JP2011064517A - Flow measuring device of fluid - Google Patents

Flow measuring device of fluid Download PDF

Info

Publication number
JP2011064517A
JP2011064517A JP2009213952A JP2009213952A JP2011064517A JP 2011064517 A JP2011064517 A JP 2011064517A JP 2009213952 A JP2009213952 A JP 2009213952A JP 2009213952 A JP2009213952 A JP 2009213952A JP 2011064517 A JP2011064517 A JP 2011064517A
Authority
JP
Japan
Prior art keywords
reception
reception point
time
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009213952A
Other languages
Japanese (ja)
Inventor
Bunichi Shiba
文一 芝
Koichi Takemura
晃一 竹村
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009213952A priority Critical patent/JP2011064517A/en
Publication of JP2011064517A publication Critical patent/JP2011064517A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform power saving operation, while performing high-accuracy measurements. <P>SOLUTION: Each reception signal is amplified by a reception means 35, and a reception point storage means 38 sequentially stores the newest reception point data to a plurality of storage parts, until the maximum value of each reception signal falls between VH and VL. The mean value of a plurality of zero-cross points prior to its falling between VH and VL can be used as a reception point, and a propagation time having few errors, such as upper/lower offset can be measured, and power saving operation can be performed, with a shortened measurement time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流体の流れ計測装置に関する。   The present invention relates to a fluid flow measuring apparatus that uses a vibrator or the like and measures the flow rate of gas or liquid using ultrasonic waves.

従来の流体の流れ計測装置を図10を参照して説明すると、流体が流れる流路101の上流側と下流側とに一対の超音波振動子102,103が配置されており、超音波が流体を斜めに横切るようにしてある。   A conventional fluid flow measuring device will be described with reference to FIG. 10. A pair of ultrasonic transducers 102 and 103 are arranged on the upstream side and the downstream side of a flow path 101 through which a fluid flows, and the ultrasonic waves are fluidized. Is crossed diagonally.

そして、前記一対の超音波振動子102,103間を伝搬する超音波の伝搬時間から流体の流速を計測し、これにもとづき流量を演算していた。例えば、時間差から流速を求め、管路の大きさや流れの状態を考慮して流量値を計算できる。   Then, the flow velocity of the fluid is measured from the propagation time of the ultrasonic wave propagating between the pair of ultrasonic transducers 102 and 103, and the flow rate is calculated based on this. For example, the flow rate value can be calculated in consideration of the size of the pipeline and the flow state by obtaining the flow velocity from the time difference.

なお、図中の実線矢印104は流体の流れる方向を示し、破線矢印105は超音波の伝搬する方向を示している。流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している(例えば、特許文献1参照)。   In addition, the solid line arrow 104 in a figure shows the direction through which a fluid flows, and the broken line arrow 105 has shown the direction through which an ultrasonic wave propagates. The direction in which the fluid flows and the direction in which the ultrasonic waves propagate intersect at an angle θ (for example, see Patent Document 1).

特開2002−13958号公報JP 2002-13958 A

しかしながら、前記従来の計測装置では、上流側の超音波振動子102から下流側の超音波振動子103へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波振動子103から上流側の超音波振動子102へ超音波を伝播させ、超音波の伝搬時間Tduを交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて時間差を求め流量を演算していた。そして受信波が一定の振幅になるようオートゲイン増幅器で振幅を調整している。   However, in the conventional measuring apparatus, an ultrasonic wave is propagated from the upstream ultrasonic transducer 102 to the downstream ultrasonic transducer 103, and the ultrasonic propagation time Tud is determined. The ultrasonic wave is propagated from the ultrasonic wave to the ultrasonic transducer 102 on the upstream side, the ultrasonic wave propagation time Tdu is measured alternately, and the flow rate is calculated by calculating the time difference using the measured ultrasonic wave propagation times Tud and Tdu. It was. The amplitude is adjusted by an auto gain amplifier so that the received wave has a constant amplitude.

この際、所定の振幅が得られる受信波形の部分に参照レベルを設定してトリガーレベルとし、伝播時間を計測していた。したがって、トリガ−レベルよりも前の零クロス点を用いて超音波の伝搬時間を計測することができなかった。また、トリガレベル設定、判定の回路を必要としていた。   At this time, a reference level is set to a received waveform portion where a predetermined amplitude can be obtained as a trigger level, and a propagation time is measured. Therefore, the propagation time of the ultrasonic wave cannot be measured using the zero cross point before the trigger level. In addition, a trigger level setting / determination circuit is required.

このため、超音波の到達時間に不確かな時間が含まれることになり、誤差となる場合があり、高精度な流れ計測を実現することができないという課題を有していた。即ち、超音波の受信波形は、一般に駆動回路で駆動される周波数で立上がり、順次、超音波変換器固有の振動周波数に変化する。   For this reason, an uncertain time is included in the arrival time of the ultrasonic wave, which may cause an error, and there is a problem that high-precision flow measurement cannot be realized. That is, the ultrasonic reception waveform generally rises at a frequency driven by a drive circuit, and sequentially changes to a vibration frequency unique to the ultrasonic transducer.

あるいは、流路の側壁などからの反射波の影響を受けるなどするため、超音波の受信波形は受信点に近い立上がり部分は周波数が安定しているが、トリガ−レベルを設定するような比較的受信振幅の大きい部分では、上流側と下流側とで受信する波形に差が発生し、伝播時間の誤差として検知されることになる。   Alternatively, since the reception waveform of the ultrasonic wave is affected by the reflected wave from the side wall of the flow path or the like, the frequency at the rising portion near the reception point is stable, but the trigger level is relatively high. In the portion where the reception amplitude is large, a difference occurs in the waveform received between the upstream side and the downstream side, which is detected as an error in propagation time.

また、流路101の側壁などで反射した超音波が受信波に若干遅れて到達し、受信波として受信されるので、受信波形がオフセット分を差し引いた場合にゼロ点を通過する零ク
ロス点が不確かになることもあった。また、トリガレベルを設定する回路が余分に必要という課題も有していた。
In addition, since the ultrasonic wave reflected by the side wall of the channel 101 arrives at the received wave with a slight delay and is received as the received wave, a zero cross point that passes through the zero point when the received waveform is subtracted from the offset is obtained. Sometimes it was uncertain. In addition, there is a problem that an extra circuit for setting the trigger level is necessary.

本発明は、前記従来の課題を解決するもので、トリガーレベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも2つ以上使い、その平均値を求めて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現することを目的としている。   The present invention solves the above-described conventional problem, and uses at least two arrival times of the zero cross point of the received ultrasonic wave before the trigger level, and calculates the average value to determine the ultrasonic wave arrival time. An object of the present invention is to realize a power saving operation while realizing high-accuracy measurement while reducing the error included in the propagation time of ultrasonic waves so that measurement can be performed.

