JP2009103460A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2009103460A
JP2009103460A JP2007272728A JP2007272728A JP2009103460A JP 2009103460 A JP2009103460 A JP 2009103460A JP 2007272728 A JP2007272728 A JP 2007272728A JP 2007272728 A JP2007272728 A JP 2007272728A JP 2009103460 A JP2009103460 A JP 2009103460A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
propagation
flow path
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007272728A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2007272728A priority Critical patent/JP2009103460A/en
Publication of JP2009103460A publication Critical patent/JP2009103460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter which is capable of realizing stable and high-accuracy measurement across the whole flow zone without being affected by the flow velocity distribution in the width direction according to a flow zone. <P>SOLUTION: The ultrasonic flowmeter has reflective members which are formed in the shape of plates disposed respectively along a flow passage inside a flow passage forming part and partitions the section of the flow passage into a flow passage central area and areas touching internally the inner wall surfaces of the flow passage forming part, which are located on the opposite sides of the flow passage central area. A propagation time of an ultrasonic beam in a first propagation route wherein the total length of propagation through the flow passage central area is larger than that of propagation through the areas touching internally the wall surfaces and in a second propagation route wherein the total length of propagation through the flow passage central area is smaller than that of propagation through the areas touching internally the wall surfaces and which is different from the first propagation route, is measured individually. Based on the result of the measurement, the ultrasonic flowmeter calculates the information on the flow rate distribution in the section of the flow passage in the manner of dividing it into the information on the flow passage central area and that on the areas touching internally the wall surfaces, and outputs it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は超音波流量計に関する。   The present invention relates to an ultrasonic flow meter.

流路を流れる流体は、その流量によって流速分布が異なることが流体力学的に一般に知られている。すなわち、流れが遅い時には、流路幅方向で層流と呼ばれる放物線形状の流速分布を示し、ピークの流速と、平均流速とが異なる分布状態となり、逆に流れが速くなると、徐々にその分布は崩れ、乱流域と呼ばれる流域となり、その時の流速分布は、ピーク流速が平均流速と等しい形状となる、バスタブ形状と呼ばれる流速分布となり、流速分布は流路幅方向で一様に等しい分布状態となる。また層流域では、放物線形状の流速分布形状に若干の相異が発生し、幅方向での流速差は一定ではない。さらに層流域では、ガス種や、流路形状寸法等により、流速分布は異なる分布をとることが一般に知られている。   It is generally known hydrodynamically that a fluid flowing through a flow path has a different flow velocity distribution depending on its flow rate. In other words, when the flow is slow, it shows a parabolic flow velocity distribution called laminar flow in the channel width direction, the peak flow velocity and the average flow velocity are different, and conversely when the flow becomes faster, the distribution gradually The flow velocity distribution at that time becomes a flow velocity distribution called a bathtub shape in which the peak flow velocity is equal to the average flow velocity, and the flow velocity distribution is uniformly distributed in the channel width direction. . Further, in the laminar flow region, a slight difference occurs in the parabolic flow velocity distribution shape, and the flow velocity difference in the width direction is not constant. Furthermore, it is generally known that in the laminar flow region, the flow velocity distribution varies depending on the gas type, the flow channel geometry, and the like.

このように流量域および、流体の種類や、流路形状寸法等により、流路幅方向での流速分布に差が存在すると、超音波素子によって、流速分布を横切るように超音波を送受信させ、流路を流れる流体を計測する際、流量域によって、計測される平均流速は上述の流速分布の影響を受け、この流速分布の影響により計測した値には誤差が含まれるため、正確な流量を算出できないことになる。仮にこの誤差の影響を補正するにしても、計測している流速分布そのものが把握できないので、流量域による流速分布を平均流速として補正することは極めて困難である。   Thus, if there is a difference in the flow velocity distribution in the flow channel width direction due to the flow rate region, the type of fluid, the flow channel shape dimensions, etc., the ultrasonic element transmits and receives ultrasonic waves across the flow velocity distribution, When measuring the fluid flowing in the flow path, the measured average flow velocity is affected by the flow velocity distribution described above depending on the flow rate range, and the measured flow rate includes an error. It cannot be calculated. Even if the influence of this error is corrected, the measured flow velocity distribution itself cannot be grasped, so it is extremely difficult to correct the flow velocity distribution in the flow region as the average flow velocity.

そこで、この影響を低減し、どの流量域でも平均化された流速分布が得られるように、流路内部の幅方向を複数のエリアに分割し、特に層流域で発生する放物線形状の流速分布を平滑化するよう、流路内部に仕切板と呼ばれる部材を配置する流れ計測装置が考案されている(特許文献1参照)。これにより、層流域でも乱流域と同様に平均化された流速分布を計測し扱えることで、正確な流速を算出でき、高精度な流量が算出できる。   Therefore, in order to reduce this effect and obtain an averaged flow velocity distribution in any flow region, the width direction inside the flow channel is divided into a plurality of areas, and the parabolic flow velocity distribution generated especially in the laminar flow region is obtained. A flow measuring device has been devised in which a member called a partition plate is arranged inside a flow path so as to be smoothed (see Patent Document 1). As a result, in the laminar flow region, the averaged flow velocity distribution can be measured and handled in the same manner as in the turbulent flow region, so that an accurate flow velocity can be calculated and a highly accurate flow rate can be calculated.

特開2005−257363号公報JP 2005-257363 A

しかしながら、特許文献1においては、仕切板を流路内部に挿入し、流れに対して抵抗を発生させる形成とすることにより、圧力損失が顕著化してしまう。仮にこの圧力損失を許容できたとしても、製品の固体差、仕切板の組み込み精度、バラツキ、温度因子等による影響を考慮すると、製品の安定性、歩留り等にも寄与する可能性が懸念される上、部品追加によりコスト高となってしまうことは免れない。   However, in patent document 1, pressure loss will become remarkable by inserting a partition plate in the inside of a flow path and making it generate | occur | produce resistance with respect to a flow. Even if this pressure loss can be tolerated, there is a concern that it may contribute to product stability, yield, etc. in consideration of the effects of individual differences in products, the accuracy of assembly of partition plates, variation, temperature factors, etc. In addition, it is inevitable that the cost will increase due to the addition of parts.

上記問題点を背景として、本発明の課題は、流量域による幅方向の流速分布の影響を受けず、全流量域にわたって安定し高精度な計測を実現できる超音波流量計を提供することにある。   Against the background of the above problems, an object of the present invention is to provide an ultrasonic flowmeter that is not affected by the flow velocity distribution in the width direction due to the flow rate region and can realize stable and highly accurate measurement over the entire flow rate region. .

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するための、本発明の超音波流量計は、被測定流体の流路を形成する流路形成部と、流路形成部に取り付けられるとともに、一方が被測定流体への超音波ビームの送出部となり他方が該超音波ビームの受信部となるよう送受信機能が入れ替え可能に構成された各々1対の超音波送受信部からなる第一および第二の超音波送受信部対と、流路形成部の内部にて各々流路に沿って配置される板状に形成され、流路断面を、流路中央領域と、該流路中央領域の両側にて各々流路形成部の内壁面に接する壁面内接領域とに仕切るとともに、第一の超音波送受信部対については、流路中央領域を通過する総伝播長が壁面内接領域を通過する総伝播長よりも長くなる第一伝播経路に沿って、第二の超音波送受信部対については、流路中央領域を通過する総伝播長が壁面内接領域を通過する総伝播長よりも短い第一伝播経路とは異なる第二伝播経路に沿って、超音波ビームを送出部から反射屈折させつつ受信部に各々導く反射部材と、第一の超音波送受信部対を使用したときの超音波ビームの伝播時間である第一伝播時間と、第二の超音波送受信部対を使用したときの超音波ビームの伝播時間である第二伝播時間とをそれぞれ計測する伝播時間計測手段と、それら第一伝播時間と第二伝播時間の計測結果に基づいて、流路断面内の流量分布情報を、流路中央領域と壁面内接領域とに区分した形で算出する流量分布情報算出手段と、算出された流量分布情報を出力する流量分布情報出力手段と、を有してなることを特徴とする。   In order to solve the above problems, an ultrasonic flowmeter of the present invention is attached to a flow path forming section that forms a flow path of a fluid to be measured, and the flow path forming section, one of which is an ultrasonic wave to the fluid to be measured A first and a second ultrasonic transmission / reception unit pair each composed of a pair of ultrasonic transmission / reception units configured such that the transmission / reception function can be switched so that the other becomes a transmission unit of the beam and the reception unit of the ultrasonic beam; It is formed in a plate shape that is disposed along the flow path inside the path forming portion, and the cross section of the flow path is divided into the flow path center region and the inner wall surface of the flow path forming portion on both sides of the flow path central region. The first propagation is such that the total propagation length passing through the central region of the flow path is longer than the total propagation length passing through the wall inscribed region. Along the path, for the second ultrasound transmitter / receiver pair, The ultrasonic beam is reflected and refracted from the transmitting unit along the second propagation path different from the first propagation path whose total propagation length passing through the wall inscribed region is shorter than the total propagation length passing through the wall inscribed region. The first reflection time, which is the propagation time of the ultrasonic beam when using the reflecting member to be guided, and the first ultrasonic transmission / reception unit pair, and the propagation of the ultrasonic beam when using the second ultrasonic transmission / reception unit pair Based on the measurement results of the first propagation time and the second propagation time, the flow distribution information in the cross section of the flow path is obtained as It is characterized by having flow rate distribution information calculating means for calculating in a form divided into wall surface inscribed regions and flow rate distribution information outputting means for outputting the calculated flow rate distribution information.

上記構成によって、これら複数の超音波の送受信による伝播時間計測結果、あるいは時間計測情報から演算し算出した流速結果に基づき、流路内を流れる流量による流速分布のパターンを把握し分析することが可能であるため、流路を流れる流体の流量を演算し算出することができる。また、圧電素子を構成する複数の圧電素子ブロックの、流路幅方向に対応した幅方向における各ブロックの寸法比率、および枚数、配置を最適な寸法比、枚数、位置に調整してやることにより、流路を流れる流体の種類(ガス種)や、流路形状寸法、流量レンジ、更には流速分布の偏り(中心軸からのズレがある分布でも)があっても、これに対応した最適な流速検出が可能であるため、流量域による幅方向の流速分布や偏りによる影響を受けず、全流量域に渡って安定し高精度な計測を実現できる。   With the above configuration, it is possible to grasp and analyze the flow velocity distribution pattern due to the flow rate flowing in the flow path based on the propagation time measurement result by sending and receiving these multiple ultrasonic waves or the flow velocity result calculated and calculated from the time measurement information Therefore, the flow rate of the fluid flowing through the flow path can be calculated and calculated. In addition, by adjusting the dimensional ratio, the number and arrangement of the plurality of piezoelectric element blocks constituting the piezoelectric element in the width direction corresponding to the width direction of the flow path to the optimum dimensional ratio, number and position, Optimal flow velocity detection corresponding to the type of fluid (gas type) flowing through the channel, flow path geometry, flow rate range, and even flow velocity distribution deviation (even with a deviation from the central axis) Therefore, it is possible to realize stable and highly accurate measurement over the entire flow rate range without being affected by the flow velocity distribution in the width direction and the bias due to the flow rate range.

また、本発明の超音波流量計は、第一伝播経路と第二伝播経路とが同一長さに設定されるように構成することもできる。   Moreover, the ultrasonic flowmeter of this invention can also be comprised so that a 1st propagation path and a 2nd propagation path may be set to the same length.

2つの伝播経路長が同一であっても、流量分布が異なる領域を通過する超音波ビームの伝播時間は異なる。上記構成によっても、全流量域にわたって安定し高精度な計測を実現できる。   Even if the two propagation path lengths are the same, the propagation time of the ultrasonic beam passing through the region where the flow distribution is different is different. Even with the above configuration, stable and highly accurate measurement can be realized over the entire flow rate range.

また、本発明の超音波流量計における反射部材は、送信部に近い側に位置する第一反射部材と、受信部に近い側に位置する第二反射部材とを有し、第一反射部材には、第一伝播経路に沿って第一超音波送受信部対の送信部から送出された超音波ビームを流路中央領域に導き入れる第一貫通部が形成され、第二反射部材には、流路中央領域内にて多重反射した超音波ビームを受信部側の壁面内接領域内に導き入れる第二貫通部が形成され、それら第一貫通部と第二貫通部との形成位置が、流路中央領域内での超音波ビームの反射回数が各壁面内接領域での合計反射回数よりも多くなるように定められるように構成することもできる。   Further, the reflecting member in the ultrasonic flowmeter of the present invention has a first reflecting member located on the side closer to the transmitting unit and a second reflecting member located on the side closer to the receiving unit, and the first reflecting member Is formed with a first penetrating portion that guides the ultrasonic beam transmitted from the transmission unit of the first ultrasonic transmission / reception unit pair along the first propagation path to the central region of the flow path. A second penetrating portion is formed to guide the ultrasonic beam that has been multiple-reflected in the center region of the road into the inscribed region on the wall side on the receiving side, and the formation position of the first penetrating portion and the second penetrating portion is It can also be configured such that the number of reflections of the ultrasonic beam in the road center region is determined to be larger than the total number of reflections in each wall inscribed region.

