. Description is omitted.

そして実施の形態4はゼロ点補正要因検出手段として感震手段6cを備えている点が実施の形態1ないし3とは異る。   The fourth embodiment is different from the first to third embodiments in that a seismic sensing means 6c is provided as a zero point correction factor detecting means.

実施の形態4では感震手段6cを備えているため、地震や、何かが衝突することによって起きる衝撃によって流量検出手段1に誤差が発生してもゼロ点が変動している事を自動的に補正によって防止することができる。   In the fourth embodiment, since the seismic means 6c is provided, it is automatically detected that the zero point fluctuates even if an error occurs in the flow rate detecting means 1 due to an earthquake or an impact caused by something colliding. This can be prevented by correction.

(実施の形態5)
図6は本発明の実施の形態5に関する流量計測装置の構成ブロック図で、前記する実施の形態1ないし4における構成部分と同じ構成部分については作用も同じであるため同一符号を付与して詳細な説明は省略する。
(Embodiment 5)
FIG. 6 is a block diagram showing the configuration of the flow rate measuring apparatus according to the fifth embodiment of the present invention. The same components as those in the first to fourth embodiments have the same functions, and the details are given with the same reference numerals. The detailed explanation is omitted.

そして実施の形態5はゼロ点補正要因検出手段として外部とのデータを送受信する通信手段6dを備えている点が実施の形態1ないし4とは異る。   The fifth embodiment is different from the first to fourth embodiments in that a communication means 6d for transmitting / receiving data to / from the outside is provided as a zero point correction factor detecting means.

実施の形態5では外部とのデータを送受信する通信手段6dを備えている為、自然環境の変化に応ずる実施の形態1ないし実施の形態4と異り、外部よりリモートコントローラによって任意にゼロ点を補正し、の形態えば流体の漏洩チェックをする時に事前に人為的に事前に外部よりゼロ点を補正することができる。なお、通信手段6dには電話回線を利用することが可能である。   In the fifth embodiment, since the communication means 6d for transmitting / receiving data to / from the outside is provided, the zero point is arbitrarily set by the remote controller from the outside, unlike the first to fourth embodiments in response to changes in the natural environment. For example, when the fluid leakage is checked, the zero point can be corrected from the outside in advance. Note that a telephone line can be used for the communication means 6d.

(実施の形態6)
図7は本発明の実施の形態6に関する流量計測装置の構成ブロック図で、前記する実施の形態1ないし5における構成部分と同じ構成部分については作用も同じであるため同一符号を付与して詳細な説明は省略する。
(Embodiment 6)
FIG. 7 is a configuration block diagram of a flow rate measuring apparatus according to the sixth embodiment of the present invention, and the same components as those in the first to fifth embodiments described above have the same functions, and therefore the same reference numerals are given and details are shown. The detailed explanation is omitted.

そして実施の形態6では流体物理性質検出手段6eを備えている点が実施の形態1ないし5とは異る。   The sixth embodiment is different from the first to fifth embodiments in that the fluid physical property detecting means 6e is provided.

実施の形態6では流体物理性質検出手段6eを備えている為、流体の成分が変化して流体の密度,比熱,音速などが変化してもゼロ点の補正によって流量測定精度を保つことができる。   Since the fluid physical property detection means 6e is provided in the sixth embodiment, the flow rate measurement accuracy can be maintained by correcting the zero point even if the fluid component changes and the density, specific heat, sound speed, etc. of the fluid change. .

(実施の形態7)
図8は本発明の実施の形態7に関する流量計測装置の構成ブロック図で、前記する実施の形態1ないし6における構成部分と同じ構成部分については作用も同じであるため同一符号を付与して詳細な説明は省略する。
(Embodiment 7)
FIG. 8 is a block diagram showing the configuration of the flow rate measuring apparatus according to the seventh embodiment of the present invention. The same components as those in the first to sixth embodiments have the same functions, and the details are given with the same reference numerals. The detailed explanation is omitted.

