JP2004069520A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus Download PDF

Info

Publication number
JP2004069520A
JP2004069520A JP2002229727A JP2002229727A JP2004069520A JP 2004069520 A JP2004069520 A JP 2004069520A JP 2002229727 A JP2002229727 A JP 2002229727A JP 2002229727 A JP2002229727 A JP 2002229727A JP 2004069520 A JP2004069520 A JP 2004069520A
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
measuring device
flow rate
rate measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229727A
Other languages
Japanese (ja)
Other versions
JP4092977B2 (en
Inventor
Yasushi Fujii
藤井 裕史
Masato Sato
佐藤 真人
Akihisa Adachi
足立 明久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002229727A priority Critical patent/JP4092977B2/en
Publication of JP2004069520A publication Critical patent/JP2004069520A/en
Application granted granted Critical
Publication of JP4092977B2 publication Critical patent/JP4092977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent measurement accuracy in ultrasonic propagation time from becoming inferior by causing ultrasonic waves to be reflected on the upper surface or the lower surface of a measurement channel for affecting direct waves. <P>SOLUTION: The influence of ultrasonic waves reflected by the measurement channel is prevented by a measurement channel structure for measuring propagation time in ultrasonic waves at closer distance than last maximum where ultrasonic waves that are transmitted from an ultrasonic transceiver begin to spread. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は流体の流量を超音波を用いて計測する流量計測装置に関する。
【0002】
【従来の技術】
従来のこの種の流量計測装置は、特開平8−313316号公報に記載されているのが一般的であった。図7(a),(b)に従来の超音波流量計測装置1を示す。図(a)は、超音波流量計測装置1の水平断面を、(b)は垂直断面を示す。計測流路2は、幅W、高さHで構成され、矩形比(W/H)を数倍以上とし、短辺方向の長さHを代表長さとした層流の流れを実現していた。上流側および下流側に設けた一対の超音波送受信器3,4から超音波を送信,受信し、上流側から下流側、あるいは下流側から上流側への各々の超音波伝搬時間を計測し、その伝搬時間差から流体の流速を演算し、流体の流量を計測する構成であった。
【0003】
なお、矢印5および一点鎖線6は流体の流れる方向を、破線7は超音波の伝搬する方向を示し、流体の流れる方向との交叉角をθで示す。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の超音波流量計測装置では一方の超音波送受信器から送信された超音波が受信側の超音波送受信器に到達するまでに、途中で拡がった超音波が計測流路の上面あるいは下面に反射し、直接波に影響を与えて超音波伝搬時間の計測精度が悪くなるという課題があった。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明では超音波送受信器から送信された超音波が拡がり始めるラストマックスより近い距離で超音波の伝搬時間を測定することによって、計測流路で反射する超音波の影響を受けないようにした。
【0006】
【発明の実施の形態】