上記構成によって、流路中央領域における流量分布情報を精度よく算出することができる。   With the above configuration, the flow rate distribution information in the central region of the flow path can be calculated with high accuracy.

また、本発明の超音波流量計は、第一貫通部と第二貫通部との形成位置は、超音波ビームが各壁面内接領域を無反射にて通過するように定められるように構成することもできる。   Further, the ultrasonic flowmeter of the present invention is configured such that the formation position of the first penetrating portion and the second penetrating portion is determined so that the ultrasonic beam passes through each wall inscribed region without reflection. You can also.

上記構成によって、各壁面内接領域の流量分布に影響されず、流路中央領域における流量分布情報をより精度よく算出することができる。   With the above configuration, the flow rate distribution information in the central region of the flow path can be calculated more accurately without being affected by the flow rate distribution in each wall inscribed region.

また、本発明の超音波流量計における反射部材は、送信部に近い側に位置する第一反射部材と、受信部に近い側に位置する第二反射部材とを有し、第一反射部材には、第二伝播経路に沿って第二超音波送受信部対の送信部から送出され、該送信部側の壁面内接領域内にて第一反射部材と対向する流路形成部の内壁面との間で多重反射した超音波ビームを流路中央領域に導き入れる第三貫通部が形成され、第二反射部材には、該超音波ビームを流路中央領域から受信部側の壁面内接領域内に導き入れ、第二反射部材と、これに対向する流路形成部の内壁面との間で多重反射させつつ超音波ビームを第二超音波送受信部対の受信部に導き入れる第四貫通部が形成され、それら第三貫通部と第四貫通部との形成位置が、各壁面内接領域での合計反射回数が流路中央領域内での超音波ビームの反射回数よりも多くなるように定められるように構成することもできる。   Further, the reflecting member in the ultrasonic flowmeter of the present invention has a first reflecting member located on the side closer to the transmitting unit and a second reflecting member located on the side closer to the receiving unit, and the first reflecting member Is sent from the transmission unit of the second ultrasonic transmission / reception unit pair along the second propagation path, and the inner wall surface of the flow path forming unit facing the first reflection member in the wall inscribed region on the transmission unit side, A third penetrating portion is formed to guide the ultrasonic beam that has been multiple-reflected between the two to the flow path central region, and the second reflecting member has a wall inscribed region on the receiving unit side from the flow channel central region. The fourth penetration that guides the ultrasonic beam into the receiving part of the second ultrasonic transmitting / receiving part pair while performing multiple reflections between the second reflecting member and the inner wall surface of the flow path forming part facing the second reflecting member Part is formed, the formation position of the third penetration part and the fourth penetration part is the total reflection in each wall inscribed region The number can also be configured to be determined to be larger than the number of reflections of the ultrasonic beam at the middle of the channel region.

上記構成によって、壁面内接領域における流量分布情報を精度よく算出することができる。   With the above configuration, the flow distribution information in the wall inscribed region can be calculated with high accuracy.

また、本発明の超音波流量計における第三貫通部と第四貫通部との形成位置は、超音波ビームが流路中央領域を無反射にて通過するように定められるように構成することもできる。   Moreover, the formation position of the 3rd penetration part and the 4th penetration part in the ultrasonic flowmeter of this invention can also be comprised so that an ultrasonic beam may pass through a flow-path center area | region without reflection. it can.

上記構成によって、流路中央領域の流量分布に影響されず、各壁面内接領域における流量分布情報をより精度よく算出することができる。   With the above configuration, the flow rate distribution information in each wall inscribed region can be calculated more accurately without being affected by the flow rate distribution in the flow channel central region.

また、本発明の超音波流量計は、請求項3または請求項4に記載の要件を備え、第一超音波送受信部対と第二超音波送受信部対との各送信部と受信部とが、流路の流れ方向において同じ位置に、反射部材の幅方向に各々互いに隣接して配置され、かつ、第一反射部材と第二反射部材とのそれぞれに対し、同一角度にて超音波ビームが出射ないし入射するようになっており、第一貫通部と第二貫通部とは、第一反射部材および第二反射部材に対し、第一超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は許容し、第二超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は阻止するように、各反射部材の当該第一超音波送受信部対側のみを幅方向に部分的に切り欠く形で形成され、第三貫通部と第四貫通部とは、第一反射部材および第二反射部材に対し、第二超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は許容し、第一超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は阻止するように、各反射部材の当該第二超音波送受信部対側のみを幅方向に部分的に切り欠く形で形成されるように構成することもできる。   Moreover, the ultrasonic flowmeter of this invention is provided with the requirements of Claim 3 or Claim 4, and each transmission part and receiving part of a 1st ultrasonic transmission / reception part pair and a 2nd ultrasonic transmission / reception part pair are The ultrasonic beam is disposed at the same position in the flow direction of the flow path and adjacent to each other in the width direction of the reflection member, and at the same angle with respect to each of the first reflection member and the second reflection member. The first penetrating part and the second penetrating part are applied to the transmitting part or the receiving part forming the first ultrasonic transmitting / receiving part pair with respect to the first reflecting member and the second reflecting member. Only the opposite side of the first ultrasonic transmission / reception unit of each reflecting member is allowed to allow the ultrasonic beam to pass and prevent the transmission of the ultrasonic beam to the transmission unit or reception unit forming the second ultrasonic transmission / reception unit pair. Are formed in a shape that is partially cut out in the width direction. The through part allows the transmission of the ultrasonic beam applied to the transmission unit or the reception unit forming the second ultrasonic transmission / reception unit pair with respect to the first reflection member and the second reflection member, and the first ultrasonic transmission / reception unit pair It is configured so that only the opposite side of the second ultrasonic transmission / reception unit of each reflection member is partially cut out in the width direction so as to prevent the transmission of the ultrasonic beam applied to the transmission unit or reception unit. You can also

上記構成によって、反射部材の構造を複雑化することなく、また、流路の流れに影響を及ぼすことなく第一伝播経路と第二伝播経路とを形成することが可能となる。   With the above configuration, the first propagation path and the second propagation path can be formed without complicating the structure of the reflecting member and without affecting the flow of the flow path.

また、本発明の超音波流量計における第一および第二の超音波送受信部は、一つの圧電体により構成され、該圧電体の表面部には、流路の流れ方向に該圧電体を第一および第二の超音波送受信部に分割するための溝が設けられ、その溝において分割された圧電体ごとに、それぞれ独立した超音波指向特性を有するように構成することもできる。   In addition, the first and second ultrasonic transmission / reception units in the ultrasonic flowmeter of the present invention are configured by one piezoelectric body, and the piezoelectric body is placed on the surface of the piezoelectric body in the flow direction of the flow path. A groove for dividing the first and second ultrasonic transmission / reception units may be provided, and each piezoelectric body divided in the groove may have an independent ultrasonic directivity characteristic.

一つの圧電体を分割し電圧を印加すると、分割されたそれぞれの圧電体から超音波が送出されることが知られている。上記構成によって、電圧印加部も一つで済むので、低コストで超音波送受信部を構成することが可能となる。また、スリットにより機械的に独立した構成であるため、振動効率の低下および、不要な振動が抑えられるので、検出精度が良く、安定した計測が可能である。また同一の圧電素子で構成され対称な形状に分割され送受信が可能なため、特性が等しく経路による感度差も無く安定な計測が実現できるうえ、温度や経時変化による誤差が極めて少なく高精度な検出が実現できる。   It is known that when one piezoelectric body is divided and a voltage is applied, an ultrasonic wave is transmitted from each of the divided piezoelectric bodies. With the above configuration, since only one voltage application unit is required, an ultrasonic transmission / reception unit can be configured at low cost. In addition, since the structure is mechanically independent by the slit, a decrease in vibration efficiency and unnecessary vibration can be suppressed, so that detection accuracy is high and stable measurement is possible. In addition, because it is composed of the same piezoelectric element and can be transmitted and received by dividing into symmetrical shapes, it can realize stable measurement with the same characteristics and no sensitivity difference due to the path, and highly accurate detection with very little error due to temperature and aging. Can be realized.

また、本発明の超音波流量計における第一および第二の超音波送受信部は、それぞれ独立した圧電体により構成され、これら圧電体は流路の流れ方向に対して対称に分離配置され、それぞれ独立した超音波指向特性を有するように構成することもできる。   Further, the first and second ultrasonic transmission / reception units in the ultrasonic flowmeter of the present invention are configured by independent piezoelectric bodies, and these piezoelectric bodies are separately arranged symmetrically with respect to the flow direction of the flow path, It can also be configured to have independent ultrasonic directivity characteristics.

上記構成によって、これら2つの圧電体の超音波の発信タイミングを任意に設定することができ、ガス種や、流路形状寸法等に応じて精度よく流量分布情報を算出することができる。また、それぞれの圧電体が完全に独立で対称な形状であるので、振動効率が良くロスが少ないため、送受信感度を高めた状態で超音波ビームを流路内部に放射できる。更には、それぞれの圧電体は同一ロット内で構成してあるため比較的特性が近く、温度変化や、経時変化の傾向が揃っていて安定な構成となる。   With the above configuration, the transmission timing of ultrasonic waves of these two piezoelectric bodies can be arbitrarily set, and the flow rate distribution information can be accurately calculated according to the gas type, the flow path shape dimension, and the like. In addition, since each piezoelectric body has a completely independent and symmetric shape, the vibration efficiency is good and the loss is small, so that an ultrasonic beam can be radiated into the flow path with improved transmission / reception sensitivity. Furthermore, since each piezoelectric body is configured in the same lot, the characteristics are relatively close, and the tendency of temperature change and change with time is uniform, resulting in a stable configuration.

また、本発明の超音波流量計は、流量分布情報に基づいて、被測定流体の流路中央領域と壁面内接領域における流速を算出する流速算出手段と、算出された2つの被測定流体の流速に基づいて、流量分布情報に応じた流速分布補正係数を算出する流速分布補正係数算出手段と、を備えるように構成することもできる。   Further, the ultrasonic flowmeter of the present invention includes a flow velocity calculation means for calculating a flow velocity in the flow path central region and the wall inscribed region of the fluid to be measured based on the flow distribution information, and two calculated fluids to be measured. A flow velocity distribution correction coefficient calculating unit that calculates a flow velocity distribution correction coefficient corresponding to the flow distribution information based on the flow velocity may be provided.

上記構成によって、互いに異なる伝播経路を伝播する2種類の音波ビームによる、2種類の伝播経路を伝播する超音波ビームを送受信させることで、流速分布に応じた伝播時間結果が得られるので、その伝播時間の結果から、少なくとも2種類の音波ビームによる伝播時間の比の値を比較し、その大小関係に基づいて、流速分布のパターンを推定し、妥当な流量域を予測すると同時に、その比の値に応じて最適な流速分布補正係数を算出することができる。   With the above configuration, the transmission time result corresponding to the flow velocity distribution can be obtained by transmitting and receiving the ultrasonic beam propagating through the two kinds of propagation paths by the two kinds of sound beams propagating through the different propagation paths. Compare the propagation time ratio values of at least two types of sound beams from the time results, estimate the flow velocity distribution pattern based on the magnitude relationship, predict the appropriate flow rate range, and at the same time, the ratio value The optimum flow velocity distribution correction coefficient can be calculated according to the above.

また、本発明の超音波流量計は、算出された流速分布補正係数に基づいて、被測定流体の流速を補正する流速補正手段を備えるように構成することもできる。   The ultrasonic flowmeter of the present invention can also be configured to include a flow velocity correction unit that corrects the flow velocity of the fluid to be measured based on the calculated flow velocity distribution correction coefficient.

上記構成によって、流量域に応じて最適な補正を行うため、妥当な流速補正係数を割り振割り流速を演算し流量を算出する流量計測にあって、その流速補正係数を、流路を流れる流体の種類や、流路寸法に応じて変化させることで、流体の種類によって異なる粘性、密度の相異における流速値の相異による流速分布の相異に対応できる。また、流路形状・寸法による超音波ビームエリアによる流速分布に相異があっても、これに対応した補正係数応を別に付与することが可能であるため、超音波ビーム送受信による伝播時間の計測結果から、その伝播時間の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができるので、流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。または、送受信による時間計測結果に基づいて演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができるので、流量域による幅方向の流速分布の影響を受けず、全流量域にわたって安定し高精度な計測が実現できる。   With the above configuration, in order to perform optimal correction according to the flow rate range, an appropriate flow rate correction coefficient is allocated and flow rate measurement is performed to calculate the flow rate and calculate the flow rate. It is possible to cope with the difference in flow velocity distribution due to the difference in flow velocity value in the difference in viscosity and density depending on the type of fluid. In addition, even if there is a difference in the flow velocity distribution in the ultrasonic beam area depending on the flow path shape and dimensions, it is possible to separately apply a correction coefficient corresponding to this, so the propagation time measurement by ultrasonic beam transmission and reception Based on the result, the ratio value of the propagation time is compared, and the flow velocity distribution pattern in the channel width direction is estimated based on the magnitude relationship to predict an appropriate flow area, and at the same time, the optimum flow rate is determined according to the ratio value. By assigning a flow velocity distribution correction coefficient, it is possible to calculate and calculate the average flow velocity across the flow path cross section, so that it is not affected by the flow velocity distribution in the width direction due to the flow region, and is stable and highly accurate over the entire flow region. Measurement can be realized. Or, based on the flow velocity result calculated and calculated based on the time measurement result by transmission and reception, the flow rate ratio value is compared, and based on the magnitude relationship, the flow velocity distribution pattern in the flow channel width direction is estimated and the appropriate flow rate range By simultaneously assigning the optimal flow velocity distribution correction coefficient according to the ratio value, the average flow velocity across the cross section of the flow path can be calculated and calculated. Without being affected, stable and highly accurate measurement can be realized over the entire flow rate range.