そして実施の形態7では、流路内の流体の圧力を検出する圧力検出手段6fを備えているため、流体が流れているときにゼロ点を補正することがないように防止している。従って誤ったゼロ点補正による流量計測精度の低下を防止し得るものである。   In the seventh embodiment, since the pressure detecting means 6f for detecting the pressure of the fluid in the flow path is provided, the zero point is prevented from being corrected when the fluid is flowing. Accordingly, it is possible to prevent a decrease in flow rate measurement accuracy due to erroneous zero point correction.

(実施の形態8)
図9は本発明の実施の形態8に関する流量計測装置の構成ブロック図で、前記する実施の形態1ないし7における構成部分と同じ構成部分については作用も同じであるため同一符号を付与して詳細な説明は省略する。
(Embodiment 8)
FIG. 9 is a block diagram showing the configuration of the flow rate measuring apparatus according to the eighth embodiment of the present invention. The same components as those in the first to seventh embodiments are the same in function, and are given the same reference numerals for the details. The detailed explanation is omitted.

そして実施の形態8では、計測回路6gを備えている点が前記する実施の形態1ないし
7とは異る。
The eighth embodiment is different from the first to seventh embodiments in that a measurement circuit 6g is provided.

実施の形態8における計測回路6gは図1の(b)に示すように流路Aを間に介在させてお互いに対向している第1振動子(これは超音波振動子であっても構わない)と第2振動子とを備えていて、その振動子間の電気信号の伝搬時間を計測する計測回路であり、振動子の感度変化や温度変化を信号の伝搬時間で判断してゼロ点を補正することができるので、ゼロ点の補正時期を適切に行うことができる。   As shown in FIG. 1B, the measurement circuit 6g according to the eighth embodiment includes first transducers that are opposed to each other with a flow channel A interposed therebetween (this may be an ultrasonic transducer). 2) and a second vibrator, and a measurement circuit that measures the propagation time of an electrical signal between the vibrators. Therefore, the zero point can be corrected appropriately.

なお、以上本発明についての実施の形態を1ないし8にわたって説明したが、これらの実施の形態は複数組合わせることができることは言う迄もない。また、流量演算手段の値が異常値を示したと判断したときのみゼロ点を補正して、不要なゼロ点補正を行わないようにし、消費電力を低減することができる。そして所定の流量値以下の場合にはゼロ値の変化と判断してゼロ補正を行い微少な流体の漏洩時に対応する実施の形態も当業者であれば容易に実現できるものである。   Although the embodiments of the present invention have been described in 1 to 8 above, it goes without saying that a plurality of these embodiments can be combined. Further, the zero point is corrected only when it is determined that the value of the flow rate calculation means indicates an abnormal value, so that unnecessary zero point correction is not performed, and power consumption can be reduced. A person skilled in the art can easily realize an embodiment corresponding to the case of slight fluid leakage by determining that the change is zero value when the flow rate is less than or equal to a predetermined flow rate value and performing zero correction.

以上のように本発明の実施の形態によれば、ゼロ点補正の必要時に自動的にゼロ点補正を行い微少な流量変化をも正確に計測することができる。   As described above, according to the embodiment of the present invention, when the zero point correction is necessary, the zero point correction is automatically performed, and even a minute flow rate change can be accurately measured.

即ちゼロ点補正要因検出手段の信号の変化に応じてゼロ点補正ができる。   That is, zero point correction can be performed according to a change in the signal of the zero point correction factor detecting means.

また、流量検出手段の温度に起因するゼロ点の補正を自動的に行うことができる。   Further, the zero point due to the temperature of the flow rate detecting means can be automatically corrected.

また、湿度に起因するゼロ点の補正を自動的に行うことができる。   In addition, the zero point due to humidity can be automatically corrected.

また、電源電圧の変動に起因するゼロ点の補正を自動的に行うことができる。   Further, the zero point due to the fluctuation of the power supply voltage can be automatically corrected.

また、流量検出手段の受信信号のレベル変化によって発生するゼロ点の補正を自動的に行い、温度変化や、湿度変化あるいは経年変化などの重畳変化による誤差の発生を総合的に判断して補正することができる。   It also automatically corrects the zero point generated by the level change of the received signal of the flow rate detection means, and comprehensively judges and corrects the occurrence of error due to superposition change such as temperature change, humidity change or aging change. be able to.