前記従来の課題を解決するために、本発明の流体の流れ計測装置は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号の最大値を検出して信号を出す受信波最大値判定手段と、受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、前記受信点検知手段の出力を記憶する少なくとも2つ以上の受信点記憶手段と、前記受信点記憶手段の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波最大値判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段の少なくとも1つを制御する制御手段とを備え、前記制御手段は受信波最大値判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値を伝搬時間演算用として選択する受信点選択手段を有し、前記受信点記憶手段は前記受信波最大値判定手段の出力信号があるまで上書き更新するようにしたものである。   In order to solve the above-described conventional problems, a fluid flow measurement device according to the present invention includes a pair of transducers arranged in a flow path through which a fluid to be measured flows and transmits / receives ultrasonic waves, and a transmission unit that drives one transducer A receiving means for converting the output signal of the other receiving-side transducer into an electric signal, a received wave maximum value judging means for detecting a maximum value of the signal of the receiving means and outputting a signal, and a signal of the receiving means are predetermined. The reception point detection means for outputting a signal when the range is reached, at least two reception point storage means for storing the output of the reception point detection means, and the signals of the reception point storage means are used to propagate between the transducers. A time measuring means for measuring the propagation time of the ultrasonic signal, a flow rate calculating means for calculating a flow rate based on a time difference of the time measuring means, the transmitting means, a receiving means, a received wave maximum value determining means, a receiving point detecting means, Reception point storage means, timing means, And a control means for controlling at least one of the flow rate calculation means. The control means uses the output of the received wave maximum value determination means to convert the value of the reception point storage means that has been reversed by a predetermined number for propagation time calculation. Receiving point selecting means for selecting as above, and the receiving point storing means is overwritten and updated until there is an output signal of the received wave maximum value judging means.

この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間を受信波の最大振幅値よりも前の受信した超音波の零クロス点の到達時間を少なくとも2つ以上使い、その平均値を求めて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現できる。   With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is received before the maximum amplitude value of the received wave. Use at least two arrival times at the zero crossing point of the sound wave, obtain the average value and measure the arrival time of the ultrasonic wave, reduce the error included in the propagation time of the ultrasonic wave, high accuracy Power saving operation can be realized while realizing simple measurement.

本発明の、流速または流量計測装置は、受信波の最大振幅値よりも前の受信した超音波の零クロス点の到達時間を少なくとも2つ使い、その平均値を求めて超音波の到達時間を計測することができる。このため複数の零クロス点の平均値を用いることにより計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。   The flow velocity or flow rate measuring device of the present invention uses at least two arrival times of the received ultrasonic zero crossing point before the maximum amplitude value of the received wave, and calculates the average value to determine the ultrasonic arrival time. It can be measured. For this reason, the error included in the propagation time or arrival time of the measured ultrasonic wave can be reduced by using the average value of multiple zero cross points, and power saving operation is achieved while realizing highly accurate flow measurement. it can.

本発明の流体の流れ計測装置の全体ブロック図Whole block diagram of fluid flow measuring device of the present invention 同計測装置における受信手段周辺の拡大図Enlarged view around the receiving means in the same measuring device 同計測装置における受信波、および受信波の測定を示すタイミング図Timing chart showing received wave and measurement of received wave in the same measuring device 同計測装置における受信波、および受信波の測定を示すタイミング図Timing chart showing received wave and measurement of received wave in the same measuring device 同計測装置における計測制御手段の動作を示すタイミング図Timing chart showing the operation of the measurement control means in the same measuring device 同計測装置における受信点記憶手段の動作、および受信波を示すタイミング図Timing diagram showing operation of received point storage means and received wave in the measurement apparatus 同計測装置における受信点記憶手段の動作、および受信波を示すタイミング図Timing diagram showing operation of received point storage means and received wave in the measurement apparatus 同計測装置の他の例を示す全体ブロック図Overall block diagram showing another example of the measurement apparatus 同計測装置における計測制御手段の動作を示すタイミング図Timing chart showing the operation of the measurement control means in the same measuring device 同計測装置の他の例を示す全体ブロック図Overall block diagram showing another example of the measurement apparatus 同計測装置のさらに他の例を示す全体ブロック図Overall block diagram showing still another example of the measurement apparatus 従来の流体の流れ計測装置の断面図Sectional view of a conventional fluid flow measurement device

第1の発明は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号の最大値を検出して信号を出す受信波最大値判定手段と、受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、前記受信点検知手段の出力を記憶する少なくとも2つ以上の受信点記憶手段と、前記受信点記憶手段の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波最大値判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段の少なくとも1つを制御する制御手段とを備え、前記制御手段は受信波最大値判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値を伝搬時間演算用として選択する受信点選択手段を有し、前記受信点記憶手段は前記受信波最大値判定手段の出力信号があるまで上書き更新するようにしたものである。   According to a first aspect of the present invention, a pair of transducers arranged in a flow path through which a fluid to be measured flows transmits / receives ultrasonic waves, a transmission unit that drives one transducer, and an output signal of the other reception-side transducer as an electrical signal Receiving means for converting to, receiving wave maximum value judging means for detecting the maximum value of the signal of the receiving means and outputting the signal, receiving point detecting means for outputting the signal when the signal of the receiving means falls within a predetermined range, At least two or more reception point storage means for storing the output of the reception point detection means; time measuring means for measuring the propagation time of the ultrasonic signal propagated between the transducers using the signal of the reception point storage means; and At least one of a flow rate calculation means for calculating a flow rate based on a time difference of the time measurement means, the transmission means, a reception means, a received wave maximum value determination means, a reception point detection means, a reception point storage means, a time measurement means, and a flow rate calculation means Control that controls one And the control means includes a reception point selection means for selecting a value of the reception point storage means that has been reversed by a predetermined number for propagation time calculation, based on the output of the reception wave maximum value determination means, The reception point storage means is overwritten and updated until there is an output signal from the received wave maximum value determination means.

したがって、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間を受信波の最大振幅値よりも前の受信した超音波の零クロス点の到達時間を少なくとも2つ以上使い、その平均値を求めて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現できる。   Therefore, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is determined based on the received ultrasonic wave before the maximum amplitude value of the received wave. Using at least two arrival times at the zero crossing point, the average value can be obtained to measure the arrival time of the ultrasonic wave, reducing the error included in the propagation time of the ultrasonic wave, and highly accurate measurement The power saving operation can be realized while realizing the above.

第2の発明は、特に、第1の発明において、制御手段は受信点検知手段の出力を記憶する受信点記憶手段への通電を初回のみ長時間とする電源供給手段を有することにより、最初の計測時は本来受信波が到達するよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the control means includes a power supply means for energizing the reception point storage means for storing the output of the reception point detection means for a long time only for the first time. At the time of measurement, it is possible to reliably catch the received wave by preparing to store the output of the received wave detecting means before the received wave originally arrives.

第3の発明は、特に、第1の発明第1の発明において、制御手段は受信点検知手段の出力を記憶する受信点記憶手段への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。   According to a third aspect of the invention, in particular, in the first aspect of the first aspect of the invention, the control means energizes the reception point storage means for storing the output of the reception point detection means for the second and subsequent times, based on the previous value. By adjusting the timing of the power supply means so as to prepare for storing the output of the received wave detection means immediately before the received wave arrives, the received wave can be reliably captured and a power saving operation can be performed.

第4の発明は、特に、第1の発明において、制御手段は受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し電源供給手段は前記トリガ手段の出力により受信点検知手段の出力を記憶する受信点記憶手段への通電を開始することにより、確実に受信波が到達したことを確認してから受信波検知手段の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。   According to a fourth aspect of the invention, in particular, in the first aspect of the invention, the control means has trigger means for outputting a signal when the output of the reception point detection means exceeds a predetermined number of times, and the power supply means receives the output of the trigger means. By starting energization to the reception point storage means for storing the output of the point detection means, it is possible to reliably confirm that the reception wave has arrived and to prepare for storing the output of the reception wave detection means. As a result, the power saving operation by the short time operation becomes possible.

第5の発明は、特に、第1の発明において、制御手段は少なくとも1つ以上ある受信点記憶手段に書き込む零クロス点の数が多い場合に最も古いデータから順次上書きされていくよう調節する蓄積制御手段を有することにより、零クロス点が多くなるような状態でも受信波最大値判定手段の近傍における複数の零クロス点を確実にとらえることができるとともに受信点記憶手段の数を少なくして順次上書きすることで省電力動作が可能になる。   In a fifth aspect of the invention, in particular, in the first aspect of the invention, when the number of zero cross points to be written to the at least one reception point storage means is large, the control means adjusts so that the oldest data is sequentially overwritten. By having the control means, it is possible to reliably capture a plurality of zero cross points in the vicinity of the received wave maximum value judging means even in a state where the number of zero cross points increases, and sequentially reduce the number of reception point storage means. Power saving operation is possible by overwriting.