本発明に係る超音波流量計の実施形態を、図面を参照しつつ説明する。図1に、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の基本構成を示す。この超音波流量計1には、被測定流体GFの流路を形成する流路形成部3と流路形成部3に対し被測定流体GFの流通方向において互いに異なる位置に設けられ、一方が被測定流体GFへの測定用超音波の送出側となり、他方が該測定用超音波の受信側となるように機能するとともに、各々測定用超音波として、予め定められた向きへの指向性を有する超音波ビームSW2,SW4を送出可能な対をなす超音波送受信部2a,2bと、流路形成部3の内部にて流路に沿って配置される各々板状に形成され、かつ板面法線方向に所定の間隔で複数設けられた反射部材31,32とを備えている。そして、送信側となる超音波送受信部2a,2bから送出される超音波ビームSW2,SW4を、反射部材31,32を利用して流路内で多重反射させつつ受信側となる超音波送受信部2b,2aへ導くようにしてある。流路形成部3は例えば金属製である。   An embodiment of an ultrasonic flowmeter according to the present invention will be described with reference to the drawings. FIG. 1 shows a basic configuration of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. The ultrasonic flowmeter 1 is provided at a position different from each other in the flow direction of the fluid GF to be measured with respect to the flow passage forming portion 3 and the flow passage forming portion 3 that form the flow path of the fluid GF to be measured. While functioning so that the measurement ultrasonic wave is sent to the measurement fluid GF and the other is the measurement ultrasonic wave reception side, each of the measurement ultrasonic waves has directivity in a predetermined direction. A pair of ultrasonic transmission / reception units 2a and 2b capable of transmitting ultrasonic beams SW2 and SW4, and a plate surface method arranged along the flow path inside the flow path forming unit 3, respectively. And a plurality of reflecting members 31 and 32 provided at predetermined intervals in the line direction. Then, the ultrasonic transmission / reception units 2a and 2b on the transmission side are subjected to multiple reflection in the flow path by using the reflecting members 31 and 32 and the ultrasonic transmission / reception unit on the reception side. It leads to 2b and 2a. The flow path forming unit 3 is made of metal, for example.

また、反射部材31,32を含む流路形成部3と超音波送受信部2a,2bとが流量計本体1Mを構成し、該流量計本体1Mと制御回路部1Eとにより超音波流量計1の全体が構成されている。なお、超音波送受信部2aが本発明の第一の超音波送受信部対、超音波送受信部2bが本発明の第二の超音波送受信部対に相当する。   The flow path forming unit 3 including the reflecting members 31 and 32 and the ultrasonic transmission / reception units 2a and 2b constitute a flow meter main body 1M, and the flow meter main body 1M and the control circuit unit 1E The whole is configured. The ultrasonic transmission / reception unit 2a corresponds to the first ultrasonic transmission / reception unit pair of the present invention, and the ultrasonic transmission / reception unit 2b corresponds to the second ultrasonic transmission / reception unit pair of the present invention.

制御回路部1Eは、対をなす超音波送受信部2a,2bを、流路上流側に位置する上流側超音波送受信部2a側が送信側となり、流路下流側に位置する下流側超音波送受信部2b側が受信側となる順方向駆動モードと、その逆となる逆方向駆動モードとの間で切り替え可能に駆動する超音波駆動機構4を有する。なお、制御回路部1Eが本発明の伝播時間計測手段,流量分布情報算出手段,流量分布情報出力手段,流速算出手段,流速分布補正係数算出手段,流速補正手段に相当する。   The control circuit unit 1E includes a pair of ultrasonic transmission / reception units 2a and 2b. The upstream ultrasonic transmission / reception unit 2a located on the upstream side of the flow channel serves as the transmission side, and the downstream ultrasonic transmission / reception unit located on the downstream side of the flow channel. It has an ultrasonic drive mechanism 4 that can be switched between a forward drive mode in which the 2b side is the receiving side and a reverse drive mode that is the opposite of the forward drive mode. The control circuit unit 1E corresponds to the propagation time measuring unit, the flow rate distribution information calculating unit, the flow rate distribution information output unit, the flow rate calculating unit, the flow rate distribution correction coefficient calculating unit, and the flow rate correcting unit of the present invention.

超音波流量計1の流量測定用の流路3Pには、流量測定用ガス(流体)が図示の流れ方向に流通している。流路3Pには、流れ方向下流側に下流側超音波送受信部2bが設けられ、流れ方向上流側に上流側超音波送受信部2aが設けられている。これらの超音波送受信部2a,2bは圧電振動子などからなる超音波振動子を有した超音波トランスデューサであり、駆動電圧の印加により超音波ビームを送出する超音波送出機能と、超音波ビームの受信により電気信号(受信信号)を出力する超音波受信機能とを複合して備えるものである。測定用の超音波ビームは、流路内にて超音波送受信部2a,2b間に定在波を生じないよう、所定波数以下のパルス状に送出される。   A flow rate measurement gas (fluid) flows in the flow direction shown in the flow rate measurement flow path 3P of the ultrasonic flowmeter 1. In the flow path 3P, a downstream ultrasonic transmission / reception unit 2b is provided on the downstream side in the flow direction, and an upstream ultrasonic transmission / reception unit 2a is provided on the upstream side in the flow direction. These ultrasonic transmission / reception units 2a and 2b are ultrasonic transducers having an ultrasonic transducer such as a piezoelectric transducer, and have an ultrasonic transmission function for transmitting an ultrasonic beam by applying a drive voltage, It is combined with an ultrasonic wave reception function that outputs an electrical signal (reception signal) upon reception. The ultrasonic beam for measurement is sent out in a pulse shape having a predetermined wave number or less so as not to generate a standing wave between the ultrasonic transmission / reception units 2a and 2b in the flow path.

また、測定対象がガスの場合、流路3Pを形成する流路形成部3の軸断面形状は壁部3Jにより閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。本実施形態では、図1に示すごとく流路形成部3は矩形状に形成され、上壁部3Jaに上流側超音波送受信部2aが、また下壁部3Jbに下流側超音波送受信部2bが取り付けられている。つまり、対をなす超音波送受信部2a,2bが、流路形成部3に対し、複数の反射部材31,32を配列方向に挟む形で振り分けて配置されている。   In addition, when the measurement target is gas, the axial cross-sectional shape of the flow path forming portion 3 that forms the flow path 3P may be any shape that forms a space closed by the wall portion 3J. For example, a circular shape, an elliptical shape, Any of a square shape, a rectangular shape, or the like may be adopted. In the present embodiment, as shown in FIG. 1, the flow path forming portion 3 is formed in a rectangular shape, the upstream ultrasonic wave transmitting / receiving unit 2a is formed on the upper wall portion 3Ja, and the downstream ultrasonic wave transmitting / receiving unit 2b is formed on the lower wall portion 3Jb. It is attached. In other words, the paired ultrasonic transmission / reception units 2 a and 2 b are arranged so as to be distributed to the flow path forming unit 3 so as to sandwich the plurality of reflecting members 31 and 32 in the arrangement direction.

流路形成部3は、反射部材31,32により、流路中央領域3Wと、流路中央領域の両側にて各々流路形成部の内壁面に接する上部壁面内接領域3C,下部壁面内接領域3C’とに仕切られている。なお、反射部材31が本発明の第一反射部材、反射部材32が本発明の第二反射部材に相当する。   The flow path forming unit 3 is formed by the reflecting members 31 and 32 with the flow path center area 3W, the upper wall surface inscribed area 3C in contact with the inner wall surface of the flow path forming part on both sides of the flow path center area, and the lower wall surface inscribed. It is partitioned into a region 3C ′. The reflecting member 31 corresponds to the first reflecting member of the present invention, and the reflecting member 32 corresponds to the second reflecting member of the present invention.

図2に、流量計本体1Mの断面構造の斜視図を示す。配置送信側となる超音波送受信部(順方向駆動モードでは上流側超音波送受信部2a、逆方向駆動モードでは下流側超音波送受信部2b)から送出される超音波ビームSW4,SW2のうち、超音波ビームSW4は、それら1対の反射部材31,32間に形成される流路中央領域3W内にて多重反射されつつ受信側となる超音波送受信部(順方向駆動モードでは下流側超音波送受信部2b、逆方向駆動モードでは上流側超音波送受信部2a)に導かれる。すなわち、超音波ビームSW4の伝播経路が、流路中央領域を通過する総伝播長が壁面内接領域を通過する総伝播長よりも長くなる第一伝播経路に相当する。また、超音波ビームSW2は、2つの壁面内接領域3C,3C’内にて多重反射されつつ受信側となる超音波送受信部に導かれる。すなわち、超音波ビームSW2の伝播経路が、流路中央領域3Wを通過する総伝播長が壁面内接領域3C,3C’を通過する総伝播長よりも短い第一伝播経路とは異なる第二伝播経路に相当する。   FIG. 2 is a perspective view of a cross-sectional structure of the flow meter main body 1M. Of the ultrasonic beams SW4 and SW2 transmitted from the ultrasonic transmission / reception unit on the arrangement transmission side (the upstream ultrasonic transmission / reception unit 2a in the forward drive mode and the downstream ultrasonic transmission / reception unit 2b in the reverse drive mode) The ultrasonic beam SW4 is subjected to an ultrasonic transmission / reception unit (downstream ultrasonic transmission / reception in the forward drive mode) while being multiple-reflected in the flow path central region 3W formed between the pair of reflecting members 31 and 32 while being multiplexed. In the part 2b, reverse drive mode, it is guided to the upstream ultrasonic transmission / reception part 2a). That is, the propagation path of the ultrasonic beam SW4 corresponds to a first propagation path in which the total propagation length passing through the flow path center region is longer than the total propagation length passing through the wall inscribed region. Further, the ultrasonic beam SW2 is guided to the ultrasonic transmission / reception unit on the reception side while being multiple-reflected in the two wall surface inscribed regions 3C and 3C '. That is, the propagation path of the ultrasonic beam SW2 is different from the first propagation path in which the total propagation length passing through the flow path central region 3W is shorter than the total propagation length passing through the wall surface inscribed regions 3C and 3C ′. Corresponds to the route.

反射部材31,32には、該反射部材31,32と対向する超音波送受信部2a,2bからの超音波ビームSW4を流路中央領域3Wに導入し、超音波ビームSW4を流路中央領域3Wで多重反射させるためのビーム導入開口部31h1(本発明の第一貫通部),32h1(本発明の第二貫通部)が形成されている。これらビーム導入開口部31h,32hの反射部材31,32への形成位置は、超音波ビームSW4のビーム中心軸線を包含するように定められている。   In the reflection members 31 and 32, the ultrasonic beam SW4 from the ultrasonic transmission / reception units 2a and 2b facing the reflection members 31 and 32 is introduced into the flow path central region 3W, and the ultrasonic beam SW4 is supplied to the flow path central region 3W. The beam introduction opening 31h1 (first penetration part of the present invention) and 32h1 (second penetration part of the present invention) for multiple reflection are formed. The formation positions of the beam introduction openings 31h and 32h on the reflecting members 31 and 32 are determined so as to include the beam center axis of the ultrasonic beam SW4.

また、反射部材31,32には、該反射部材31,32と対向する超音波送受信部2a,2bからの超音波ビームSW2が、壁面内接領域3C,3C’で多重反射した後に流路中央領域3Wに導入するためのビーム導入開口部31h2(本発明の第三貫通部),32h2(本発明の第四貫通部)が形成されている。これらビーム導入開口部31h2,32h2の反射部材31,32への形成位置は、超音波ビームSW2のビーム中心軸線を包含するように定められている。   Further, the reflection members 31 and 32 are arranged in the center of the flow path after the ultrasonic beam SW2 from the ultrasonic transmission / reception units 2a and 2b facing the reflection members 31 and 32 is subjected to multiple reflection at the wall inscribed regions 3C and 3C ′. Beam introduction openings 31h2 (third penetration portion of the present invention) and 32h2 (fourth penetration portion of the present invention) for introduction into the region 3W are formed. The formation positions of these beam introduction openings 31h2 and 32h2 on the reflecting members 31 and 32 are determined so as to include the beam center axis of the ultrasonic beam SW2.

なお、ビーム導入開口部31h1,32h1および31h2,32h2の形状は、矩形あるいは略半円形の切り欠きでもよいし、貫通形成としてもよい。また、第一貫通部と第二貫通部との形成位置は、流路中央領域内(3W)での超音波ビームSW4の反射回数が各壁面内接領域(3C,3C’)での合計反射回数よりも多くなるように定められる。また、第三貫通部と第四貫通部との形成位置は、流路中央領域3W内を超音波ビームSW2が無反射で通過するように定められる。   The beam introduction openings 31h1, 32h1 and 31h2, 32h2 may be rectangular or substantially semicircular cutouts or may be formed through. Moreover, the formation position of the 1st penetration part and the 2nd penetration part is the total reflection in each wall surface inscribed area | region (3C, 3C ') that the frequency | count of reflection of ultrasonic beam SW4 in a flow-path center area | region (3W). It is determined to be more than the number of times. The formation positions of the third penetration part and the fourth penetration part are determined so that the ultrasonic beam SW2 passes through the flow path central region 3W without reflection.