また、地震や衝突衝撃などに起因する流量検出手段に誤差が発生してもゼロ点が変動することを自動的に防止できる。   Further, it is possible to automatically prevent the zero point from fluctuating even if an error occurs in the flow rate detection means due to an earthquake or a collision impact.

また、外部よりリモートコントローラによって任意にゼロ点を補正し、の形態えば流体の漏洩チェック時に事前に外部よりゼロ点を補正して漏洩検出の精度を高めることができる。   Further, the zero point can be arbitrarily corrected from the outside by a remote controller. For example, when the fluid leakage is checked, the zero point can be corrected in advance from the outside to improve the accuracy of leakage detection.

また、流体の成分が変わって流体の密度,比熱,音速が変化してもゼロ点の補正によって流量測定精度を保つことができる。   Further, even if the fluid component changes and the density, specific heat, and sound speed of the fluid change, the flow rate measurement accuracy can be maintained by correcting the zero point.

また、流体の流量がゼロでないときにゼロ点を補正することを未然に防止して誤ったゼロ点補正による測定精度の低下を防止し得る。   Further, it is possible to prevent the zero point from being corrected when the fluid flow rate is not zero, thereby preventing the measurement accuracy from being lowered due to an erroneous zero point correction.

また、流体の流量値が異常を示したと判断されるときのみゼロ点を補正するので、異常時には直ちに対応できるばかりでなく、不要なゼロ点補正を行う必要がないので、消費電力を低減できる。   Further, since the zero point is corrected only when it is determined that the fluid flow rate value indicates an abnormality, not only can an immediate action be taken in the event of an abnormality, but there is no need to perform unnecessary zero point correction, thereby reducing power consumption.

また、通常は計測されない流量値以下の場合には、ゼロ値の変化と判断し、ゼロ点補正を行うので微少な流体の漏洩時にも正確な流量計測によって直ちに漏洩を検出することができ安全性が高い。   In addition, if the flow rate is not normally measured or less, it is judged as a change in the zero value, and zero point correction is performed. Therefore, even when a small amount of fluid leaks, the leak can be detected immediately by accurate flow measurement. Is expensive.

また、振動子の感度変化や温度変化を信号の伝搬時間で判断してゼロ点を補正することができるので、ゼロ点の補正時期を適切に判断できるので、高い流量測定精度を保つことができる。   In addition, since the zero point can be corrected by judging the sensitivity change and temperature change of the vibrator based on the signal propagation time, it is possible to appropriately determine the zero point correction time, and thus high flow measurement accuracy can be maintained. .

(a)本発明の実施例1における流量計測装置の要部構成ブロック図(b)同流量検出手段の模式図(A) Main part configuration block diagram of flow rate measuring device in Embodiment 1 of the present invention (b) Schematic diagram of the flow rate detecting means 同実施例1おける流量計測装置のゼロ点補正のフローチャートFlow chart of zero point correction of flow rate measuring apparatus in embodiment 1 本発明の実施例2における流量計測装置の要部構成ブロック図The principal part block diagram of the flow volume measuring apparatus in Example 2 of this invention 本発明の実施例3における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device according to Embodiment 3 of the present invention 本発明の実施例4における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device according to Embodiment 4 of the present invention 本発明の実施例5における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device in Embodiment 5 of the present invention 本発明の実施例6における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device according to Embodiment 6 of the present invention 本発明の実施例7における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device according to Embodiment 7 of the present invention 本発明の実施例8における流量計測装置の要部構成ブロック図Block diagram of main components of a flow rate measuring device in Embodiment 8 of the present invention

符号の説明Explanation of symbols

A 流路
1 流量検出手段
2 流体管路
3 第1超音波振動子
4 第2超音波振動子
5 流量演算手段
6e 流体物理性質検出手段
7 ゼロ点制御手段
8 ゼロ点検定手段
A flow path 1 flow rate detection means 2 fluid conduit 3 first ultrasonic transducer 4 second ultrasonic transducer 5 flow rate calculation means 6e fluid physical property detection means 7 zero point control means 8 zero point verification means

Claims (2)