第6の発明は、特に、第1の発明において、制御手段は受信波最大値判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値と受信波判定手段の出力の差を演算する時間検定手段を有し、前記時間検定手段の値が予め定めた値以内であれば計測を有効とすることにより、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。   According to a sixth aspect of the invention, in particular, in the first aspect of the invention, the control means determines the difference between the value of the reception point storage means and the output of the reception wave determination means that is reversed by a predetermined number based on the output of the reception wave maximum value determination means. A time verification means for calculating the value, and if the value of the time verification means is within a predetermined value, the measurement is validated to prevent erroneous detection of a zero cross point due to noise or the like. Reliability can be improved by selecting the zero cross point.

第7の発明は、特に、第1の発明において、制御手段は受信波最大値判定手段の出力後の受信点検知手段の出力後予め定めた時間経過後に電源供給手段を介して受信点記憶手段への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。   According to a seventh invention, in particular, in the first invention, the control means receives the reception point storage means via the power supply means after elapse of a predetermined time after the output of the reception point detection means after the output of the received wave maximum value determination means. By stopping the power supply to the power supply, it is possible to stop the operation of measuring and storing an extra zero cross point, and to realize a power saving operation.

(実施の形態1)
図1おいて、本実施の形態の超音波流量計は、被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33と、前記第1の振動子32と前記第2の振動子33を駆動する送信手段34と、前記第1の振動子32と前記第2の振動子33の受信信号を受け信号を増幅する受信手段35と、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36と、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37と、前記受信点検知手段37の出力を記憶する2つの受信点記憶手段38と、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39と、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40とを有するものである。
(Embodiment 1)
In FIG. 1, the ultrasonic flowmeter of the present embodiment includes a flow path 31 through which a fluid to be measured flows, a first vibrator 32 that transmits and receives ultrasonic waves disposed in the flow path 31, and a second vibration. Receiving element 33, transmitting means 34 for driving the first vibrator 32 and the second vibrator 33, and receiving signals of the first vibrator 32 and the second vibrator 33 for amplifying the signal. Receiving means 35, a received wave determination means 36 that outputs a signal when the signal of the receiving means 35 reaches a predetermined value, a reception point detection means 37 that outputs a signal when the signal of the receiving means 35 falls within a predetermined range, Two reception point storage means 38 for storing the output of the reception point detection means 37; and a timing means 39 for measuring the propagation time of the ultrasonic signal propagated between the transducers using the signal of the reception point storage means 38; The flow rate is calculated based on the time difference of the time measuring means 39. Those having a flow rate computation means 40.

また、図2は前記受信手段35の周辺を示し、受信手段35の最大信号を検知する受信波最大値判定手段43を有している。   FIG. 2 shows the periphery of the receiving means 35 and has a received wave maximum value judging means 43 for detecting the maximum signal of the receiving means 35.

さらに、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段41を設け、第1の振動子32と第2の振動子33が超音波の送受信を切換えて動作するようにしている。   Further, a switching means 41 is provided between the transmission means 34 and the first vibrator 32, and between the second vibrator 33 and the reception means 35, and the first vibrator 32 and the second vibrator 33 are ultrasonic waves. It operates by switching between transmission and reception.

受信点記憶手段38は少なくとも2つ以上の記憶部を有し、記憶開始後は前記受信波最大値判定手段43の出力信号があるまで上書き更新するようになっている。   The reception point storage means 38 has at least two or more storage units, and after the start of storage, it is overwritten and updated until there is an output signal of the reception wave maximum value determination means 43.

制御手段42は、前記送信手段34と前記受信手段35と前記受信波判定手段36と、受信点検知手段37と、受信点記憶手段38と、前記計時手段39と前記流量演算手段40と前記切換手段41と前記受信波最大値判定手段43の少なくとも1つを制御する。   The control means 42 includes the transmission means 34, the reception means 35, the reception wave determination means 36, the reception point detection means 37, the reception point storage means 38, the timing means 39, the flow rate calculation means 40, and the switching. At least one of the means 41 and the received wave maximum value judging means 43 is controlled.

また、制御手段42は受信点選択手段44を有し、受信波最大値判定手段43により超音波が受信側振動子に到達したことを検知すると本来の受信波到達点に近い時間まで遡るため受信点記憶手段38に記憶されている受信点データから伝搬時間演算用として少なくとも2つ以上の値を選択して伝搬時間を計時する前記計時手段39に送る。   In addition, the control means 42 has a reception point selection means 44. When the reception wave maximum value determination means 43 detects that the ultrasonic wave has reached the receiving-side transducer, the control means 42 goes back to a time close to the original reception wave arrival point. At least two or more values are selected for propagation time calculation from the reception point data stored in the point storage means 38 and sent to the time measuring means 39 for measuring the propagation time.

計時手段は送られてきた受信点データの平均値を用いて伝搬時間を求めその値を流量演算手段40に渡す。   The time measuring means obtains the propagation time using the average value of the received reception point data and passes the value to the flow rate calculating means 40.

流量演算手段40は伝播時間の差、すなわち上流側からの伝搬時間と下流側からの伝搬時間の差を本に流速を求め、流路の断面積との積より流量を求める。   The flow rate calculation means 40 obtains the flow rate based on the difference in propagation time, that is, the difference between the propagation time from the upstream side and the propagation time from the downstream side, and obtains the flow rate from the product of the cross-sectional area of the flow path.

通常の流速または流量計測の動作を説明する。制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。   A normal flow rate or flow rate measurement operation will be described. Upon receipt of the start signal from the control means 42, the transmission means 34 pulse-drives the first vibrator 32 for a certain time, and at the same time, the time measuring means 39 starts measuring time. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32.

第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。   The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing.

例えば、図3(a)における受信波がVrefを超えた後、次の零クロス点taを受信波が到達した点とすると、超音波の受信を決定した時点(ここではta点)で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。   For example, if the received wave reaches the next zero cross point ta after the received wave in FIG. 3A exceeds Vref, the time measuring means is determined at the time when the reception of the ultrasonic wave is determined (here, the ta point). The operation of 39 is stopped, and the flow velocity is obtained from the time information t by (Equation 1).

ここで、計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、確度をφ、音速をc、被測定流体の流速をvとする。   Here, the measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the accuracy is φ, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=(1/cosφ)*(L/t)−c (式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
v = (1 / cosφ) * (L / t) −c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

また、第1の超音波振動子32と第2の超音波振動子33との送信、受信方向を切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式2、3,4)より速度vを求めることができる。   Further, the transmission and reception directions of the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. The speed v can be obtained from Equations 2, 3, and 4).

ここで、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。   Here, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.

t1=L/(c+v*cosφ) (式2)
t2=L/(c−v*cosφ) (式3)
v=(L/2*cosφ)*[(1/t1)−(1/t2)] (式4)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
t1 = L / (c + v * cosφ) (Formula 2)
t2 = L / (c−v * cos φ) (Formula 3)
v = (L / 2 * cos φ) * [(1 / t1) − (1 / t2)] (Formula 4)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 31.

通常は、この一連の送信から受信動作を行う前に受信波の大きさをある程度一定にするためにオートゲイン動作を行う。   Usually, before performing the receiving operation from this series of transmissions, the auto gain operation is performed in order to make the magnitude of the received wave constant to some extent.