本発明の第2の手段による流量計測装置は、被測定流体を流すための計測流路と、前記計測流路の上流側と下流側とに一対の超音波送受信器を水平方向に対向して設け、かつ前記二つの超音波送受信器間を超音波が伝搬する距離をそれぞれの超音波送受信器のラストマックス以下となるように取付けることによって、反射波の影響を受けずに超音波の伝搬時間を精度良く計測できるようにしたものである。
【0007】
本発明の第3の手段による流量計測装置は、請求項1の超音波送受信器間の距離を保った状態で、前記計測流路の壁面を複数回反射して超音波が伝搬するような構造を有することによって、反射の影響を受けずに超音波の伝搬時間を精度良く計測できるようにしたものである。
【0008】
本発明の第4の手段による流量計測装置は、前記超音波送受信器の超音波送信部の縦方向の寸法と前記計測流路の高さ寸法を合わせることによって、超音波の反射及び流速分布の影響を受けずに被測定流体の流速を正確に測定できるようにしたものである。
【0009】
本発明の第5の手段による流量計測装置は、前記超音波送受信器間に被測定流体の流れ方向と平行に複数の仕切り板を設け、前記仕切り板に設けた超音波送受信器の超音波送信部を投影した形状の超音波透過窓にメッシュを貼り付け、擬似境界面を設けることによって、超音波送受信器のラストマックスより長い距離でも超音波が拡がらなくし、反射の影響を受けずに超音波の伝搬時間を精度良く計測できるようにしたものである。
【0010】
本発明の第6の手段による流量計測装置は、前記仕切り板の超音波透過窓形状を矩形とし、超音波透過窓の垂直方向寸法を計測流路の高さに合わし、超音波透過窓の水平方向寸法を超音波送受信器の超音波送信部の幅以下にすることによって、超音波が垂直方向に均等な強さで受信器に伝わりやすくなり、計測流路内の被測定流体の流速を正確に測定できるようにしたものある。
【0011】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0012】
(実施例1)
本発明の第1実施例による流量計測装置について、図1及び図2に基づいて説明する。図1では一般的な超音波送受信器3からの超音波の伝搬状況を示している。超音波送受信器3から送信された超音波はラストマックス9まで平面波でまっすぐ進み、ラストマックス9以上になると球面波になり、一定の角度で拡がっていく。ここで、超音波送受信器からラストマックス9までの距離Xは次式で表される。
【0013】
X=D/4λ
ここで、Dは超音波送受信器の送信部の直径で、λは超音波の波長を表す。また、図中の矢印8は超音波の進行方向を表す。
【0014】
図2は本発明の第1の手段による流量計測装置を示す図で、従来例との差異は超音波送受信器間の超音波が伝搬する距離Lを前記超音波送受信器からラストマックス9までの距離X以下にしたことを特長とすることである。こうすることによって、超音波が拡がらない範囲を伝搬時間計測に利用できるため、計測流路2内で発生する超音波の反射波の影響を受けることなく、直接波だけの伝搬時間計測が可能になり、伝搬時間の計測制度が向上する。
【0015】
(実施例2)
図3は本発明の第2の実施例による流量計測装置の水平断面を示す構成図である。
【0016】
基本的な構成は本発明の第1の実施例の説明と同じで、本実施例との差異は計測流路2の構成を超音波の伝搬に計測流路の壁面反射を利用した構造にしたことである。ここで破線7は従来例と同様に超音波の伝搬方向を示しており、超音波の伝搬距離は第1の実施例と同じ距離にしてあることを特長とする。このようにすることによって、計測流路2の水平方向寸法Wを短くしても第1の実施例と同様に伝搬時間の計測精度を向上させることができる。
【0017】
(実施例3)
図4は本発明の第3の実施例による流量計測装置の計測流路2の垂直方向断面図を示す。この計測流路2の特長は、超音波送受信器3,4の超音波伝搬距離Lを前記ラストマックス9までの距離X以下にし、さらに高さHを超音波送受信器の直径Dに合わせたことである。こうすることによって、計測流路2内の断面すべてを拡がりの少ない平面波の超音波で測定できるため、超音波の反射及び流速分布の影響を受けずに被測定流体の流速を正確に測定できる。
【0018】
(実施例4)
図5(a)は本発明の第4の実施例による流量計測装置の水平断面を示す構成図である。基本的な構成は本発明の第1の実施例と同じで、本実施例との差異は仕切り板10を設けたことである。仕切り板10は図5(b)で示すように、超音波が通る部分に超音波透過窓11を設けて、超音波透過窓11にメッシュを貼り付けた構成になっている。超音波透過窓11の形状は超音波送受信器3,4の超音波送信部の形状を超音波の伝搬方向から投影した形状としている。この仕切り板10は超音波伝搬方向上に擬似的に境界面をつくることを目的としている。このように擬似的な境界面をつくることによって、超音波の伝搬モードが超音波送受信器から仕切り板までと、仕切り板以降で変わるため、仕切り板から新しいモードで超音波が伝搬することになり、仕切り板10から平面波で伝搬する距離が新たに形成されることになる。これは超音波送受信器3,4から見た平面波の伝搬距離があたかもX+αに伸びたように考えることができる。
【0019】