また、反射部材31,32は、被測定流体(媒質)の音響インピーダンスをZ1とした場合、反射部材の音響インピーダンスをZ2とすれば、境界(反射面)が反射部材31,32であるので、Z1/Z2<<1となるような音響インピーダンスZ2を有した材質を選定すればよい。このようにすれば、反射部材31,32の音響インピーダンスZ2,媒質の音響インピーダンスZ1に比べて充分に大きいので、境界(反射面)をなす反射部材31,32を超音波ビームSW(2,4)が透過することを阻止でき、ほぼ全反射となるため、超音波ビームSWの伝播ロスが少なくなり、高感度な送受信が達成できる。具体的には、音響インピーダンス比Z1/Z2の値は1/10以下であればよく、反射部材31,32の具体的な材質としては、金属、セラミックス、プラスチックスを例示できる。   In addition, when the acoustic impedance of the fluid to be measured (medium) is Z1 and the acoustic impedance of the reflective member is Z2, the reflecting members 31 and 32 have the boundaries (reflecting surfaces) as the reflecting members 31 and 32. A material having an acoustic impedance Z2 that satisfies Z1 / Z2 << 1 may be selected. In this way, the acoustic impedance Z2 of the reflecting members 31 and 32 is sufficiently larger than the acoustic impedance Z1 of the medium, so that the reflecting members 31 and 32 forming the boundary (reflecting surface) are made to be the ultrasonic beam SW (2, 4 ) Can be prevented from being transmitted and almost total reflection occurs, so that the propagation loss of the ultrasonic beam SW is reduced, and highly sensitive transmission / reception can be achieved. Specifically, the acoustic impedance ratio Z1 / Z2 may be 1/10 or less, and examples of specific materials of the reflecting members 31 and 32 include metals, ceramics, and plastics.

また、反射部材31,32の厚みは、材料の機械的物性や加工性等を考慮して、0.4mm以上確保されていることが望ましい。また、反射部材31,32の厚みが超音波波長λの1/2に一致していると、図19に示すごとく、共振により反射部材の音波透過率が非常に急峻に増大し、反射がほとんど生じなくなるので、該厚さはλ/2よりも小さいことが望ましい(図19に示す例ではλ/2=約1.25mmであり、反射部材31,32の厚みは1mm以下に設定されていることが望ましいといえるが、λは反射部材31,32の材質により変化するので、適正な厚みの上限は材質に応じて適宜設定されることとなる)。   In addition, it is desirable that the thickness of the reflecting members 31 and 32 is secured to 0.4 mm or more in consideration of the mechanical properties and workability of the material. If the thickness of the reflecting members 31 and 32 is equal to ½ of the ultrasonic wavelength λ, as shown in FIG. 19, the sound wave transmittance of the reflecting member increases very steeply due to resonance, and almost no reflection occurs. The thickness is preferably smaller than λ / 2 (in the example shown in FIG. 19, λ / 2 = about 1.25 mm, and the thickness of the reflecting members 31 and 32 is set to 1 mm or less. However, since λ varies depending on the material of the reflecting members 31 and 32, the upper limit of the appropriate thickness is appropriately set according to the material).

さらに、反射部材31,32の反射面の表面粗さ(JIS:B0601(2001)に規定された算術平均高さRaを採用する)は、超音波波長λの1/10以下に仕上げられていることが望ましい。これにより、反射面での乱反射による超音波エネルギーのロスが少なくなり、ほぼ全反射するため、超音波ビームの伝播ロスが抑制され、高感度な送受信を実現できる。   Furthermore, the surface roughness of the reflecting surfaces of the reflecting members 31 and 32 (the arithmetic average height Ra defined in JIS B0601 (2001) is adopted) is finished to 1/10 or less of the ultrasonic wavelength λ. It is desirable. As a result, the loss of ultrasonic energy due to irregular reflection on the reflecting surface is reduced and almost total reflection is performed, so that the propagation loss of the ultrasonic beam is suppressed, and highly sensitive transmission / reception can be realized.

図3に、超音波送受信部2a,2bの構成を示す。超音波送受信部2a,2b構成は同じであるため、超音波送受信部2aを例に挙げて説明する。超音波送受信部2aを構成する圧電素子(本発明の圧電体)が、一体構成で溝SLにより2つの圧電素子ブロック2a1および2a2に分離された構成となっている。そして、各圧電素子ブロック2a1,2a2を駆動し、音響インピーダンスを整合層するための音響整合層2zを介して超音波ビームα(SW2に相当),β(SW4に相当)を流路幅方向で二分する形で放射する。   FIG. 3 shows the configuration of the ultrasonic transmission / reception units 2a and 2b. Since the ultrasonic transmission / reception units 2a and 2b have the same configuration, the ultrasonic transmission / reception unit 2a will be described as an example. The piezoelectric element (piezoelectric body of the present invention) constituting the ultrasonic transmission / reception unit 2a is configured as an integrated structure separated into two piezoelectric element blocks 2a1 and 2a2 by a groove SL. Then, each of the piezoelectric element blocks 2a1 and 2a2 is driven, and the ultrasonic beams α (corresponding to SW2) and β (corresponding to SW4) are transmitted in the flow path width direction via the acoustic matching layer 2z for matching the acoustic impedance. Radiates in half.

超音波ビームαおよびβの放射タイミングに時間差を設けると、流路幅方向でそれぞれ異なる伝播経路に沿って超音波送受信部2bに導かれる、このとき一定の時間差が発生する。また、超音波ビームαおよびβを同じタイミングで放射しても、それぞれの超音波ビームの伝播経路の長さが異なれば、一定の時間差を持って受信される。さらに、超音波ビームαおよびβを同じタイミングで放射し、それぞれの超音波ビームの伝播経路の長さが同じであっても、各領域(3W,3C)における流量分布が異なれば、一定の時間差を持って受信される。   When a time difference is provided in the radiation timings of the ultrasonic beams α and β, the ultrasonic wave is guided to the ultrasonic wave transmitting / receiving unit 2b along different propagation paths in the flow path width direction. At this time, a certain time difference is generated. Even if the ultrasonic beams α and β are emitted at the same timing, they are received with a certain time difference if the propagation paths of the ultrasonic beams are different. Furthermore, even if the ultrasonic beams α and β are emitted at the same timing and the propagation paths of the respective ultrasonic beams have the same length, if the flow rate distribution in each region (3W, 3C) is different, a certain time difference is obtained. Will be received.

図4のように、圧電素子は、Aパターンのように流路幅を二分するような位置に溝SLが設けられた角型の2つの圧電素子ブロック2a1,2a2として構成しても、Bパターンのように、略円板状の圧電素子を流路幅方向に溝SLで二分する構成としてもよい。また、これら以外にも、圧電素子が略楕円形状で、流路幅方向に対称な形状で分離されている構成でもよい。図5,図6に、それぞれの形状の圧電素子の取り付け例を示す。   As shown in FIG. 4, the piezoelectric element can be configured as two square-shaped piezoelectric element blocks 2a1 and 2a2 in which grooves SL are provided at positions that divide the flow path width into two as in the A pattern. As described above, the substantially disk-shaped piezoelectric element may be divided into two by the groove SL in the flow path width direction. In addition to the above, the piezoelectric elements may have a substantially elliptical shape and are separated in a shape symmetrical in the flow path width direction. 5 and 6 show examples of attachment of piezoelectric elements having respective shapes.

図7に、超音波送受信部2a,2bを構成する圧電素子の構成の別例を示す。圧電素子を流路幅方向に対して対称な形状で、2個のアレイ状にそれぞれ分離された圧電素子ブロック1,2として並べて配置した構成とし、各圧電素子ブロックを、それぞれ一定の遅延時間を設けて駆動し、それぞれのブロックに共通の音響整合層2zを介して超音波ビームα(SW2に相当),β(SW4に相当)を送受信させる。   FIG. 7 shows another example of the configuration of the piezoelectric elements constituting the ultrasonic transmission / reception units 2a and 2b. The piezoelectric elements are arranged symmetrically with respect to the flow path width direction and arranged side by side as piezoelectric element blocks 1 and 2 separated into two arrays, and each piezoelectric element block has a certain delay time. The ultrasonic beams α (corresponding to SW2) and β (corresponding to SW4) are transmitted and received through the acoustic matching layer 2z common to the respective blocks.

図8に、マイコン11のブロック図を示す。マイコン11は、CPU111、ROM112(不揮発性メモリ:EEPROMやフラッシュメモリなどにより記憶内容は電気的に書換え可能)、RAM113、入出力部114および内部バス115を備える。ROM112には制御プログラム112aが記憶されており、CPU111がこの制御プログラム112aを読み出して実行することにより流量算出等が行われる。また、RAM113には流量算出等に必要な測定データを記憶する測定データ記憶領域113cが設けられる。   FIG. 8 shows a block diagram of the microcomputer 11. The microcomputer 11 includes a CPU 111, a ROM 112 (nonvolatile memory: stored contents can be electrically rewritten by an EEPROM, a flash memory, or the like), a RAM 113, an input / output unit 114, and an internal bus 115. The ROM 112 stores a control program 112a, and the CPU 111 reads out and executes the control program 112a to perform flow rate calculation and the like. Further, the RAM 113 is provided with a measurement data storage area 113c for storing measurement data necessary for flow rate calculation and the like.

図1の時間計測部10は、順方向駆動モードでの、上流側超音波送受信部2aから発信された超音波ビームSW2,SW4が下流側超音波送受信部2bに到達するまでの順方向伝播時間と、逆方向駆動モードにおける下流側超音波送受信部2bから発信された超音波ビームSW2,SW4が上流側超音波送受信部2aに到達するまでの逆方向伝播時間とを計測するものである。また、マイコン11は、上記の順方向伝播時間と逆方向伝播時間との時間差から、流路3Pを流れる流体の平均流速度および流量を計算する。また、増幅部7は、受信した超音波ビーム信号のレベル(電圧レベル)をCPU111で処理可能なものとするための、周知の増幅回路を含む。   The time measurement unit 10 in FIG. 1 is configured to perform forward propagation time until the ultrasonic beams SW2 and SW4 transmitted from the upstream ultrasonic transmission / reception unit 2a reach the downstream ultrasonic transmission / reception unit 2b in the forward drive mode. And the backward propagation time until the ultrasonic beams SW2 and SW4 transmitted from the downstream ultrasonic wave transmitting / receiving unit 2b in the reverse direction driving mode reach the upstream ultrasonic wave transmitting / receiving unit 2a. Further, the microcomputer 11 calculates the average flow velocity and the flow rate of the fluid flowing through the flow path 3P from the time difference between the forward propagation time and the backward propagation time. The amplifying unit 7 includes a known amplifying circuit for enabling the CPU 111 to process the level (voltage level) of the received ultrasonic beam signal.

本発明では、超音波ビームSW4の伝播パスが4次反射による折れ線状となるので、図9の構成の場合、流量Qの計算を以下のようにして行うことができる(各部の寸法は図9に示す記号にて説明する)。まず、反射部材31,32により仕切られる各空間のうち、上部壁面内接領域3C、流路中央領域3Wおよび下部壁面内接領3C’の各高さをh1、h2、h3、断面積をS1、S2、S3とする。また、反射部材31,32の厚みをt、淀み空間2d(図1参照)のオフセット長をL0、超音波送受信部2a,2b(図9では、それぞれトランジューサ1,2と表記)の取付角度をθとすると、伝播パス長Lは下式により計算される。   In the present invention, since the propagation path of the ultrasonic beam SW4 has a polygonal line shape due to quaternary reflection, the flow rate Q can be calculated as follows in the configuration of FIG. 9 (the dimensions of each part are shown in FIG. 9). This is explained by the symbols shown in the figure). First, among the spaces partitioned by the reflecting members 31, 32, the heights of the upper wall surface inscribed region 3C, the flow path center region 3W, and the lower wall surface inscribed region 3C ′ are h1, h2, h3, and the sectional area is S1. , S2, and S3. Further, the thickness of the reflecting members 31 and 32 is t, the offset length of the stagnation space 2d (see FIG. 1) is L0, and the ultrasonic wave transmitting / receiving units 2a and 2b (represented as transducers 1 and 2 in FIG. 9) are attached angles. Is θ, the propagation path length L is calculated by the following equation.

L={(h1−t/2)/SINθ
+5・(h2−t)/SINθ+(h3−t/2)/SINθ}+2L0 …(21)
また、反射部材31,32は流路中心軸線に関して上下対象に設けられているので、
h1=h3=h’ …(22)
S1=S3=S’ …(23)
とできる。
L = {(h1-t / 2) / SINθ
+ 5 · (h2−t) / SINθ + (h3−t / 2) / SINθ} + 2L0 (21)
Moreover, since the reflecting members 31 and 32 are provided in the vertical direction with respect to the flow path center axis,
h1 = h3 = h ′ (22)
S1 = S3 = S ′ (23)
And can.