この動作を図2の受信手段35を含めて説明する。受信手段35には受信側の超音波振動子の信号を増幅する増幅手段35−1と増幅手段の出力を用い受信波の信号が一定レベルになると信号を出す受信波判定手段36と、増幅手段の出力で零クロス点を判定する受信点検知手段37と、増幅手段の出力で受信波の最大値を検知する受信波最大値判定手段43がある。   This operation will be described including the receiving means 35 of FIG. The receiving means 35 includes an amplifying means 35-1 for amplifying the signal of the ultrasonic transducer on the receiving side, an output of the amplifying means, a received wave determining means 36 for outputting a signal when the received wave signal reaches a certain level, and an amplifying means. There is a reception point detection means 37 for determining the zero cross point by the output of, and a reception wave maximum value determination means 43 for detecting the maximum value of the reception wave by the output of the amplification means.

受信波判定手段36は受信波が到達したことを判定するためのトリガレベルを設定するトリガレベル設定手段36−1と、前記トリガレベル判定手段36−1と増幅手段35−1の出力を比較して受信波到達信号を送出する受信波到達比較手段36−2からなる。   The received wave determining means 36 compares the trigger level setting means 36-1 for setting the trigger level for determining that the received wave has arrived, and the outputs of the trigger level determining means 36-1 and the amplifying means 35-1. Reception wave arrival comparison means 36-2 for sending a reception wave arrival signal.

受信点検知手段37は零クロス点を判断する零基準手段37−1と、前記零基準手段37−1と増幅手段35−1の出力を比較して零クロス点となる信号を送出する零クロス比較手段37−2からなる。   The reception point detecting means 37 compares the outputs of the zero reference means 37-1 for determining the zero cross point and the zero reference means 37-1 and the amplifying means 35-1 to send out a signal which becomes the zero cross point. Comparing means 37-2.

また、受信波判定手段43は受信波の最大値を判定するための第1の最大値判定手段43−1と第2の最大値判定手段43−2と、前記最大値判定手段を切換える判定値切換手段43−3と、前記判定値切換手段43−3からの出力信号と増幅手段35−1の出力を比較して受信波最大値信号を送出する受信波最大値比較手段43−4からなる。   The received wave determining means 43 is a first maximum value determining means 43-1 and a second maximum value determining means 43-2 for determining the maximum value of the received wave, and a determination value for switching the maximum value determining means. A switching means 43-3, and a received wave maximum value comparing means 43-4 for comparing the output signal from the judgment value switching means 43-3 with the output of the amplifying means 35-1 and sending out a received wave maximum value signal. .

オートゲインの動作は受信波判定手段43を用いて行っている。制御手段42にはオートゲイン調整手段42−1を有している。最初にオートゲイン調整手段42−1は判定切換手段43−3を第2の最大値判定手段43−2側に切換えておく。   The operation of the auto gain is performed using the reception wave determination means 43. The control means 42 has an automatic gain adjustment means 42-1. First, the auto gain adjusting means 42-1 switches the determination switching means 43-3 to the second maximum value determining means 43-2 side.

第2の最大値判定手段43−2は電圧値として図3(a)のVLを出力する。受信波が増幅手段35−1で増幅されて受信波最大値比較手段43−4に到達した時に受信波の最大値がVLより小さいと受信波最大値比較手段43−4の出力は変化しない。このためオートゲイン調整手段42−1は増幅手段35−1の増幅度を大きくするように信号を出す。そうして受信波の最大値がVLより大きくなるまで増幅度を上げると、受信波が到達した時に受信波最大値比較手段43−4の出力はVLを越えた時点で信号が変化する。これで受信波の大きさがある一定レベルより大きくすることができた。   The second maximum value determination means 43-2 outputs VL in FIG. 3A as a voltage value. If the maximum value of the received wave is smaller than VL when the received wave is amplified by the amplifying unit 35-1 and reaches the received wave maximum value comparing unit 43-4, the output of the received wave maximum value comparing unit 43-4 does not change. For this reason, the auto gain adjusting means 42-1 outputs a signal so as to increase the amplification degree of the amplifying means 35-1. If the amplification is increased until the maximum value of the received wave becomes larger than VL, the signal of the output of the received wave maximum value comparing means 43-4 changes when the received wave reaches VL. As a result, the magnitude of the received wave can be made larger than a certain level.

ただし、受信波の増幅度があまり大きすぎると波形が歪んだり受信回路の電力が余計に消費したりして不適切である。このため一旦受信信号がVLを越えるとオートゲイン調整手段42−1は判定切換手段43−3を第1の最大値判定手段43−1側に切換えておく。第1の最大値判定手段は電圧値として図3(a)のVHを出力する。   However, if the amplification degree of the received wave is too large, the waveform is distorted or the power of the receiving circuit is consumed excessively, which is inappropriate. For this reason, once the received signal exceeds VL, the automatic gain adjusting means 42-1 switches the determination switching means 43-3 to the first maximum value determining means 43-1 side. The first maximum value determining means outputs VH in FIG. 3A as a voltage value.

受信波が増幅手段35−1で増幅されて受信波最大値比較手段43−4に到達した時に受信波の最大値がVHより小さいと受信波最大値比較手段43−4の出力は変化しない。この場合、受信信号の最大値はVHとVLの間に調整されたことになる。   If the maximum value of the received wave is smaller than VH when the received wave is amplified by the amplifying unit 35-1 and reaches the received wave maximum value comparing unit 43-4, the output of the received wave maximum value comparing unit 43-4 does not change. In this case, the maximum value of the received signal is adjusted between VH and VL.

しかし、オートゲイン調整手段42−1は増幅手段35−1の増幅度を大きくしすぎると受信波の最大値がVHより大きくなり、受信波が到達した時に受信波最大値比較手段43−4の出力はVHを越えた時点で信号が変化する。これは受信波の最大値が大きくなりすぎたことを示すためオートゲイン調整手段42−1は増幅手段35−1の増幅度を小さくする。   However, if the auto gain adjusting means 42-1 increases the amplification degree of the amplifying means 35-1 too much, the maximum value of the received wave becomes larger than VH, and when the received wave arrives, the received wave maximum value comparing means 43-4 The signal changes when the output exceeds VH. Since this indicates that the maximum value of the received wave has become too large, the auto gain adjusting means 42-1 reduces the amplification degree of the amplifying means 35-1.

この動作を行うことにより受信波の最大値が常にVLとVHの間に収まるよう受信波の振幅を調整するのがオートゲイン動作である。   By performing this operation, the auto gain operation adjusts the amplitude of the received wave so that the maximum value of the received wave always falls between VL and VH.

オートゲイン動作により受信波形の大きさがある程度一定の振幅になった後は、受信波判定手段36を用い受信点を求めていく。トリガレベル設定手段36−1の出力をVrefとする。   After the size of the received waveform becomes constant to some extent by the auto gain operation, the reception point is determined using the received wave determination means 36. The output of the trigger level setting means 36-1 is set to Vref.

従来の動作を図4のタイミング図と,図3(a)の受信波形で説明する。制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。   The conventional operation will be described with reference to the timing chart of FIG. 4 and the received waveform of FIG. Measurement is started from the start signal at time t 0 by the control means 42 and the first ultrasonic transducer 32 is driven via the transmission means 34.

そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると受信波判定手段36が受信波が到達したことを判定して信号を出す。   The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1. The received signal is amplified by the receiving means 35, and when the signal level reaches a predetermined value (Vref), the received wave determining means 36 determines that the received wave has arrived and outputs a signal.