よって、複数の仕切り板10を設けることによって、超音波送受信器3,4間の距離Lを超音波送受信器の周波数や送信部の直径を変えることなく長くすることができる。
【0020】
(実施例5)
図6は本発明の第5の実施例による流量計測装置の仕切り板10を示す図である。
【0021】
第5の実施例による流量計測装置の基本的な構成は第4の実施例と同じで、本実施例との差異は仕切り板10の超音波透過窓12の形状を図のように矩形にしたことである。矩形の寸法としては垂直方向は計測流路2の高さHに合わせ、水平方向は超音波送受信器の直径Dより充分短くする。このように矩形にすることによって、計測流路2内の垂直方向を同じ幅で超音波が伝搬するため、計測流路2内の流速の状態を均等に超音波が受けるため、より流速を正確に測定できる。
【0022】
以上のように第1の実施例による流量計測装置によれば、計測流路内で発生する超音波の反射波の影響を受けずに超音波の伝搬時間を正確に計測できるため、流量計測精度が向上する。
【0023】
第2の実施例による流量計測装置によれば、第1の実施例による効果に加えて、計測流路の幅を狭くしても伝搬距離を長くできるため、より高精度の小型流量計測装置が可能になる。
【0024】
第3の実施例による流量計測装置によれば、第1の実施例による効果に加えて、計測流路内の断面方向をすべて計測できるため、流速分布の影響を受けずに流量測定が可能になる。
【0025】
第4の実施例による流量計測装置によれば、第1の実施例による効果に加えて、超音波送受信器の周波数や送信部の直径を変えることなく、計測流路を大きくできるため、計測可能流量範囲を広くすることが可能である。
【0026】
第5の実施例による流量計測装置によれば、第4の実施例のよる効果に加えて、計測流路の垂直方向を均等に測定できるため、より流速分布の影響を受けずに流量が正確に測定できる。
【0027】
【発明の効果】
以上により、本発明は、流量計測をより広範囲でかつ正確に測定することができるものである。
【図面の簡単な説明】
【図1】超音波送受信器からの超音波伝搬状態を示す図
【図2】本発明の第1の実施例における流量計測装置を示す詳細図
【図3】本発明の第2実施例の計測流路水平方向断面図
【図4】本発明の第3の実施例の計測流路垂直方向断面図
【図5】本発明の第4実施例における流量計測装置を示す構成図
【図6】本発明の第5の実施例の仕切り板構成図
【図7】従来の流量計測装置を示す構成図
【符号の説明】
1 流量計測装置
2 計測流路
3 超音波送受信器
4 超音波送受信器
5 被測定流体流れ方向
6 被測定流体流れ方向
7 超音波伝搬方向
8 超音波の伝搬方向
9 ラストマックス
10 仕切り板
11 超音波透過窓
12 超音波透過窓
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow rate measuring device that measures the flow rate of a fluid using ultrasonic waves.
[0002]
[Prior art]
A conventional flow measuring device of this type is generally described in Japanese Patent Application Laid-Open No. 8-313316. FIGS. 7A and 7B show a conventional ultrasonic flow measuring device 1. FIG. FIG. 1A shows a horizontal cross section of the ultrasonic flow measuring device 1, and FIG. 1B shows a vertical cross section. The measurement flow path 2 is configured with a width W and a height H, has realized a laminar flow with a rectangular ratio (W / H) of several times or more and a length H in the short side direction as a representative length. . Transmits and receives ultrasonic waves from a pair of ultrasonic transceivers 3 and 4 provided on the upstream side and the downstream side, and measures each ultrasonic propagation time from the upstream side to the downstream side or from the downstream side to the upstream side, The flow velocity of the fluid is calculated from the propagation time difference, and the flow rate of the fluid is measured.