次に、流路中央領域3W以外の三角部を含む流路断面、つまり、上壁部側空間3Cおよび下壁部側空間3C’における流速V’と瞬時流量Q’とを算出する。まず、伝播パスのうち、上壁部側空間3Cおよび下壁部側空間3C’に属する部分の長さL’は、
L’=2・{h’−t/2}/SINθ+L0} …(24)
である。すると、順方向伝播時間T1’は、
T1’=L’/(C+V’COSθ) …(25)
(ただし、Cは被測定ガス中の音速である)
同様に、逆方向伝播時間T2’は、
T2’=L’/(C−V’COSθ) …(26)
従って、上壁部側空間3Cおよび下壁部側空間3C’における流速V’は、
V’=(L’/COSθ)(1/T1’−1/T2’) …(27)
同じく瞬時流量Q’は、
Q’=V’・2S’ …(28)
Next, the flow rate cross section including the triangular part other than the flow path center region 3W, that is, the flow velocity V ′ and the instantaneous flow rate Q ′ in the upper wall side space 3C and the lower wall side space 3C ′ are calculated. First, in the propagation path, the length L ′ of the portion belonging to the upper wall side space 3C and the lower wall side space 3C ′ is:
L ′ = 2 · {h′−t / 2} / SINθ + L0} (24)
It is. Then, the forward propagation time T1 ′ is
T1 ′ = L ′ / (C + V′COSθ) (25)
(However, C is the speed of sound in the gas to be measured)
Similarly, the backward propagation time T2 ′ is
T2 ′ = L ′ / (C−V′COSθ) (26)
Therefore, the flow velocity V ′ in the upper wall side space 3C and the lower wall side space 3C ′ is
V ′ = (L ′ / COSθ) (1 / T1′−1 / T2 ′) (27)
Similarly, the instantaneous flow rate Q ′ is
Q ′ = V ′ · 2S ′ (28)

次に、流路中央領域3Wでの流速:V”と瞬時流量Q”とを同様に算出すると、
伝播パスのうち、流路中央領域3Wに属する部分の長さL”は、
L”=N・{(h2−t)/SINθ} …(29)
(ただし、Nは反射次数(反射回数))
である。すると、順方向伝播時間T1”は、
T1”=L”/(C+V”COSθ) …(30)
同様に、逆方向伝播時間T2”は、
T2”=L”/(C−V”COSθ) …(31)
従って、流路中央領域3Wにおける流速V”は、
V”=(L”/COSθ)(1/T1”−1/T2”) …(32)
同じく瞬時流量Q”は、
Q”=V”・S2 …(33)
Next, when the flow velocity: V ″ and instantaneous flow rate Q ″ in the flow path center region 3W are calculated in the same manner,
Of the propagation path, the length L ″ of the portion belonging to the flow path central region 3W is:
L ″ = N · {(h2−t) / SINθ} (29)
(However, N is the reflection order (number of reflections))
It is. Then, the forward propagation time T1 ″ is
T1 ″ = L ″ / (C + V ″ COSθ) (30)
Similarly, the backward propagation time T2 ″ is
T2 ″ = L ″ / (C−V ″ COSθ) (31)
Therefore, the flow velocity V ″ in the flow path center region 3W is
V ″ = (L ″ / COSθ) (1 / T1 ″ −1 / T2 ″) (32)
Similarly, the instantaneous flow rate Q "
Q ″ = V ″ · S2 (33)

以上から、全流量値Qは、流路中央領域3W(S2)と上壁部側空間3Cおよび下壁部側空間3C’(S’+S’=2S’)の各流量の和となるから、
Q=Q’+Q”(V’・2S’+V”・S2) …(34)
として算出することができる。測定される順方向伝播時間T1(T12)と逆方向伝播時間T2(T22)とは、いずれも、上記2つの空間の伝播時間の和(T1’+T1”およびT2’+T2”)である。
From the above, the total flow rate value Q is the sum of the flow rates of the flow path center region 3W (S2), the upper wall side space 3C, and the lower wall side space 3C ′ (S ′ + S ′ = 2S ′).
Q = Q ′ + Q ″ (V ′ · 2S ′ + V ″ · S2) (34)
Can be calculated as Both the forward propagation time T1 (T12) and the backward propagation time T2 (T22) measured are the sum of the propagation times of the two spaces (T1 ′ + T1 ″ and T2 ′ + T2 ″).

上記構成によると、超音波送受信部2a,2b間を超音波ビームSWが直進により伝播する場合と比較して、図9に示すように、反射回数が2回以上に増加する分だけ伝播パス長が折れ線状に増加し、流量測定精度の向上あるいは流量測定のレンジアビリティ拡大に寄与できる。また、同じ伝播パス長であっても、パス形状が折れ線状となることで、対を成す超音波送受信部2a,2bの距離を近づけることができ、装置の小形化にも貢献する。また、反射部材31,32によって流路3Pがその軸断面内にて複数に分割されるが、反射部材31,32は被測定流体GFに対する整流素子としても機能するので、流れの安定化と均一化とを図ることができ、この観点からも流量測定精度の向上に寄与する。特に、反射部材31,32による流路の分割方向に流れを十分均一化することができれば、測定対象となる流れを近似的に二次元流として取り扱うことが可能となり、測定精度向上の観点においてさらに有利となる。   According to the above configuration, as shown in FIG. 9, the propagation path length is increased by the number of times of reflection more than twice as compared with the case where the ultrasonic beam SW propagates straight between the ultrasonic transmission / reception units 2a and 2b. Increases in a polygonal line, which can contribute to the improvement of flow measurement accuracy or the rangeability of flow measurement. Further, even if the propagation path length is the same, the path shape becomes a polygonal line, so that the distance between the paired ultrasonic transmission / reception units 2a and 2b can be reduced, contributing to the miniaturization of the apparatus. Moreover, although the flow path 3P is divided into a plurality of parts within the axial cross section by the reflecting members 31 and 32, the reflecting members 31 and 32 also function as a rectifying element for the fluid GF to be measured. From this point of view, it contributes to the improvement of the flow rate measurement accuracy. In particular, if the flow can be sufficiently uniform in the direction of dividing the flow path by the reflecting members 31 and 32, the flow to be measured can be handled as a two-dimensional flow approximately, and further in terms of improving measurement accuracy. It will be advantageous.

また、図9に示すように、超音波送受信部2a,2bは、多重反射を生じさせるために、超音波送受信部2a,2bの流路形成部3に対する取付角度が大きく設定される。その結果、前述のごとく、各超音波送受信部2a,2bの直近に形成される淀み空間2dが縮小するので、流量測定精度の向上に著しく寄与する。   In addition, as shown in FIG. 9, in the ultrasonic transmission / reception units 2a and 2b, the attachment angle of the ultrasonic transmission / reception units 2a and 2b with respect to the flow path forming unit 3 is set large in order to cause multiple reflection. As a result, as described above, the stagnation space 2d formed in the immediate vicinity of each of the ultrasonic transmission / reception units 2a and 2b is reduced, which greatly contributes to an improvement in flow rate measurement accuracy.

図10を用いて、流量分布情報出力処理について説明する。なお、本処理は制御プログラム112aに含まれ、制御プログラム112aの他の処理とともに繰り返し実行される。まず、超音波ビーム(SW2:α,SW4:β)を予め定められたタイミングで超音波送信部2a,2bから放射する(S11)。次に、該超音波ビームを超音波受信部2a,2bにて受信した場合(S12:Yes)、それぞれの超音波ビームの伝播時間を計測する(S13)。そして、これら伝播時間に基づいて、流速補正値を算出し(S14)最終的な流量,流速(流量分布情報)を算出する(S15)。   The flow distribution information output process will be described with reference to FIG. This process is included in the control program 112a and is repeatedly executed together with other processes of the control program 112a. First, an ultrasonic beam (SW2: α, SW4: β) is emitted from the ultrasonic transmitters 2a and 2b at a predetermined timing (S11). Next, when the ultrasonic beam is received by the ultrasonic receivers 2a and 2b (S12: Yes), the propagation time of each ultrasonic beam is measured (S13). Based on these propagation times, a flow velocity correction value is calculated (S14), and a final flow rate and flow velocity (flow rate distribution information) are calculated (S15).

図11を用いて、超音波ビーム(SW2:α,SW4:β)の放射タイミングについて説明する。例えば、制御回路部1Eに含まれ、水晶発振子を含む発振回路(図示せず)から出力される1MHzのクロック信号を基準として、まず、超音波ビームSW2(αビーム)を放射する。続いて、マイコンあるいはカウンタ回路で該クロック信号をカウントし、例えば10カウントのような、カウンタ値が予め定められた値(tr)となった場合に、超音波ビームSW4(βビーム)を放射する。   The radiation timing of the ultrasonic beam (SW2: α, SW4: β) will be described with reference to FIG. For example, an ultrasonic beam SW2 (α beam) is first emitted with reference to a 1 MHz clock signal included in the control circuit unit 1E and output from an oscillation circuit (not shown) including a crystal oscillator. Subsequently, the clock signal is counted by a microcomputer or a counter circuit, and an ultrasonic beam SW4 (β beam) is emitted when the counter value reaches a predetermined value (tr) such as 10 counts. .

超音波ビームSW4は、超音波ビームSW2が放射されてからtr時間後に放射され、超音波ビームSW2が受信されてからtd時間後に受信される。超音波ビームSW2とSW4との伝播長が同じであっても、伝播経路が異なるので、流路における流量,流速の影響も相まって、必ずしもtr=tdとはならない。   The ultrasonic beam SW4 is radiated tr time after the ultrasonic beam SW2 is emitted, and is received td time after the ultrasonic beam SW2 is received. Even if the propagation lengths of the ultrasonic beams SW2 and SW4 are the same, since the propagation paths are different, tr = td is not always obtained due to the influence of the flow rate and flow velocity in the flow path.

図12および図13を用いて、超音波送受信部と反射部材の構成の別例を説明する。超音波送受信部2a,2bは、流路形成部3に対して直角に近くなるように取り付けられている。また、反射部材31にはビーム導入開口部31h3が設けられ、これら超音波送受信部2aから放射される超音波ビームが通過可能なようになっている。そして、反射部材32には、ビーム導入開口部31h3を通過した超音波ビームが開口部31hへ向かうように取り付け角度が調整された反射板32rが設けられている。同様に、超音波送受信部2bに対応して、ビーム導入開口部32h3,反射板31rが設けられている。   Another example of the configuration of the ultrasonic transmission / reception unit and the reflection member will be described with reference to FIGS. 12 and 13. The ultrasonic transmission / reception units 2 a and 2 b are attached so as to be close to a right angle with respect to the flow path forming unit 3. The reflecting member 31 is provided with a beam introduction opening 31h3 so that an ultrasonic beam emitted from the ultrasonic transmission / reception unit 2a can pass therethrough. The reflecting member 32 is provided with a reflecting plate 32r whose mounting angle is adjusted so that the ultrasonic beam that has passed through the beam introducing opening 31h3 is directed toward the opening 31h. Similarly, a beam introduction opening 32h3 and a reflecting plate 31r are provided corresponding to the ultrasonic transmission / reception unit 2b.

上記構成によっても、流路中央領域3Wを通過する総伝播長が壁面の導波空間3Cを通過する総伝播長よりも長くなる第一伝播経路(β)と、流路中央領域3Wを通過する総伝播長が壁面内接領域3C,3C’を通過する総伝播長よりも短い第二伝播経路(α)を形成することができる。   Also with the above configuration, the first propagation path (β) in which the total propagation length passing through the flow path central region 3W is longer than the total propagation length passing through the waveguide space 3C on the wall surface and the flow passage central region 3W are passed. A second propagation path (α) having a total propagation length shorter than the total propagation length passing through the wall surface inscribed regions 3C and 3C ′ can be formed.

図14および図15を用いて、超音波送受信部と反射部材の構成の別例を説明する。本構成は、図12および図13の変形例である。反射板31r,32rが流路方向に2分割されている。反射板31rは第二伝播経路(α)を形成するような角度θ1をもつ反射板31r1と、第一伝播経路(β)を形成するような角度θ2をもつ反射板31r2とにより構成されている。また、反射板32rも同様に反射板32r1と反射板32r2とにより構成されている。   Another example of the configuration of the ultrasonic transmission / reception unit and the reflection member will be described with reference to FIGS. 14 and 15. This configuration is a modification of FIGS. 12 and 13. The reflectors 31r and 32r are divided into two in the flow path direction. The reflecting plate 31r includes a reflecting plate 31r1 having an angle θ1 that forms the second propagation path (α) and a reflecting plate 31r2 having an angle θ2 that forms the first propagation path (β). . Similarly, the reflecting plate 32r includes a reflecting plate 32r1 and a reflecting plate 32r2.