この信号を基に受信点検知手段37が動作を開始し、Vref後の最初の零クロス点を受信点として信号を出し、この点までの時間を計時手段39で求める。切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。   Based on this signal, the reception point detection means 37 starts to operate, outputs a signal with the first zero cross point after Vref as the reception point, and the time until this point is obtained by the time measurement means 39. The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained.

ここで図3(a)のta点はVrefより後になっている。これは受信波判定としてVrefの値を用い、その後の零クロス点taを受信点としているためである。例えば信号波を100kHz、伝搬時間を100μs前後とすると、taのような零クロス点は5μs毎に発生する。受信波は図3でもわかるようにVrefより前にも到達している。これがVrefより前の信号を利用できればできるほど超音波の到達時間に不確かな時間が含
まれにくくなる。
Here, the point ta in FIG. 3A is after Vref. This is because the value of Vref is used for reception wave determination, and the subsequent zero cross point ta is used as the reception point. For example, if the signal wave is 100 kHz and the propagation time is around 100 μs, a zero cross point such as ta occurs every 5 μs. As can be seen from FIG. 3, the received wave reaches before Vref. As the signal before Vref can be used, the arrival time of the ultrasonic wave is less likely to include an uncertain time.

さらに,今まで受信点としていたtaの零クロス点より5μs前の信号を利用できれば半周期である5μs早く零クロス点を確定できることになるため、例えばtaまでの伝搬時間が100μsであったとするとの5%も計測時間を短縮することが可能になり、消費電流の削減を実現できる。   Furthermore, if a signal 5 μs prior to the zero crossing point of ta that has been used as a reception point can be used, the zero crossing point can be determined 5 μs earlier, which is a half cycle. For example, the propagation time to ta is 100 μs. Measurement time can be shortened by 5%, and current consumption can be reduced.

零クロス点の基準となる零基準をpとする。もしオフセットがプラス側に発生すると零基準はqのようになり零クロス点は本来より早く到達してしまう。反対にオフセットがマイナス側に発生すると零基準はrのようになり零クロス点は本来より遅く発生してしまう。同様にノイズが発生して受信波形がプラス側にずれると零クロス点は本来のta点より遅く到達し、反対にノイズ等により受信波形がマイナス側にずれると零クロス点は本来のta点より早く到達してしまう。このように1点だけの受信点判定ではオフセットやノイズ等の外乱で受信時間の精度が悪くなることが考えられる。   Let p be the zero reference that is the reference for the zero crossing point. If the offset occurs on the plus side, the zero reference becomes q and the zero crossing point arrives earlier than originally intended. On the contrary, when the offset occurs on the minus side, the zero reference becomes r and the zero cross point occurs later than originally intended. Similarly, when noise occurs and the received waveform shifts to the plus side, the zero cross point arrives later than the original ta point, and conversely, if the received waveform shifts to the minus side due to noise or the like, the zero cross point becomes less than the original ta point. It will arrive early. In this way, it is conceivable that the reception time accuracy deteriorates due to disturbances such as offset and noise in the reception point determination of only one point.

そこで、Vrefより前の零クロス点を検出し、オフセットなどの外乱が発生しても制度よく受信点を求める方法を説明する。単純に零クロス点を受信波の到達した点、例えば図3(a)のa点を求めることが出来ればよいが、その場合はVrefを設定できない。それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して誤検知する可能性がある。   Therefore, a method will be described in which a zero cross point before Vref is detected, and a reception point is obtained systematically even when a disturbance such as an offset occurs. It suffices to simply obtain the point at which the received wave reaches the zero cross point, for example, the point a in FIG. 3A, but in that case, Vref cannot be set. If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub. In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows.

このような現象を回避して通常のtaより精度良く受信波の到達点を判定するには零クロス点を連続して2つ以上個求め、その平均値を用いればオフセットのズレを相殺することができる。   In order to avoid such a phenomenon and determine the arrival point of the received wave with higher accuracy than normal ta, two or more zero cross points are obtained continuously, and the average value is used to cancel the offset deviation. Can do.

そこで、Vrefより前の零クロス点を検出し始める方法を説明する。単純に零クロス点を受信波の到達した点、例えば図3(a)のa点から求めることが出来ればよいが、その場合はVrefを設定できない。それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。   Therefore, a method of starting to detect the zero cross point before Vref will be described. It suffices to simply obtain the zero cross point from the point where the received wave arrives, for example, point a in FIG. 3A, but in that case, Vref cannot be set. If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub.

この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して誤検知する可能性がある。このような現象を回避して通常のtaより短時間で受信波の到達点を判定するにはVrefより前の零クロス点を少なくとも2つ以上検知し、その平均値をとればよい。   In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows. In order to avoid such a phenomenon and determine the arrival point of the received wave in a shorter time than the normal ta, it is only necessary to detect at least two zero cross points before Vref and take the average value.

ここで詳細に、Vrefより前の零クロス点を受信波判定手段36を用いずに検出し、平均値を求める方法として受信波の最大値(VHとVLの間に入る受信波)の前の零クロス点を検知するようにすれば可能であることを以下に説明する。そうすれば受信波判定手段36を省略した構成を実現できる。   Here, in detail, the zero crossing point before Vref is detected without using the reception wave determination means 36, and the average value is obtained as a method for obtaining the average value before the maximum value of the reception wave (reception wave falling between VH and VL). What is possible if the zero cross point is detected will be described below. By doing so, a configuration in which the reception wave determination means 36 is omitted can be realized.

この動作を実現するには制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。図3と図5を用いて説明する。そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。   In order to realize this operation, measurement is started from the start signal at time t0 by the control means 42 and the first ultrasonic transducer 32 is driven via the transmission means 34. This will be described with reference to FIGS. The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1.

その受信信号は受信手段35内の増幅手段35−1で増幅されその信号のピーク値が予め定めた値(VHとVLの間)になると受信波最大値判定手段43が受信波が到達したことを判定して信号を出す。   The received signal is amplified by the amplifying means 35-1 in the receiving means 35, and when the peak value of the signal reaches a predetermined value (between VH and VL), the received wave maximum value judging means 43 has reached the received wave. Is determined and a signal is output.

そのために,零クロス点として予め定めた範囲、例えばプラス1mV、マイナス1mV以内に入ると信号を出す受信点検知手段37が動作を開始している。   For this reason, the reception point detection means 37 that outputs a signal when it falls within a predetermined range as a zero cross point, for example, within plus 1 mV or minus 1 mV, starts operation.

そうすると,図3(b)の点aになると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。   If it does so, the reception point detection means 37 will output a signal when it will be the point a of FIG.3 (b), and the reception point memory | storage means 38-1 will memorize | store the output.

記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。   If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated.

次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−2に記憶する。同様に順次その次の点cにおける受信点データは受信点記憶手段38−3に記憶する。   Next, at the point b, the reception point storage means 37 outputs a signal and stores it in the reception point storage means 38-2. Similarly, the reception point data at the next point c is sequentially stored in the reception point storage means 38-3.

この場合、受信点データが受信点記憶手段38の個数より多い場合は最も古い受信点から順次上書きするように制御手段46が書き込む順番を制御するようにしてもよい。   In this case, when the reception point data is larger than the number of reception point storage means 38, the control unit 46 may control the order of writing so that the oldest reception points are overwritten sequentially.

例えば図5(a)のように受信点記憶手段38−4まで記憶すると次は受信点記憶手段38−1に戻って上書きしていくような構成である。   For example, as shown in FIG. 5 (a), after storing up to the reception point storage means 38-4, the next is to return to the reception point storage means 38-1 and overwrite.