[0003]
The arrow 5 and the dashed-dotted line 6 indicate the direction in which the fluid flows, the broken line 7 indicates the direction in which the ultrasonic waves propagate, and the intersection angle with the direction in which the fluid flows is indicated by θ.
[0004]
[Problems to be solved by the invention]
However, in the conventional ultrasonic flow measurement device, the ultrasonic wave transmitted from one ultrasonic transceiver reaches the ultrasonic transmitter / receiver on the receiving side, and the ultrasonic wave that has spread on the way is the upper or lower surface of the measurement flow path. There is a problem that the measurement accuracy of the ultrasonic wave propagation time is deteriorated due to the direct reflection and the influence on the direct wave.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the present invention, by measuring the propagation time of the ultrasonic wave at a distance closer to the last max where the ultrasonic wave transmitted from the ultrasonic transceiver starts to spread, the influence of the ultrasonic wave reflected on the measurement flow path Was not received.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The flow measurement device according to the second aspect of the present invention is a measurement flow path for flowing a fluid to be measured, and a pair of ultrasonic transceivers are horizontally opposed to the upstream and downstream sides of the measurement flow path. Propagation time of the ultrasonic wave without being affected by the reflected wave by providing and attaching the distance at which the ultrasonic wave propagates between the two ultrasonic transceivers to be equal to or less than the last max of each ultrasonic transceiver. Can be measured with high accuracy.
[0007]
A flow rate measuring device according to a third aspect of the present invention has a structure in which ultrasonic waves propagate by reflecting a plurality of times on the wall surface of the measurement flow path while maintaining the distance between the ultrasonic transmitters and receivers according to claim 1. , It is possible to accurately measure the propagation time of the ultrasonic wave without being affected by reflection.
[0008]
The flow rate measuring device according to a fourth aspect of the present invention is a method of measuring the reflection and flow velocity distribution of ultrasonic waves by adjusting the vertical dimension of the ultrasonic transmission unit of the ultrasonic transceiver and the height dimension of the measurement flow path. This allows accurate measurement of the flow velocity of the fluid to be measured without being affected.
[0009]
According to a fifth aspect of the present invention, there is provided a flow rate measuring device, wherein a plurality of partition plates are provided between the ultrasonic transmitter and receiver in parallel with a flow direction of a fluid to be measured, and the ultrasonic transmitter and receiver provided on the partition plates transmit ultrasonic waves. By attaching a mesh to the ultrasonic transmission window of the projected shape of the part and providing a pseudo boundary surface, the ultrasonic wave will not spread even at a distance longer than the last maximum of the ultrasonic transceiver, and the ultrasonic wave will not be affected by reflection. This is to accurately measure the propagation time of a sound wave.
[0010]
According to a sixth aspect of the present invention, there is provided a flow rate measuring apparatus, wherein the ultrasonic transmission window shape of the partition plate is rectangular, the vertical dimension of the ultrasonic transmission window is adjusted to the height of the measurement flow path, and the horizontal direction of the ultrasonic transmission window is adjusted. By making the directional dimension equal to or smaller than the width of the ultrasonic transmission part of the ultrasonic transceiver, the ultrasonic waves can be easily transmitted to the receiver with uniform strength in the vertical direction, and the flow rate of the fluid to be measured in the measurement flow path can be accurately determined. Some measurements have been made.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
(Example 1)
A flow measurement device according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a state of propagation of ultrasonic waves from a general ultrasonic transceiver 3. The ultrasonic wave transmitted from the ultrasonic transmitter / receiver 3 travels straight to the last max 9 as a plane wave, and when the ultrasonic wave reaches the last max 9 or higher, it becomes a spherical wave and spreads at a certain angle. Here, the distance X from the ultrasonic transceiver to the last max 9 is expressed by the following equation.