超音波送信部2aからは同時に超音波ビームが放射され、それぞれ僅かに異なる角度θ1,θ2をもって取り付けられた反射板32rで反射し、互いに異なるL2,L1を有する第一伝播経路(β),第二伝播経路(α)を多重反射しながら伝播しつつ、流路幅方向を二分する形で互いに別々で、反射板32rと等しい角度θ1,θ2をもって取り付けられた反射板31rにより反射され、互いの行路差ΔLにより、一定の時間差(遅延時間)Δtをもって受信側の超音波受信部2bで受信される。   An ultrasonic beam is simultaneously emitted from the ultrasonic transmitter 2a, reflected by the reflector 32r attached with slightly different angles θ1 and θ2, respectively, and the first propagation path (β) and the second propagation path (β) having L2 and L1 different from each other. While propagating through the two propagation paths (α) while being subjected to multiple reflections, they are separated from each other in a manner that bisects the width direction of the flow path, and are reflected by the reflection plates 31r attached with the same angles θ1 and θ2 as the reflection plates 32r. Due to the path difference ΔL, the ultrasonic wave reception unit 2b on the receiving side receives the signal with a certain time difference (delay time) Δt.

図12から図15の構成では、超音波送受信部が流体の流れ方向に垂直となるように、すなわち超音波送受信部の放射面の法線方向が流体の流れ方向と直交する取り付け配置となるように配置されるので、流体が淀む箇所2d(図1参照)をなくすことができるので、正確な流速が算出でき、高精度な流量を演算できる。   In the configurations of FIGS. 12 to 15, the ultrasonic transmission / reception unit is perpendicular to the fluid flow direction, that is, the normal direction of the radiation surface of the ultrasonic transmission / reception unit is arranged to be orthogonal to the fluid flow direction. Since the location 2d (see FIG. 1) where the fluid stagnates can be eliminated, an accurate flow rate can be calculated and a highly accurate flow rate can be calculated.

そして、一定の時間を有して伝播し受信されるそれぞれ順方向および逆方向の超音波ビームの送受信による伝播時間計測結果、あるいは時間計測情報から演算し算出した流速結果に基づき、流路内を流れる流量による流速分布のパターンを把握し分析することで、流路を流れる流体の流量を演算し算出することができる。例えば、図15において、第二伝播経路の伝播長L1≒139.99mm,第一伝播経路の伝播長L2≒116.15mm,行路差L≒22.84mmのとき、2つの超音波ビームを受信する時間差Δt≒67.18μs(音速C=340m/sのとき)となる。また、本構成では、遅延回路や、基準クロックが不要となり、低コスト化を図ることができる。   Then, based on the propagation time measurement result by transmitting and receiving the ultrasonic beam in the forward direction and the reverse direction received and transmitted with a certain time, or the flow velocity result calculated and calculated from the time measurement information, By grasping and analyzing the flow velocity distribution pattern according to the flowing flow rate, the flow rate of the fluid flowing through the flow path can be calculated and calculated. For example, in FIG. 15, when the propagation length L1 of the second propagation path is approximately 139.99 mm, the propagation length L2 of the first propagation path is approximately 116.15 mm, and the path difference L is approximately 22.84 mm, two ultrasonic beams are received. The time difference Δt≈67.18 μs (when the speed of sound C = 340 m / s). In addition, in this configuration, a delay circuit and a reference clock are not necessary, and the cost can be reduced.

図16を用いて、流量分布情報に含まれる流速分布情報の算出について説明する。これは、超音波ビームの第一伝播経路(破線部)における伝播時間である第一伝播時間と、第二伝播経路(実線部)における伝播時間である第二伝播時間の計測結果と流速情報とに基づいて、流速分布を算出するものである。第二伝播経路の順方向伝播時間をTj1,逆方向伝播時間をTg1とし、第一伝播経路の順方向伝播時間をTj2,逆方向伝播時間をTg2とする。上述の方法で、伝播時間計測結果から算出されるそれぞれの第二伝播経路を伝播する超音波ビームの状態から算出される流速を、Vw(第二伝播経路),Vc(第一伝播経路)とする。そして、それぞれの伝播経路を伝播し得られた伝播時間結果の比の値:Tj2/Tj1=αおよび、Tg2/Tg1=βの大小関係に基づいて、あるいは伝播時間計測から演算し算出した流速の比の値:Vc/Vw=ζを比較し、その大小関係に基づいて、流路高さ方向における流速分布のパターンを推定し、流量域を予測し、流量を算出することが可能である。   The calculation of the flow velocity distribution information included in the flow distribution information will be described with reference to FIG. This is the measurement result of the first propagation time that is the propagation time in the first propagation path (broken line part) of the ultrasonic beam and the second propagation time that is the propagation time in the second propagation path (solid line part) and the flow velocity information. Based on the above, the flow velocity distribution is calculated. The forward propagation time of the second propagation path is Tj1, the backward propagation time is Tg1, the forward propagation time of the first propagation path is Tj2, and the backward propagation time is Tg2. Vw (second propagation path), Vc (first propagation path) are calculated as the flow velocities calculated from the state of the ultrasonic beam propagating through each second propagation path calculated from the propagation time measurement result by the above-described method. To do. And the value of the ratio of the propagation time results obtained by propagating through the respective propagation paths: based on the magnitude relationship of Tj2 / Tj1 = α and Tg2 / Tg1 = β, or the flow velocity calculated and calculated from the propagation time measurement It is possible to compare the ratio value: Vc / Vw = ζ, estimate the flow velocity distribution pattern in the flow path height direction based on the magnitude relationship, predict the flow rate region, and calculate the flow rate.

図16において、流速パターン1(層流域1)による伝播時間結果の比の値α,βをα1,β1とし、流速パターン2(層流域2)によるα,βをα2,β2とし、更に、流速パターン3(乱流域)によるα,βをα3,β3とすれば、その大小関係は、α1(β1)>α2(β2)>α3(β3)≒1の関係となり、それぞれの比の値により、流量域による流速分布パターンを把握でき、妥当な流速分布を算出することで流量を算出できる。なお、エリアA,B,Cは、それぞれ、上部壁面内接領域3C,流路中央領域3W,下部壁面内接領域3C’に相当する。   In FIG. 16, the values α and β of the propagation time result by the flow velocity pattern 1 (laminar basin 1) are α1 and β1, α and β by the flow velocity pattern 2 (laminar basin 2) are α2 and β2, and the flow velocity If α3 and β3 by pattern 3 (turbulent flow region) are α3 and β3, the magnitude relationship is α1 (β1)> α2 (β2)> α3 (β3) ≈1, and depending on the value of each ratio, The flow rate distribution pattern by the flow rate region can be grasped, and the flow rate can be calculated by calculating an appropriate flow rate distribution. Areas A, B, and C correspond to the upper wall surface inscribed area 3C, the flow path center area 3W, and the lower wall surface inscribed area 3C ', respectively.

流量域の把握は、2種類のビームパターンより計測されたそれぞれの伝播時間から算出した流速値とし、その流速の大小関係から流量域を予測してもよい。即ち、流速分布パターン1(層流域1),2(層流域2),3(乱流域3)における、超音波ビームパターン1(第一伝播経路)による流速:Vc、超音波ビームパターン2(第二伝播経路)による流速:Vwとすると、
Vc={L/(2・cosθ)}・(1/Tj1−1/Tg1)
Vw={L/(2・cosθ)}・(1/Tj2−1/Tg2)
その大小関係により流量域を予測し、妥当な流速を決定するようにしてもよい。
The flow rate range may be grasped by using a flow velocity value calculated from the propagation times measured from the two types of beam patterns, and predicting the flow rate region from the magnitude relationship of the flow velocity. That is, in the flow velocity distribution pattern 1 (laminar flow region 1), 2 (laminar flow region 2), 3 (turbulent flow region 3), the flow velocity by the ultrasonic beam pattern 1 (first propagation path): Vc, the ultrasonic beam pattern 2 (first (Two propagation paths) Velocity: Vw
Vc = {L / (2 · cos θ)} · (1 / Tj1-1 / Tg1)
Vw = {L / (2 · cos θ)} · (1 / Tj2-1 / Tg2)
An appropriate flow rate may be determined by predicting the flow rate region based on the magnitude relationship.

すなわち、
・Vc>Vwのときは層流域であると推定でき、そのときのVc/Vwの値により妥当な流速を決定する。
・Vc/Vw≒1であれば、乱流域であると推定でき、妥当な流速を決定する。層流域1の分布パターンの場合での流速比をVc1/Vw1,層流域2の分布パターンの場合での流速比をVc2/Vw2,乱流域3の分布パターンの場合での流速比をVc3/Vw3とすれば、(Vc1/Vw1)>(Vc2/Vw2)>(Vc3/Vw3)≒1の関係となり、流速比のオーダーにより現在の流量域が把握でき、現在での妥当な流速を算出できる。
That is,
When Vc> Vw, it can be estimated that the region is a laminar flow region, and an appropriate flow velocity is determined by the value of Vc / Vw at that time.
If Vc / Vw≈1, it can be estimated that the region is a turbulent region, and an appropriate flow velocity is determined. The velocity ratio in the case of the distribution pattern of the laminar basin 1 is Vc1 / Vw1, the velocity ratio in the case of the distribution pattern of the laminar basin 2 is Vc2 / Vw2, and the velocity ratio in the case of the distribution pattern of the turbulent basin 3 is Vc3 / Vw3. Then, the relationship of (Vc1 / Vw1)> (Vc2 / Vw2)> (Vc3 / Vw3) ≈1 is established, the current flow rate range can be grasped from the order of the flow rate ratio, and the current reasonable flow rate can be calculated.

なお、流量域の把握は、予め記憶されたデータと比較し、データの範囲に適合した値に応じた流量域を判定し、流量域で妥当な係数を割り振ることで、流速を算出し流量を演算することにより行うことができる。以下、図17を用いてその詳細を説明する。   Note that the flow rate range is determined by comparing the data stored in advance, determining the flow rate range according to the value that fits the range of the data, assigning a reasonable coefficient in the flow rate range, calculating the flow velocity and calculating the flow rate. This can be done by computing. Hereinafter, the details will be described with reference to FIG.

第一伝播経路(破線部),第二伝播経路(実線部)に分かれて伝播する超音波ビームにより計測された各伝播時間から算出された流速を、それぞれVc,Vwとすると、これらVc,Vwの大小関係および比の値により流量域を予測し、妥当な流速を決定する。Vc>Vwの時は層流域の流量域であり、Vc/Vwの値により、妥当な流速係数を決定し、平均流速を算出することで、流量を演算し流量を算出できる。またVc≒Vwであれば乱流域と把握でき、係数なしに平均流速を決定することができる。   If the flow velocities calculated from the propagation times measured by the ultrasonic beam propagating separately in the first propagation path (broken line part) and the second propagation path (solid line part) are Vc and Vw, respectively, these Vc and Vw The flow rate range is predicted based on the magnitude relationship and the ratio value, and an appropriate flow velocity is determined. When Vc> Vw, the flow rate is a laminar flow region. By determining an appropriate flow velocity coefficient based on the value of Vc / Vw and calculating the average flow velocity, the flow rate can be calculated and the flow rate can be calculated. If Vc≈Vw, it can be understood that the region is a turbulent flow region, and the average flow velocity can be determined without a coefficient.

乱流に関する速度分布はピーク速度がほぼ平均速度となるため、基本的には補正係数を用いないが、Vc/Vwの値に応じて乱流域に切替わるまで妥当な補正係数を割り振ることで、流量域に関わらず、平均流速を算出し流量を演算し算出することが可能である。   Since the velocity distribution related to turbulent flow is almost the average velocity, the correction coefficient is basically not used, but by assigning a reasonable correction coefficient until switching to the turbulent flow region according to the value of Vc / Vw, Regardless of the flow rate range, it is possible to calculate the average flow velocity and calculate the flow rate.

図17のように、流速分布に応じて、例えば、実線のような中心が最大で、中心から対称な速度分布パターン(層流域での流速分布パターン1)の場合、エリアB(流路中央領域3W)の中央部で流速の速い位置に寄与するように、中央部を優先的に多重反射しながら伝播する第一伝播経路の伝播時間に基づいて算出された流速Vcと、流路の壁面に接し、流速が中央部(流路中央領域3W)に比べて遅いエリアA(上部壁面内接領域3C),エリアC(下部壁面内接領域3C’)を優先的に多重反射しながら伝播する第二伝播経路の伝播時間に基づいて算出された流速Vwとの比Vc/Vw=ζ1とする。また、点線での流速分布パターン(層流域での流速分布パターン2)の場合、Vc/Vw=ζ2とする。   As shown in FIG. 17, according to the flow velocity distribution, for example, in the case of a velocity distribution pattern having a maximum center such as a solid line and a symmetric velocity distribution pattern from the center (flow velocity distribution pattern 1 in a laminar flow region), area B (flow channel central region) 3W), the flow velocity Vc calculated on the basis of the propagation time of the first propagation path that propagates while preferentially reflecting the central portion so as to contribute to the position where the flow velocity is fast at the central portion, and the wall surface of the flow path The first and second areas are propagated with multiple reflections preferentially in areas A (upper wall inscribed area 3C) and area C (lower wall inscribed area 3C ′) whose flow velocities are slower than the center (flow path center area 3W). The ratio Vc / Vw = ζ1 with the flow velocity Vw calculated based on the propagation time of the two propagation paths. In the case of the flow velocity distribution pattern in the dotted line (flow velocity distribution pattern 2 in the laminar flow region), Vc / Vw = ζ2.