そして、受信波のピーク値がVHとVLの間に入り、受信波最大値判定手段43は受信波が到達したことを判定して信号を出す。この信号をオートゲイン調整手段42−2が受けると制御手段42は、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。   The peak value of the received wave enters between VH and VL, and the received wave maximum value determining means 43 determines that the received wave has arrived and outputs a signal. When this signal is received by the automatic gain adjusting means 42-2, the control means 42 prevents the reception point judging means 37 from outputting a signal at the subsequent zero cross point, or writes to the reception point storage means 38. Ban.

この動作を行うことによりtxまでの零クロス点を少なくとも2つ以上記憶しているため、その中から2つ以上の偶数個を利用し、その平均値を用いて計時手段39で伝搬時間を求める。   By carrying out this operation, at least two zero cross points up to tx are stored, so that even two or more even numbers are used and the propagation time is obtained by the time measuring means 39 using the average value. .

オフセットについて説明しておく。例えば図3(b)に示すようにオフセットが発生することにより従来の零クロス点はta点からtb、tc点にずれることがある。   The offset will be described. For example, as shown in FIG. 3B, the occurrence of an offset may cause the conventional zero cross point to shift from the ta point to the tb and tc points.

その場合受信波到達点としてTa時間は非常に不安定となる。零クロス点を2つ用いて平均をとるとtaに対してtl、tbに対してtm、tcに対してtnとなりその平均Ta’は一定値となり安定する。零クロス点を偶数個用いると零基準のズレによる受信点の変動を2個用いた場合よりより平均操作により絞り込むことが可能になる。   In that case, the Ta time as a reception wave arrival point becomes very unstable. When the average is obtained using two zero cross points, tl is obtained with respect to ta, tm with respect to tb, and tn with respect to tc. When an even number of zero cross points are used, it is possible to narrow down by averaging operation more than when two reception point fluctuations due to zero reference deviation are used.

その際、制御手段42は受信点選択手段44を用い、受信波最大値判定手段43により超音波が受信側振動子に到達したことを検知すると本来の受信波到達点に近い時間、例えば図5(b)のa点までさかのぼるため,受信点記憶手段38に記憶されている受信点データから伝搬時間演算用として最後に記憶した受信点データからできるだけ可能な限りさかのぼり少なくとも2つ以上の値を選択して伝搬時間を計時する前記計時手段39に送る。図5(b)のa点に近いほど受信波形の歪みも無く正しい受信点を検出できるが、振幅が小さいためノイズの影響を受けやすい。   At that time, the control means 42 uses the reception point selection means 44, and when the reception wave maximum value determination means 43 detects that the ultrasonic wave has reached the receiving-side transducer, the time close to the original reception wave arrival point, for example, FIG. In order to go back to point a in (b), at least two values are selected as far back as possible from the reception point data stored last in the reception point data stored in the reception point storage means 38 for propagation time calculation. Then, it is sent to the time measuring means 39 for measuring the propagation time. The closer to point a in FIG. 5 (b), the more correctly received point can be detected without distortion of the received waveform, but it is susceptible to noise due to its small amplitude.

したがって、受信波の最大振幅値から数点前のたとえばb点やc点を用いその平均値を伝搬時間として、そこから予め定めた一定値を補正量として減算することでa点を推定することも可能である。   Therefore, the point a is estimated by subtracting a predetermined fixed value from the average value as the propagation time using, for example, points b and c several points before the maximum amplitude value of the received wave. Is also possible.

受信点記憶手段38には古いものから順次上書きされているため上書きされている値の次のデータが最も古いものとなっている。   Since the receiving point storage means 38 is overwritten sequentially from the oldest one, the data next to the overwritten value is the oldest.

さかのぼる個数については、予め実験などによりその数を決めておいたり、あまり図5(b)のa点近くのデータを用いると、ノイズにより大きくきく誤差が出そうな場合は受信波の最大振幅値より数点前と予め決めた値にしておく事でも良い。   The number of traces going back is determined in advance by experiments or the like, or if the data near the point a in FIG. It may be set to a predetermined value several points before.

また、計時手段39で使用する受信点データ(伝搬時間)は連続した2点もしくは偶数にするとオフセットを相殺することが可能なため有用である。ただし、流路の特性や振動子の特性などにより立ち上がりからの奇数個数や立下りからの奇数個を用いることも設定としては可能である。   Further, the reception point data (propagation time) used by the time measuring means 39 is useful because it is possible to cancel the offset when two continuous points or even numbers are used. However, it is also possible to use an odd number from the rising edge or an odd number from the falling edge depending on the characteristics of the flow path and the characteristics of the vibrator.

この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて計測することができる。   With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is set to zero of the received ultrasonic wave before the trigger level. By using at least two cross point arrival times in succession, the average value can be obtained and measured.

このため、オフセットなどが重畳していても立ち上がりのゼロ点と立下りのゼロ点で相殺することができる。   For this reason, even if an offset or the like is superimposed, it is possible to cancel the rising zero point and the falling zero point.

切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。その結果、Vrefを構成する回路を省略することができることになる。   The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained. As a result, the circuit constituting Vref can be omitted.

今までは、図5(b)のtaで伝搬時間を確定していたが、オフセットなどの影響が避けられなかった。この方法では複数の零クロス点の平均値を用いることにより計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現できる。   Up to now, the propagation time has been determined at ta in FIG. 5B, but the influence of offset or the like cannot be avoided. In this method, by using the average value of a plurality of zero cross points, an error included in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and highly accurate flow measurement can be realized.

また、零クロス点が多くなるような状態でも受信波最大値判定手段43の近傍における複数の零クロス点を確実にとらえることができるとともに受信点記憶手段38の数を適度に少なくして順次上書きすることで省電力動作が可能になる。   Further, even in a state where the number of zero cross points increases, a plurality of zero cross points in the vicinity of the received wave maximum value judging means 43 can be reliably captured, and the number of receiving point storage means 38 is appropriately reduced to sequentially overwrite. By doing so, power saving operation becomes possible.

また、受信点検知手段37の出力を記憶する受信点記憶手段38は記憶動作を行うのに電力を消費するがどの時点から通電して良いかは前もってわかっていない場合が多い。   In addition, the reception point storage unit 38 that stores the output of the reception point detection unit 37 consumes electric power to perform the storage operation, but it is often not known in advance from which point in time it may be energized.

あまり早く投入すると電力が無駄になるし、受信点を通過してから通電しても意味は無い。   If it is turned on too early, power is wasted, and there is no point in energizing after passing the reception point.

そこで、図6示すように制御手段42内に電源供給手段45を設けて電力制御を行う。タイミングは図7で説明する。   Therefore, as shown in FIG. 6, the power supply means 45 is provided in the control means 42 to perform power control. The timing will be described with reference to FIG.

一番初めに計測を開始する場合はTaが不明である。超音波振動子32,33の物理的距離からおおよその時間は推定できるが確かでは無い。   When measurement is started first, Ta is unknown. Although the approximate time can be estimated from the physical distance between the ultrasonic transducers 32 and 33, it is not certain.

そこで、制御手段42は電源供給手段45を用いて受信点記憶手段38への通電タイミングを調節する。まず、時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。   Therefore, the control unit 42 uses the power supply unit 45 to adjust the energization timing to the reception point storage unit 38. First, measurement is started from a start signal at time t 0 and the first ultrasonic transducer 32 is driven via the transmission unit 34. The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1.

その前時刻t2に電源供給手段45を用いて受信点記憶手段38への通電を開始する。
t2はt1より十分短い時間とする。
At the previous time t2, energization to the reception point storage means 38 is started using the power supply means 45.
t2 is a time sufficiently shorter than t1.