[0013]
X = D 2 / 4λ
Here, D is the diameter of the transmission unit of the ultrasonic transceiver, and λ represents the wavelength of the ultrasonic wave. The arrow 8 in the drawing indicates the traveling direction of the ultrasonic wave.
[0014]
FIG. 2 is a view showing a flow rate measuring apparatus according to the first means of the present invention. The difference from the conventional example is that the distance L between the ultrasonic transmitter and the ultrasonic transmitter propagates from the ultrasonic transmitter to the last max 9. The feature is that the distance is set to X or less. By doing so, the range in which the ultrasonic wave does not spread can be used for propagation time measurement, so that only the direct wave can be measured without being affected by the reflected wave of the ultrasonic wave generated in the measurement flow path 2. And the measurement accuracy of the propagation time is improved.
[0015]
(Example 2)
FIG. 3 is a configuration diagram showing a horizontal cross section of a flow rate measuring device according to a second embodiment of the present invention.
[0016]
The basic configuration is the same as that of the description of the first embodiment of the present invention. The difference from this embodiment is that the configuration of the measurement flow path 2 uses the wall reflection of the measurement flow path for ultrasonic wave propagation. That is. Here, the broken line 7 indicates the propagation direction of the ultrasonic wave as in the conventional example, and the ultrasonic wave propagation distance is the same as that of the first embodiment. In this manner, even when the horizontal dimension W of the measurement flow path 2 is reduced, the measurement accuracy of the propagation time can be improved as in the first embodiment.
[0017]
(Example 3)
FIG. 4 is a vertical sectional view of a measurement flow path 2 of a flow rate measuring device according to a third embodiment of the present invention. The features of this measurement channel 2 are that the ultrasonic wave propagation distance L of the ultrasonic transceivers 3 and 4 is set to be equal to or less than the distance X to the last max 9, and the height H is adjusted to the diameter D of the ultrasonic transceiver. It is. By doing so, the entire cross section in the measurement flow path 2 can be measured by the ultrasonic wave of the plane wave having a small spread, so that the flow velocity of the fluid to be measured can be accurately measured without being affected by the reflection of the ultrasonic wave and the flow velocity distribution.
[0018]
(Example 4)
FIG. 5A is a configuration diagram showing a horizontal cross section of a flow rate measuring device according to a fourth embodiment of the present invention. The basic configuration is the same as that of the first embodiment of the present invention. The difference from this embodiment is that a partition plate 10 is provided. As shown in FIG. 5B, the partition plate 10 has a configuration in which an ultrasonic transmission window 11 is provided in a portion through which ultrasonic waves pass, and a mesh is attached to the ultrasonic transmission window 11. The shape of the ultrasonic transmission window 11 is a shape obtained by projecting the shape of the ultrasonic transmitters of the ultrasonic transceivers 3 and 4 from the propagation direction of the ultrasonic waves. The purpose of this partition plate 10 is to create a pseudo boundary surface in the ultrasonic wave propagation direction. By creating a pseudo boundary in this way, since the propagation mode of the ultrasonic wave changes from the ultrasonic transceiver to the partition plate and thereafter, the ultrasonic wave propagates in a new mode from the partition plate. Thus, the distance that the plane wave propagates from the partition plate 10 is newly formed. This can be considered as if the propagation distance of the plane wave as viewed from the ultrasonic transceivers 3 and 4 has extended to X + α.
[0019]
Therefore, by providing the plurality of partition plates 10, the distance L between the ultrasonic transceivers 3 and 4 can be increased without changing the frequency of the ultrasonic transceiver or the diameter of the transmission unit.
[0020]
(Example 5)
FIG. 6 is a view showing a partition plate 10 of a flow measuring device according to a fifth embodiment of the present invention.