このとき、ζ1,ζ2の大きさに比例した補正係数をそれぞれΦ1,Φ2とすれば、層流域での流速分布パターン1における平均流速V1はV1=Φ1・(Vc+Vw)/2,層流域での流速分布パターン2における平均流速V2はV2=Φ2・(Vc+Vw)/2として算出できる。   At this time, if correction coefficients proportional to the magnitudes of ζ1 and ζ2 are Φ1 and Φ2, respectively, the average flow velocity V1 in the flow velocity distribution pattern 1 in the laminar flow region is V1 = Φ1 · (Vc + Vw) / 2, The average flow velocity V2 in the flow velocity distribution pattern 2 can be calculated as V2 = Φ2 · (Vc + Vw) / 2.

あるいは、V1=Φ1’・Vc,V2=Φ2’・Vcとして算出することも可能である。但し、Φ1’,Φ2’はζ1,ζ2に比例した別の補正係数である。
無論、Vwに新たな補正係数を付与した式(V1=Φ1’・Vw,V2=Φ2’・Vw)で平均流速を算出するようにしてもよい。
Or it is also possible to calculate as V1 = Φ1 ′ · Vc and V2 = Φ2 ′ · Vc. However, Φ1 ′ and Φ2 ′ are other correction coefficients proportional to ζ1 and ζ2.
Of course, the average flow velocity may be calculated by an equation (V1 = Φ1 ′ · Vw, V2 = Φ2 ′ · Vw) in which a new correction coefficient is added to Vw.

なお、Φ1,Φ2は、流体の種類や、流路の形状・寸法等で変化させることも可能である。   Note that Φ1 and Φ2 can be changed depending on the type of fluid, the shape and dimensions of the flow path, and the like.

上述のように、流路高さ方向で互いに伝播経路が異なる2種類の超音波ビームパターンによる、流速比のオーダーに応じて、分布パターンを推定し、流速分布パターンに応じて妥当な補正係数を割り振ることにより、平均流速を算出し流量を算出することができる。   As described above, the distribution pattern is estimated according to the order of the flow velocity ratio by the two kinds of ultrasonic beam patterns having different propagation paths in the flow channel height direction, and an appropriate correction coefficient is determined according to the flow velocity distribution pattern. By allocating, the average flow velocity can be calculated and the flow rate can be calculated.

同様に、ガス種が都市ガス13Aの時、ζ1,ζ2の大きさに比例した補正係数をそれぞれΦ5,Φ6とすれば、層流域での流速分布パターン1における平均流速V1はV1=Φ5・(Vc+Vw)/2,層流域での流速分布パターン2における平均流速V2はV2=Φ6・(Vc+Vw)/2として算出できる。あるいはV1=Φ5’・Vc,V2=Φ6’・Vcとして算出することも可能である。(但し、Φ5’,Φ6’はζ1,ζ2に比例した別の補正係数である。)無論、別の補正係数を用いて、Vwに対する補正として流速(V1=Φ5’・Vw,V2=Φ6’・Vw)を算出するようにしてもよい。このように、ガスの種類で変化する微妙な流速分布の相異に応じて、妥当な値となるよう補正係数を変化させることで、流速分布に関わらず平均流速を算出し流量を演算し算出することができる。   Similarly, when the gas type is city gas 13A, if the correction coefficients proportional to the magnitudes of ζ1 and ζ2 are Φ5 and Φ6, respectively, the average flow velocity V1 in the flow velocity distribution pattern 1 in the laminar flow region is V1 = Φ5 · ( Vc + Vw) / 2, the average flow velocity V2 in the flow velocity distribution pattern 2 in the laminar flow area can be calculated as V2 = Φ6 · (Vc + Vw) / 2. Alternatively, V1 = Φ5 ′ · Vc and V2 = Φ6 ′ · Vc can be calculated. (However, Φ5 ′ and Φ6 ′ are other correction coefficients proportional to ζ1 and ζ2.) Of course, using another correction coefficient, the flow velocity (V1 = Φ5 ′ · Vw, V2 = Φ6 ′) is corrected for Vw. -Vw) may be calculated. In this way, by changing the correction coefficient so that it becomes an appropriate value according to the subtle difference in flow velocity distribution that changes depending on the type of gas, the average flow velocity is calculated regardless of the flow velocity distribution, and the flow rate is calculated and calculated. can do.

また、超音波送受信部(2a,2b)を構成する圧電素子において、圧電素子ブロック数を増加させてもよい。図18に、圧電素子ブロック数を3とした場合の構成を示す。図18例では、各圧電素子ブロックは2つのスリットSLによって分割されているが、各圧電素子ブロックが独立した構成としてもよい。   Further, in the piezoelectric elements constituting the ultrasonic transmission / reception units (2a, 2b), the number of piezoelectric element blocks may be increased. FIG. 18 shows a configuration when the number of piezoelectric element blocks is three. In the example of FIG. 18, each piezoelectric element block is divided by two slits SL, but each piezoelectric element block may be configured independently.

圧電素子ブロック2a1から放射された流路幅方向超音波ビームαは第二伝播経路(破線)を伝播する。また、圧電素子ブロック2a2から放射された流路幅方向超音波ビームβは第一伝播経路(実線)を伝播する。加えて、圧電素子ブロック2a3から放射された流路幅方向超音波ビームγは、上部壁面内接領域3Cおよび中央部の流路中央領域3Wを多重反射する経路(二点鎖線)を伝播する。本構成では、流路の上・中部を比較的多数のパスが伝播するような構成とすることで、流路上部に流速分布の偏りがより多く発生するような場合において、より細かく流量分布状態の把握が可能となる。   The ultrasonic beam α in the channel width direction radiated from the piezoelectric element block 2a1 propagates through the second propagation path (broken line). The ultrasonic beam β in the channel width direction radiated from the piezoelectric element block 2a2 propagates through the first propagation path (solid line). In addition, the channel width direction ultrasonic beam γ radiated from the piezoelectric element block 2a3 propagates through a path (two-dot chain line) that performs multiple reflections on the upper wall surface inscribed region 3C and the central channel central region 3W. In this configuration, a relatively large number of paths propagate in the upper and middle parts of the flow path, so that in the case where more uneven flow velocity distribution occurs in the upper part of the flow path, the flow distribution state is more detailed. Can be grasped.

そして、超音波ビームαによる伝播時間に対する超音波ビームβによる伝播時間の比の値、また超音波ビームαによる伝播時間に対する超音波ビームγによる伝播時間の比の値、さらには超音波ビームβによる伝播時間に対する超音波ビームγによる伝播時間の比の値というように、異なる3つの伝播時間の比の値、もしくは、これらの伝播時間から算出した3つの流速比の値に応じて、流速比のオーダーに応じて、分布パターンを推定し、流速分布パターンに応じて妥当な補正係数を割り振ることにより、平均流速を算出し流量を算出することも可能である。   Then, the ratio of the propagation time of the ultrasonic beam β to the propagation time of the ultrasonic beam α, the ratio of the propagation time of the ultrasonic beam γ to the propagation time of the ultrasonic beam α, and the ultrasonic beam β Depending on the value of the ratio of three different propagation times, such as the ratio of the propagation time by the ultrasonic beam γ to the propagation time, or the value of the three flow velocity ratios calculated from these propagation times, It is also possible to calculate the average flow velocity and calculate the flow rate by estimating the distribution pattern according to the order and assigning an appropriate correction coefficient according to the flow velocity distribution pattern.

以上、本発明の実施の形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。   Although the embodiments of the present invention have been described above, these are merely examples, and the present invention is not limited to these embodiments, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

本発明の超音波流量計の一例に係る全体構成を示す模式図。The schematic diagram which shows the whole structure which concerns on an example of the ultrasonic flowmeter of this invention. 超音波流量計の、流量計本体の内部構造を示す断面斜視図。The cross-sectional perspective view which shows the internal structure of the flowmeter main body of an ultrasonic flowmeter. 超音波送受信部の構成例を示す図。The figure which shows the structural example of an ultrasonic transmission / reception part. 図3に続く、超音波送受信部の構成を示す図。The figure which shows the structure of an ultrasonic transmission / reception part following FIG. 図3,図4の超音波送受信部の取り付け例を示す図。The figure which shows the example of attachment of the ultrasonic transmission / reception part of FIG. 3, FIG. 図3,図4の超音波送受信部の取り付け例を示す図。The figure which shows the example of attachment of the ultrasonic transmission / reception part of FIG. 3, FIG. 超音波送受信部の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part. マイコンの構成を示すブロック図。The block diagram which shows the structure of a microcomputer. 流量の計算方法を示す図。The figure which shows the calculation method of flow volume. 流量分布情報出力処理を説明するフロー図。The flow figure explaining flow distribution information output processing. 超音波ビームの放射タイミングについて説明する図。The figure explaining the radiation timing of an ultrasonic beam. 超音波送受信部と反射部材の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part and a reflection member. 図12に続く、超音波送受信部と反射部材の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part and a reflecting member following FIG. 超音波送受信部と反射部材の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part and a reflection member. 図14に続く、超音波送受信部と反射部材の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part and a reflection member following FIG. 流量分布情報に含まれる流速分布情報の算出を説明する図。The figure explaining calculation of the flow velocity distribution information contained in flow volume distribution information. 流量域で妥当な係数を割り振ることで流速を算出し流量を演算する方法を示す図。The figure which shows the method of calculating a flow rate by calculating a flow rate by assigning a reasonable coefficient in a flow rate range. 超音波送受信部の構成の別例を示す図。The figure which shows another example of a structure of an ultrasonic transmission / reception part. 反射部の厚みと超音波透過率との関係をシミュレーションした結果を示すグラフ。The graph which shows the result of having simulated the relationship between the thickness of a reflection part, and ultrasonic transmittance.

符号の説明Explanation of symbols

1 超音波流量計
1E 制御回路部(伝播時間計測手段,流量分布情報算出手段,流量分布情報出力手段,流速算出手段,流速分布補正係数算出手段,流速補正手段)
2a 超音波送受信部(第一の超音波送受信部対)
2b 超音波送受信部(第二の超音波送受信部対)
2a1,2a2 圧電素子ブロック(圧電体)
3 流路形成部
3C 上部壁面内接領域
3C’ 下部壁面内接領域
3P 流路
3W 流路中央領域
11 マイコン
31 反射部材(第一反射部材)
31h1 ビーム導入開口部(第一貫通部)
31h2 ビーム導入開口部(第三貫通部)
31h3 ビーム導入開口部
32 反射部材(第二反射部材)
32h1 ビーム導入開口部(第二貫通部)
32h2 ビーム導入開口部(第四貫通部)
32h3 ビーム導入開口部
GF 被測定流体
1 Ultrasonic flow meter 1E Control circuit (propagation time measurement means, flow distribution information calculation means, flow distribution information output means, flow velocity calculation means, flow velocity distribution correction coefficient calculation means, flow velocity correction means)
2a Ultrasonic transmitter / receiver (first ultrasonic transmitter / receiver pair)
2b Ultrasonic transmitter / receiver (second ultrasonic transmitter / receiver pair)
2a1, 2a2 Piezoelectric element block (piezoelectric body)
3 flow path forming portion 3C upper wall inscribed area 3C 'lower wall inscribed area 3P flow path 3W flow path central area 11 microcomputer 31 reflecting member (first reflecting member)
31h1 Beam introduction opening (first penetration)
31h2 Beam introduction opening (third penetration)
31h3 Beam introduction opening 32 Reflective member (second reflective member)
32h1 Beam introduction opening (second penetration part)
32h2 Beam introduction opening (fourth penetration part)
32h3 Beam introduction opening GF Fluid to be measured

Claims (11)