このように、制御手段42は受信点検知手段37の出力を記憶する受信点記憶手段38への通電を初回のみ長時間とする電源供給手段45を有することにより、最初の計測時は本来受信波が到達するよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。   Thus, the control means 42 has the power supply means 45 for energizing the reception point storage means 38 for storing the output of the reception point detection means 37 for a long time only for the first time. By preparing to store the output of the received wave detection means before the wave arrives, it is possible to reliably receive the received wave.

また、初回により受信点が確定し伝搬時間が求まる。その場合は2回目以降の通電時間を調整することが容易になる。   In addition, the reception point is determined by the first time and the propagation time is obtained. In that case, it becomes easy to adjust the energization time after the second time.

例えば、図7で最初はt2において受信点記憶手段38への通電を開始したが、実際に超音波が伝搬して受信したのはt1である。次の計測においては伝搬時間が大幅に変化することが無いため制御手段42にある電源供給手段45はt1に近くてまだ受信信号が到達していないt2まで通電するのを待つことが可能になる。3回目は2回目の伝搬時間を用いたり、または1回目と2回目の移動平均を用いたりして伝播時間を予想し、通電時間を極力短くすることが可能になる。   For example, in FIG. 7, at first, energization of the reception point storage unit 38 is started at t2, but it is at t1 that the ultrasonic wave has actually propagated and received. In the next measurement, since the propagation time does not change significantly, the power supply means 45 in the control means 42 can wait to be energized until t2 where the received signal has not reached yet near t1. . The third time uses the second propagation time, or uses the first and second moving averages to predict the propagation time, thereby making it possible to shorten the energization time as much as possible.

このように制御手段42で受信点検知手段37の出力を記憶する受信点記憶手段38への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段45のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。   In this way, the control means 42 adjusts the timing of the power supply means 45 so that the reception point storage means 38 for storing the output of the reception point detection means 37 is energized for the second time and thereafter, based on the previous value. Thus, by preparing for storing the output of the reception wave detection means immediately before the reception wave arrives, the reception wave can be reliably captured and a power saving operation can be performed.

この説明では受信点記憶手段38の通電時間のみ調節するようになっているが、受信信号を増幅する受信手段35から下流の動作が電源投入時に不安定な状態が長く続かなければそれら一式もしくは特に電力を必要とする部位の通電を電源供給手段45で調整すればさらに省電力が可能になる。   In this description, only the energization time of the reception point storage means 38 is adjusted. However, if the operation downstream from the reception means 35 for amplifying the reception signal does not continue to be unstable for a long time when the power is turned on, a set of them or particularly If the power supply means 45 adjusts the energization of the part that requires power, further power saving can be achieved.

また図5(b)の零クロス点aからdの状態が図6のt3からt1の付近を拡大したものと同等とする。この場合、受信手段35は受信信号が到達する前から動作し、受信点判定手段37も動作しa,b,c,d毎に信号を送出している。   Further, it is assumed that the state from the zero cross point a to d in FIG. 5B is the same as that in the vicinity of t3 to t1 in FIG. In this case, the reception unit 35 operates before the reception signal arrives, and the reception point determination unit 37 also operates to send a signal for each of a, b, c, and d.

図8において、制御手段42はこの受信点判定手段37の出力信号をカウントし予め予め定めた回数例えば2回とするとb点まで受信点が到達するとトリガ手段46が電源供給手段45を介して受信点記憶手段38への通電を開始する。受信確定するtxまでの通電時間をより短くすることができる。   In FIG. 8, the control means 42 counts the output signal of the reception point determination means 37, and when the number of times reaches a predetermined number of times, for example, twice, the trigger means 46 receives via the power supply means 45 when the reception point reaches the point b. Energization of the point storage means 38 is started. The energization time until tx when reception is confirmed can be further shortened.

このように制御手段42は受信点検知手段37の出力が予め定めた回数より多くなると信号を出すトリガ手段46を有し電源供給手段45は前記トリガ手段46の出力により受信点検知手段37の出力を記憶する受信点記憶手段38への通電を開始することにより、そこからの零クロス点を複数個VHとVLの間になるまでの数もしくは予め準備している複数の受信点記憶手段38の個数だけ記憶する。   In this way, the control means 42 has the trigger means 46 that outputs a signal when the output of the reception point detection means 37 exceeds a predetermined number of times, and the power supply means 45 outputs the output of the reception point detection means 37 according to the output of the trigger means 46. By starting energization to the reception point storage means 38 for storing the number of zero cross points from there until a plurality of zero cross points are between VH and VL or a plurality of reception point storage means 38 prepared in advance. Remember only the number.

そして、その中から連続した2つの零クロス点データを用いて伝搬時間を求める。このように確実に受信波が到達したことを確認してから受信波検知手段37の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。   Then, the propagation time is obtained using two consecutive zero cross point data. Thus, by confirming that the received wave has arrived reliably, and preparing to store the output of the received wave detecting means 37, the reliability is improved and a power saving operation by a shorter time operation becomes possible.

制御手段42は受信波最大値判定手段43の出力後の受信点検知手段37の出力後予め定めた時間経過後に電源供給手段45を介して受信点記憶手段38への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動
作を実現することが可能になる。
The control means 42 stops the power supply to the reception point storage means 38 via the power supply means 45 after the elapse of a predetermined time after the output of the reception point detection means 37 after the output of the reception wave maximum value determination means 43. Thus, the operation of measuring and storing the extra zero cross point can be stopped, and the power saving operation can be realized.

また、図5(b)における零クロス点は受信波にノイズが重畳されていなければほぼ送信周波数の半分の周期で発生してきている。   Further, the zero cross point in FIG. 5B has been generated with a period of almost half of the transmission frequency if noise is not superimposed on the received wave.

しかし、実際に流路に流体が流れている場合はその流体により下流側で何かが動作している。この動作や他の外来ノイズ等により受信波にスパイク状の信号が重畳されることもある。この場合ノイズが零クロスした点を受信点とすると伝搬時間の計算が大きくずれてしまう。   However, when a fluid actually flows in the flow path, something is operating downstream by the fluid. A spike-like signal may be superimposed on the received wave due to this operation or other external noise. In this case, if the point where the noise crosses zero is taken as the reception point, the calculation of the propagation time will be greatly shifted.

これを防止するため図9に示すように、制御手段42に時間検定手段47を設ける。   In order to prevent this, as shown in FIG. 9, the control means 42 is provided with a time verification means 47.

前記時間検定手段47を用いた場合の動作を説明する。まず図5(b)と同様に零クロス点を受信し始めると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。   The operation when the time verification means 47 is used will be described. First, similarly to FIG. 5B, when reception of the zero cross point starts, the reception point detection means 37 outputs a signal, and the reception point storage means 38-1 stores the output.

記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−2が受信点データを記憶する。これを点c、dと繰返しtxの点を記憶した後、受信信号がVHとVLの間に入る。   If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated. Next, when the point b is reached, the reception point storage means 37 outputs a signal, and the reception point storage means 38-2 stores the reception point data. After storing the points c and d and the point tx, the received signal enters between VH and VL.

この時初めて受信波最大値判定手段43が信号を出力する。制御手段はこの受信波最大値判定手段43から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。   At this time, the received wave maximum value judging means 43 outputs a signal for the first time. When a signal is output from the received wave maximum value determining means 43, the control means prevents the receiving point judging means 37 from outputting a signal at the subsequent zero cross point, or writes to the receiving point storage means 38. Is prohibited.

そして、次の零クロス点taの時間を受信点記憶手段38を介さずに直接制御手段の時間検定手段47に送る。時間検定手段47は受信点記憶手段38にある受信点データの値とtaの値との差を順次求める。   Then, the time of the next zero cross point ta is sent directly to the time verification means 47 of the control means without going through the reception point storage means 38. The time verification unit 47 sequentially obtains the difference between the value of the reception point data in the reception point storage unit 38 and the value of ta.