[0021]
The basic configuration of the flow rate measuring device according to the fifth embodiment is the same as that of the fourth embodiment, and the difference from this embodiment is that the shape of the ultrasonic transmission window 12 of the partition plate 10 is rectangular as shown in the figure. That is. The dimensions of the rectangle are set in the vertical direction to the height H of the measurement channel 2 and in the horizontal direction sufficiently shorter than the diameter D of the ultrasonic transceiver. By making the rectangular shape in this way, the ultrasonic wave propagates in the vertical direction in the measurement flow channel 2 with the same width, and the ultrasonic wave is uniformly received in the flow velocity state in the measurement flow channel 2, so that the flow velocity can be more accurately measured. Can be measured.
[0022]
As described above, according to the flow rate measuring apparatus according to the first embodiment, since the propagation time of the ultrasonic wave can be accurately measured without being affected by the reflected wave of the ultrasonic wave generated in the measurement flow path, the flow rate measurement accuracy Is improved.
[0023]
According to the flow rate measuring device according to the second embodiment, in addition to the effects of the first embodiment, the propagation distance can be increased even if the width of the measurement flow path is narrowed. Will be possible.
[0024]
According to the flow rate measuring device according to the third embodiment, in addition to the effects of the first embodiment, since all the cross-sectional directions in the measurement flow path can be measured, the flow rate can be measured without being affected by the flow velocity distribution. Become.
[0025]
According to the flow rate measuring device according to the fourth embodiment, in addition to the effects of the first embodiment, the measurement flow path can be enlarged without changing the frequency of the ultrasonic transceiver and the diameter of the transmission unit, so that measurement is possible. It is possible to widen the flow rate range.
[0026]
According to the flow rate measuring device according to the fifth embodiment, in addition to the effects of the fourth embodiment, since the vertical direction of the measurement flow path can be measured evenly, the flow rate can be more accurately measured without being affected by the flow velocity distribution. Can be measured.
[0027]
【The invention's effect】
As described above, the present invention can measure the flow rate in a wider range and more accurately.
[Brief description of the drawings]
FIG. 1 is a diagram showing the state of propagation of ultrasonic waves from an ultrasonic transmitter / receiver. FIG. 2 is a detailed diagram showing a flow rate measuring device in a first embodiment of the present invention. FIG. 3 is a diagram showing measurement in a second embodiment of the present invention. FIG. 4 is a vertical sectional view of a measurement flow channel according to a third embodiment of the present invention. FIG. 5 is a configuration diagram showing a flow rate measuring device according to a fourth embodiment of the present invention. FIG. 7 is a diagram showing a configuration of a partition plate according to a fifth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Flow rate measuring device 2 Measurement flow path 3 Ultrasonic transceiver 4 Ultrasonic transceiver 5 Measurement fluid flow direction 6 Measurement fluid flow direction 7 Ultrasonic propagation direction 8 Ultrasonic propagation direction 9 Last max 10 Partition plate 11 Ultrasonic Transmission window 12 Ultrasonic transmission window

Claims (6)