流体流路に設けられた流量検出手段と、前記流量検出手段の信号により流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段と、ゼロ点補正要因検出手段と、前記ゼロ点補正要因検出手段の信号の変化に応じて前記ゼロ点検定手段を作動させるゼロ点制御手段とを備え、前記ゼロ点補正要因検出手段が、流路内の流体の成分変化による物理的変化を検出する流体物理性質検出手段である流量計測装置。 A flow rate detecting means provided in a fluid flow path, a flow rate calculating means for calculating a flow rate based on a signal from the flow rate detecting means, and a zero for detecting a zero value of the flow rate detecting means and correcting the zero value by the flow rate calculating means A zero point correction factor detection unit; a zero point correction factor detection unit; and a zero point control unit that operates the zero point verification unit in response to a change in a signal of the zero point correction factor detection unit. Is a flow rate measuring device which is a fluid physical property detection means for detecting a physical change due to a change in the component of the fluid in the flow path. 流路を介在して相互に対向して配設された第1振動子と第2振動子とを備え、前記第1振動子と第2振動子との間の信号伝搬時間を計測する計測回路と、前記計測回路の信号に基づいて流量を算出する流量演算手段と、前記流量検出手段のゼロ値を検出し前記流量演算手段にてゼロ値を補正するゼロ点検定手段を作動させるゼロ点制御手段とを具備し、前記ゼロ点制御手段は前記信号伝搬時間の変化に応じてゼロ点検定手段を作動させるようにした流量計測装置。 A measurement circuit that includes a first vibrator and a second vibrator disposed to face each other with a flow path interposed therebetween, and measures a signal propagation time between the first vibrator and the second vibrator. And zero point control for operating the zero point detecting means for detecting the zero value of the flow rate detecting means and correcting the zero value by the flow rate calculating means. And a zero point control means that operates the zero point verification means in response to a change in the signal propagation time.
JP2005374449A 2005-12-27 2005-12-27 Flow rate measuring means Pending JP2006133238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374449A JP2006133238A (en) 2005-12-27 2005-12-27 Flow rate measuring means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374449A JP2006133238A (en) 2005-12-27 2005-12-27 Flow rate measuring means

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27838397A Division JPH11118555A (en) 1997-10-13 1997-10-13 Flow rate-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006133238A true JP2006133238A (en) 2006-05-25

Family

ID=36726876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374449A Pending JP2006133238A (en) 2005-12-27 2005-12-27 Flow rate measuring means

Country Status (1)

Country Link
JP (1) JP2006133238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218888A (en) * 2009-03-17 2010-09-30 Jx Nippon Oil & Energy Corp Fuel cell system
JP2013251279A (en) * 2013-09-18 2013-12-12 Jx Nippon Oil & Energy Corp Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218888A (en) * 2009-03-17 2010-09-30 Jx Nippon Oil & Energy Corp Fuel cell system
JP2013251279A (en) * 2013-09-18 2013-12-12 Jx Nippon Oil & Energy Corp Fuel cell system

Similar Documents

Publication Publication Date Title
EP2673598B1 (en) Determining delay times for ultrasonic flow meters
US9664549B2 (en) Fluid meter device
US7729876B2 (en) Diagnostic device for use in process control system
US9151651B2 (en) Apparatus and method for determining temperature
JP2008076183A (en) Flow measurement element, mass flowmeter, and mass flow measurement system
US9625305B2 (en) Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter
CN113874699A (en) Using pressure waves to detect clogging in porous members
JP2008128824A (en) Ultrasonic flow meter
WO2000070312A1 (en) Flowmeter
JP4703700B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2006133238A (en) Flow rate measuring means
JP6405520B2 (en) Ultrasonic flow meter
JPH11118555A (en) Flow rate-measuring apparatus
JP5141613B2 (en) Ultrasonic flow meter
JP4280111B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JPWO2019235291A1 (en) Gas security device
JP4153721B2 (en) Ultrasonic flowmeter and self-diagnosis method of ultrasonic flowmeter
JP2000028404A (en) Fluid control device and flow-rate measuring device provided with the same
JP4307679B2 (en) Gas security device
JP2008180741A (en) Flow measuring instrument
JP2004036937A (en) Gas safety device
JP2004069532A5 (en)
JP2000213742A (en) Gas safety device
JP4703701B2 (en) Ultrasonic transducer and ultrasonic flowmeter
JP2010217073A (en) Flow measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116