被測定流体の流路を形成する流路形成部と、
前記流路形成部に取り付けられるとともに、一方が前記被測定流体への超音波ビームの送出部となり他方が該超音波ビームの受信部となるよう送受信機能が入れ替え可能に構成された各々1対の超音波送受信部からなる第一および第二の超音波送受信部対と、
前記流路形成部の内部にて各々前記流路に沿って配置される板状に形成され、前記流路断面を、流路中央領域と、該流路中央領域の両側にて各々前記流路形成部の内壁面に接する壁面内接領域とに仕切るとともに、前記第一の超音波送受信部対については、前記流路中央領域を通過する総伝播長が前記壁面内接領域を通過する総伝播長よりも長くなる第一伝播経路に沿って、前記第二の超音波送受信部対については、前記流路中央領域を通過する総伝播長が前記壁面内接領域を通過する総伝播長よりも短い前記第一伝播経路とは異なる第二伝播経路に沿って、前記超音波ビームを前記送出部から反射屈折させつつ前記受信部に各々導く反射部材と、
前記第一の超音波送受信部対を使用したときの前記超音波ビームの伝播時間である第一伝播時間と、前記第二の超音波送受信部対を使用したときの前記超音波ビームの伝播時間である第二伝播時間とをそれぞれ計測する伝播時間計測手段と、
それら第一伝播時間と第二伝播時間の計測結果に基づいて、前記流路断面内の流量分布情報を、前記流路中央領域と前記壁面内接領域とに区分した形で算出する流量分布情報算出手段と、
算出された流量分布情報を出力する流量分布情報出力手段と、
を有してなることを特徴とする超音波流量計。
A flow path forming section for forming a flow path of the fluid to be measured;
A pair of transmission / reception functions that are attached to the flow path forming unit and are configured to be interchangeable so that one is a sending part of the ultrasonic beam to the fluid to be measured and the other is a receiving part of the ultrasonic beam. A first and second ultrasonic transmission / reception unit pair consisting of ultrasonic transmission / reception units;
It is formed in a plate shape arranged along the flow path inside the flow path forming portion, and the cross section of the flow path is divided into a flow path central area and both sides of the flow path central area. The first ultrasonic transmission / reception unit pair is divided into a total propagation length that passes through the flow path central region and the total propagation length that passes through the wall inscribed region. Along the first propagation path that is longer than the length, for the second ultrasonic transmission / reception unit pair, the total propagation length that passes through the flow path central region is greater than the total propagation length that passes through the wall inscribed region. A reflecting member that guides the ultrasonic beam to the receiving unit while being reflected and refracted from the transmitting unit along a second propagation path different from the short first propagation path;
A first propagation time which is a propagation time of the ultrasonic beam when the first ultrasonic transmission / reception unit pair is used, and a propagation time of the ultrasonic beam when the second ultrasonic transmission / reception unit pair is used. A propagation time measuring means for measuring each of the second propagation times,
Based on the measurement results of the first propagation time and the second propagation time, the flow distribution information is calculated by dividing the flow distribution information in the flow channel section into the flow channel central region and the wall inscribed region. A calculation means;
A flow distribution information output means for outputting the calculated flow distribution information;
An ultrasonic flowmeter characterized by comprising:
前記第一伝播経路と前記第二伝播経路とが同一長さに設定される請求項1に記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the first propagation path and the second propagation path are set to have the same length. 前記反射部材は、前記送信部に近い側に位置する第一反射部材と、前記受信部に近い側に位置する第二反射部材とを有し、前記第一反射部材には、前記第一伝播経路に沿って前記第一超音波送受信部対の前記送信部から送出された前記超音波ビームを前記流路中央領域に導き入れる第一貫通部が形成され、前記第二反射部材には、前記流路中央領域内にて多重反射した前記超音波ビームを前記受信部側の前記壁面内接領域内に導き入れる第二貫通部が形成され、
それら第一貫通部と第二貫通部との形成位置が、前記流路中央領域内での前記超音波ビームの反射回数が各前記壁面内接領域での合計反射回数よりも多くなるように定められてなる請求項1または請求項2に記載の超音波流量計。
The reflection member includes a first reflection member positioned on a side close to the transmission unit and a second reflection member positioned on a side close to the reception unit, and the first reflection member includes the first propagation member. A first penetrating part that guides the ultrasonic beam transmitted from the transmitting unit of the first ultrasonic transmitting / receiving unit pair along the path to the flow path central region is formed, and the second reflecting member includes the A second penetrating portion is formed for guiding the ultrasonic beam that has been multiple-reflected in the central region of the flow channel into the wall-inscribed region on the receiving unit side;
The formation positions of the first penetrating portion and the second penetrating portion are determined so that the number of reflections of the ultrasonic beam in the central region of the flow path is greater than the total number of reflections in each wall inscribed region. The ultrasonic flowmeter according to claim 1 or 2, wherein the ultrasonic flowmeter is formed.
前記第一貫通部と前記第二貫通部との形成位置は、前記超音波ビームが各前記壁面内接領域を無反射にて通過するように定められてなる請求項3に記載の超音波流量計。   The ultrasonic flow rate according to claim 3, wherein the formation positions of the first penetrating portion and the second penetrating portion are determined so that the ultrasonic beam passes through the wall inscribed regions without reflection. Total. 前記反射部材は、前記送信部に近い側に位置する第一反射部材と、前記受信部に近い側に位置する第二反射部材とを有し、前記第一反射部材には、前記第二伝播経路に沿って前記第二超音波送受信部対の前記送信部から送出され、該送信部側の前記壁面内接領域内にて前記第一反射部材と対向する前記流路形成部の内壁面との間で多重反射した前記超音波ビームを前記流路中央領域に導き入れる第三貫通部が形成され、前記第二反射部材には、該超音波ビームを前記流路中央領域から前記受信部側の前記壁面内接領域内に導き入れ、前記第二反射部材と、これに対向する前記流路形成部の内壁面との間で多重反射させつつ前記超音波ビームを前記第二超音波送受信部対の前記受信部に導き入れる第四貫通部が形成され、
それら第三貫通部と第四貫通部との形成位置が、各前記壁面内接領域での合計反射回数が前記流路中央領域内での前記超音波ビームの反射回数よりも多くなるように定められてなる請求項1ないし請求項4のいずれか1項に記載の超音波流量計。
The reflective member includes a first reflective member located on a side close to the transmitting unit and a second reflective member located on a side close to the receiving unit, and the first reflective member includes the second propagation member. An inner wall surface of the flow path forming unit that is sent from the transmission unit of the second ultrasonic transmission / reception unit pair along the path and faces the first reflecting member in the wall inscribed region on the transmission unit side; A third penetrating portion is formed for guiding the ultrasonic beam that has been multiple-reflected between the flow path to the central region of the flow path, and the second reflective member has the ultrasonic beam transmitted from the flow path central region to the receiving unit side. The ultrasonic beam is introduced into the wall surface inscribed region of the second reflection member and multiple reflected between the second reflection member and the inner wall surface of the flow path forming portion facing the second reflection member. A fourth penetration is formed leading to the receiver of the pair;
The formation positions of the third penetrating portion and the fourth penetrating portion are determined so that the total number of reflections in each wall inscribed region is greater than the number of reflections of the ultrasonic beam in the flow channel central region. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is formed.
前記第三貫通部と前記第四貫通部との形成位置は、前記超音波ビームが前記流路中央領域を無反射にて通過するように定められてなる請求項5に記載の超音波流量計。   The ultrasonic flowmeter according to claim 5, wherein the formation position of the third through portion and the fourth through portion is determined so that the ultrasonic beam passes through the flow path central region without reflection. . 請求項3または請求項4に記載の要件を備え、
前記第一超音波送受信部対と第二超音波送受信部対との各前記送信部と前記受信部とが、前記流路の流れ方向において同じ位置に、前記反射部材の幅方向に各々互いに隣接して配置され、かつ、前記第一反射部材と前記第二反射部材とのそれぞれに対し、同一角度にて前記超音波ビームが出射ないし入射するようになっており、
前記第一貫通部と前記第二貫通部とは、前記第一反射部材および前記第二反射部材に対し、前記第一超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は許容し、前記第二超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は阻止するように、各反射部材の当該前記第一超音波送受信部対側のみを幅方向に部分的に切り欠く形で形成され、
前記第三貫通部と前記第四貫通部とは、前記第一反射部材および前記第二反射部材に対し、前記第二超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は許容し、前記第一超音波送受信部対をなす送信部ないし受信部にかかる超音波ビームの通過は阻止するように、各反射部材の当該前記第二超音波送受信部対側のみを幅方向に部分的に切り欠く形で形成されてなる請求項5または請求項6に記載の超音波流量計。
Comprising the requirements of claim 3 or claim 4;
The transmitting unit and the receiving unit of the first ultrasonic transmission / reception unit pair and the second ultrasonic transmission / reception unit pair are adjacent to each other in the width direction of the reflecting member at the same position in the flow direction of the flow path. And the ultrasonic beam is emitted or incident at the same angle with respect to each of the first reflecting member and the second reflecting member,
The first penetrating portion and the second penetrating portion pass through the ultrasonic beam applied to the transmitting unit or the receiving unit forming the first ultrasonic transmitting / receiving unit pair with respect to the first reflecting member and the second reflecting member. Is allowed, and only the first ultrasonic transmission / reception unit opposite side of each reflection member in the width direction so as to block the passage of the ultrasonic beam applied to the transmission unit or reception unit forming the second ultrasonic transmission / reception unit pair. Formed in a partially cutout shape,
The third penetrating portion and the fourth penetrating portion pass through the ultrasonic beam applied to the transmitting unit or the receiving unit forming the second ultrasonic transmitting / receiving unit pair with respect to the first reflecting member and the second reflecting member. Is allowed, and only the second ultrasonic transmission / reception unit opposite side of each reflection member in the width direction so as to prevent the transmission of the ultrasonic beam applied to the transmission unit or reception unit forming the first ultrasonic transmission / reception unit pair. The ultrasonic flow meter according to claim 5 or 6, wherein the ultrasonic flow meter is formed in a partially cut-out shape.
前記第一および第二の超音波送受信部は、一つの圧電体により構成され、該圧電体の表面部には、前記流路の流れ方向に該圧電体を前記第一および第二の超音波送受信部に分割するための溝が設けられ、その溝において分割された圧電体ごとに、それぞれ独立した超音波指向特性を有する請求項1ないし請求項7のいずれか1項に記載の超音波流量計。   The first and second ultrasonic transmission / reception units are configured by a single piezoelectric body, and the piezoelectric body is placed on the surface of the piezoelectric body in the flow direction of the flow path. The ultrasonic flow rate according to any one of claims 1 to 7, wherein a groove for dividing the transmitter / receiver is provided, and each piezoelectric body divided in the groove has independent ultrasonic directivity characteristics. Total. 前記第一および第二の超音波送受信部は、それぞれ独立した圧電体により構成され、これら圧電体は前記流路の流れ方向に対して対称に分離配置され、それぞれ独立した超音波指向特性を有する請求項1ないし請求項7のいずれか1項に記載の超音波流量計。   The first and second ultrasonic transmission / reception units are each composed of an independent piezoelectric body, and these piezoelectric bodies are separately arranged symmetrically with respect to the flow direction of the flow path, and have independent ultrasonic directivity characteristics. The ultrasonic flowmeter according to any one of claims 1 to 7. 前記流量分布情報に基づいて、前記被測定流体の前記流路中央領域と前記壁面内接領域における流速を算出する流速算出手段と、
算出された2つの前記被測定流体の流速に基づいて、前記流量分布情報に応じた流速分布補正係数を算出する流速分布補正係数算出手段と、
を備える請求項1ないし請求項9のいずれか1項に記載の超音波流量計。
Based on the flow rate distribution information, a flow velocity calculating means for calculating a flow velocity in the flow path central region and the wall surface inscribed region of the fluid to be measured;
A flow velocity distribution correction coefficient calculating means for calculating a flow velocity distribution correction coefficient corresponding to the flow distribution information based on the calculated flow velocities of the two fluids to be measured;
An ultrasonic flowmeter according to claim 1, comprising:
算出された前記流速分布補正係数に基づいて、前記被測定流体の流速を補正する流速補正手段を備える請求項10に記載の超音波流量計。   The ultrasonic flowmeter according to claim 10, further comprising a flow velocity correction unit that corrects a flow velocity of the fluid to be measured based on the calculated flow velocity distribution correction coefficient.
JP2007272728A 2007-10-19 2007-10-19 Ultrasonic flowmeter Pending JP2009103460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272728A JP2009103460A (en) 2007-10-19 2007-10-19 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272728A JP2009103460A (en) 2007-10-19 2007-10-19 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2009103460A true JP2009103460A (en) 2009-05-14

Family

ID=40705278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272728A Pending JP2009103460A (en) 2007-10-19 2007-10-19 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2009103460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563349A (en) * 2012-01-16 2012-07-11 贝洪毅 Biomass gasification centralized gas supply, transmission and distribution system
JP2020122690A (en) * 2019-01-30 2020-08-13 アズビル株式会社 Ultrasonic flowmeter
CN112362120A (en) * 2020-11-12 2021-02-12 中北大学 Flow rate detector and flow rate detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563349A (en) * 2012-01-16 2012-07-11 贝洪毅 Biomass gasification centralized gas supply, transmission and distribution system
JP2020122690A (en) * 2019-01-30 2020-08-13 アズビル株式会社 Ultrasonic flowmeter
JP7211830B2 (en) 2019-01-30 2023-01-24 アズビル株式会社 ultrasonic flow meter
CN112362120A (en) * 2020-11-12 2021-02-12 中北大学 Flow rate detector and flow rate detection method

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
US8090131B2 (en) Steerable acoustic waveguide
CN101294833B (en) Ultrasonic fluid measurement instrument
JP2012247299A (en) Ultrasonic flow rate measuring unit and gas flowmeter employing the same
JP7126048B2 (en) ultrasonic flow meter
JPWO2013051272A1 (en) Setting method of flow rate measuring device
JP2009103460A (en) Ultrasonic flowmeter
WO2020031622A1 (en) Ultrasonic flow meter
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
JP7285450B2 (en) ultrasonic flow meter
JP4931550B2 (en) Ultrasonic flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP6229144B2 (en) Flow measuring device
JP3916162B2 (en) Ultrasonic flow meter
JP2009109239A (en) Ultrasonic flowmeter
JP5145580B2 (en) Ultrasonic flow meter and flow measurement method
JP2008268090A (en) Ultrasonic flowmeter
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP2000065613A (en) Ultrasonic flowmeter
US11761805B2 (en) Flowmeter
JP3907613B2 (en) Ultrasonic flow meter
JP2008107287A (en) Ultrasonic flowmeter
JP2023120485A (en) Vibration propagation member, transducer/receiver using the same, current meter, and flowmeter
JP6496905B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130123