被測定流体を流すための計測流路と、前記計測流路の上流側と下流側とに少なくとも一対の超音波送受信器を設け、かつ前記二つの超音波送受信器間を超音波が伝搬する距離をそれぞれの超音波送受信器のラストマックス以下となるように取付けた超音波式流量計測装置。A measurement flow path for flowing a fluid to be measured, and at least a pair of ultrasonic transceivers provided on the upstream and downstream sides of the measurement flow path, and a distance over which ultrasonic waves propagate between the two ultrasonic transceivers The ultrasonic type flow rate measuring device which is attached so that it is not more than the last max of each ultrasonic transceiver. 上流側と下流側とに設けた超音波送受信器は、水平方向に対向して設けた請求項1記載の超音波式流量計測装置。2. The ultrasonic flow rate measuring device according to claim 1, wherein the ultrasonic transceivers provided on the upstream side and the downstream side are provided to face each other in the horizontal direction. 計測流路の壁面を複数回反射して超音波が伝搬するような構造を有する請求項1または2記載の超音波式流量計測装置。3. The ultrasonic type flow rate measuring device according to claim 1, wherein the ultrasonic type flow measuring device has a structure in which an ultrasonic wave propagates by reflecting the wall surface of the measurement flow path a plurality of times. 超音波送受信器の超音波送信部の縦方向の寸法と前記計測流路の高さ寸法をあわせた請求項1または2記載の超音波式流量計測装置。3. The ultrasonic flow rate measuring device according to claim 1, wherein a vertical dimension of an ultrasonic transmitting unit of the ultrasonic transceiver and a height dimension of the measurement flow path are matched. 超音波送受信器間に被測定流体の流れ方向と平行に複数の仕切り板を設け、前記仕切り板に超音波送受信器の超音波送信部を投影した形状の超音波透過窓を開け、超音波透過窓にメッシュを貼り付けることによって擬似境界面を設けた超音波流量計測装置。A plurality of partition plates are provided between the ultrasonic transmitter and receiver in parallel with the flow direction of the fluid to be measured, and an ultrasonic transmission window having a shape obtained by projecting the ultrasonic transmitter of the ultrasonic transmitter and receiver is opened on the partition plate, and the ultrasonic transmission is performed. An ultrasonic flow measurement device that has a pseudo boundary surface by attaching a mesh to a window. 仕切り板の超音波透過窓形状を矩形とし、超音波透過窓の垂直方向寸法を計測流路の高さに合わせ、超音波透過窓の水平方向寸法を超音波送受信器の超音波送信部の幅以下にした請求項5の超音波流量計測装置。The shape of the ultrasonic transmission window of the partition plate is rectangular, the vertical dimension of the ultrasonic transmission window is adjusted to the height of the measurement channel, and the horizontal dimension of the ultrasonic transmission window is the width of the ultrasonic transmission unit of the ultrasonic transceiver. 6. The ultrasonic flow measuring device according to claim 5, wherein:
JP2002229727A 2002-08-07 2002-08-07 Flow measuring device Expired - Lifetime JP4092977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229727A JP4092977B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229727A JP4092977B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2004069520A true JP2004069520A (en) 2004-03-04
JP4092977B2 JP4092977B2 (en) 2008-05-28

Family

ID=32016014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229727A Expired - Lifetime JP4092977B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4092977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072750A (en) * 2009-11-24 2011-05-25 松下电器产业株式会社 Channel member and ultrasonic fluid-measuring apparatus
JP2012242090A (en) * 2011-05-16 2012-12-10 Panasonic Corp Ultrasonic flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072750A (en) * 2009-11-24 2011-05-25 松下电器产业株式会社 Channel member and ultrasonic fluid-measuring apparatus
JP2012242090A (en) * 2011-05-16 2012-12-10 Panasonic Corp Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP4092977B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP3890698B2 (en) Flow measuring device
JP7209139B2 (en) ultrasonic flow meter
JP3487307B1 (en) Fluid flow measurement device
JP4092977B2 (en) Flow measuring device
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP2005257611A (en) Apparatus for measuring flow of fluid
JP2009264906A (en) Flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP2956805B2 (en) Ultrasonic flow meter
JP4604520B2 (en) Flow measuring device
JP4675490B2 (en) Ultrasonic flow meter
JPH09189589A (en) Flow rate measuring apparatus
JP3935069B2 (en) Flow measuring device
JP2009103460A (en) Ultrasonic flowmeter
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP3194270B2 (en) Ultrasonic flow meter
JP3438713B2 (en) Ultrasonic flow meter
JP3436247B2 (en) Ultrasonic flow meter
JP5145580B2 (en) Ultrasonic flow meter and flow measurement method
JP2002107194A (en) Ultrasonic wave flow meter
JP3627729B2 (en) Flow measuring device
JP2007147562A (en) Ultrasonic meter device
JPH11237263A (en) Ultrasonic flowmeter
JP2002228499A (en) Ultrasonic flow rate measuring instrument
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5