この差が予め定めた範囲内であればa、b、c、tx点のデータはノイズによるものではないと判断し、流量演算として採用できると判定する。そしてその中の2つ以上の零クロス点を用いて流量を演算する。   If this difference is within a predetermined range, it is determined that the data at points a, b, c, and tx are not due to noise, and it is determined that the data can be adopted as a flow rate calculation. Then, the flow rate is calculated using two or more zero cross points among them.

例えば、送信周波数が100kHzとすると周期の1/2の周期は5μsとなるそこでtx−taが予め定めた5μs近傍以内であればtxは有効な受信点であると判断する。同様にa−taが5μsの整数倍の近傍以内であれば有効な受信点と判断する。以下b、c、d点についても同様に判断していく。   For example, if the transmission frequency is 100 kHz, the half of the period is 5 μs. Therefore, if tx-ta is within a predetermined vicinity of 5 μs, it is determined that tx is an effective reception point. Similarly, if a-ta is within the vicinity of an integer multiple of 5 μs, it is determined as an effective reception point. The same determination is made for points b, c, and d.

このように制御手段42は受信波最大値判定手段43の出力後の受信点検知手段37の出力と、受信点記憶手段38の値の差を演算する時間検定手段47を有し、前記時間検定手段47の値が予め定めた値以内であれば計測を有効とすることで、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。   As described above, the control means 42 has the time verification means 47 for calculating the difference between the output of the reception point detection means 37 after the output of the reception wave maximum value determination means 43 and the value of the reception point storage means 38, and the time verification. If the value of the means 47 is within a predetermined value, it is possible to prevent erroneous detection of the zero cross point due to noise or the like by enabling the measurement, and to improve reliability by selecting an accurate zero cross point. Is possible.

流路や送信方法が予めわかっていれば受信波の最大値点となる波数は予めわかっているためその直前の零クロス点は上流、下流と切換えても同じ伝搬距離を伝送してきたものとして用いることが可能である。   If the flow path and transmission method are known in advance, the wave number that becomes the maximum value point of the received wave is known in advance, so the zero crossing point immediately before that is used as having transmitted the same propagation distance even if switched upstream and downstream It is possible.

また受信信号が図3(b)の零クロス点txより先VHとVLの間に入った後は受信手段35より後段の回路は計時手段39、流量演算手段40以外を動作する必要が無い。   Further, after the received signal enters between VH and VL before the zero crossing point tx in FIG. 3B, the circuit subsequent to the receiving means 35 does not need to operate other than the time measuring means 39 and the flow rate calculating means 40.

したがって、受信波最大値判定手段43により受信波がVHとVLの間に入ったことを検知すると制御手段42は受信点記憶手段38への通電を停止して省電力動作を行うとともに、必要のない受信回路の通電動作を停止することが可能である。   Therefore, when the received wave maximum value determining means 43 detects that the received wave has entered between VH and VL, the control means 42 stops energization to the receiving point storage means 38 and performs a power saving operation. It is possible to stop the energization operation of the receiver circuit that is not present.

停止を行う時点はVHとVLの間に入った直後でも良いし、また通電停止時の信号によりノイズが発生して計時手段39などの動作に悪影響を与えてもよくないため次の零クロス点taを検知してから通電停止してもよい。   The time of stopping may be immediately after entering between VH and VL, or noise may be generated by the signal at the time of energization stop, and the operation of the timing means 39 and the like may not be adversely affected. The energization may be stopped after detecting ta.

このように、制御手段42は受信波最大値判定手段43の出力後の受信点検知手段37の出力後予め定めた時間経過後に電源供給手段45を介して受信点記憶手段38への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。   In this way, the control means 42 supplies power to the reception point storage means 38 via the power supply means 45 after the elapse of a predetermined time after the output of the reception point detection means 37 after the output of the reception wave maximum value determination means 43. By stopping, it is possible to stop the operation of measuring and storing an extra zero cross point, and to realize a power saving operation.

なお、図3(b)で受信到達点をtx,ta2点の平均値Ta’を確定できると説明したが、従来の到達点Taと異なるように見えるかもしれないので説明する。   Although it has been described in FIG. 3B that the average value Ta ′ of the tx and ta2 points can be determined as the reception arrival point, it will be described because it may seem different from the conventional arrival point Ta.

本来の受信到達点は図3(b)のa点となる。この点だけを検出することは前述したように非常に困難である。   The original reception arrival point is point a in FIG. As described above, it is very difficult to detect only this point.

そこで、taまでの時間Taを求め、予め決まった定数を差し引くことでa点までの時間を求めている。   Therefore, the time Ta to ta is obtained, and the time to point a is obtained by subtracting a predetermined constant.

したがって、txとtaを用いた場合は受信波の4分の1周期(ta−tx)/2の値だけ予め決まった定数を調整すれば受信到達点aまでの時間を演算することが可能である。TaよりTa’の方が誤差が少ないためaまでの時間が安定して求まるわけである。この説明は2点の零クロス点を用いているが偶数個の零クロス点の場合も同様に安定する。   Therefore, when tx and ta are used, the time to the reception arrival point a can be calculated by adjusting a predetermined constant by a value of a quarter period (ta-tx) / 2 of the received wave. is there. Since Ta 'has less error than Ta, the time to a can be obtained stably. This explanation uses two zero cross points, but the case of an even number of zero cross points is similarly stable.

(実施の形態2)
実施の形態1と異なるところは、振動子32,33や送信手段34、受信手段35、受信手段35の信号が最大値になると信号を出す受信波最大値判定手段43、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37、前記受信点検知手段37の出力を記憶する受信点記憶手段38、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40、送受信を切換える切換手段41、さらに受信点選択手段44との少なくとも1つを制御する制御手段42の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体48を用いていることである。
(Embodiment 2)
The difference from the first embodiment is that the signals of the received wave maximum value determining means 43 and the receiving means 35 that output signals when the signals of the vibrators 32 and 33, the transmitting means 34, the receiving means 35, and the receiving means 35 reach the maximum values are obtained. Receiving point detecting means 37 that outputs a signal when it falls within a predetermined range, receiving point storing means 38 that stores the output of the receiving point detecting means 37, and the signal transmitted from the receiving point storing means 38 that has propagated between the transducers. At least one of a time measuring means 39 for measuring the propagation time of the sound wave signal, a flow rate calculating means 40 for calculating a flow rate based on the time difference of the time measuring means 39, a switching means 41 for switching between transmission and reception, and a receiving point selecting means 44. That is, a storage medium 48 having a program for causing a computer to function to ensure the operation of the control means 42 to be controlled is used.

実施の形態1で示した制御手段42の動作を行うには、予め実験等によりtxを求めるための受信点記憶手段の動作、通電方法を求めておいたり、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求め、ソフトをプログラムとして記憶媒体48に格納しておく。   In order to perform the operation of the control means 42 shown in the first embodiment, the operation of the reception point storage means for obtaining tx and the energization method are obtained in advance by experiments or the like, the secular change, the temperature change, the stability of the system Correlation such as operation timing with respect to the degree is obtained, and software is stored in the storage medium 48 as a program.

通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。切換手段41の動作により送受信の方向が変化するため条件設定などの個数が増加してくるがこれをコンピュータによる動作で調整すると容易に実現可能である。   Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory. Since the direction of transmission / reception changes due to the operation of the switching means 41, the number of condition settings and the like increases, but this can be easily realized by adjusting this by operation by a computer.

このように、制御手段42の動作をプログラムで行うことができるようになると流量演
算の補正係数の条件設定、変更や計測間隔の調整などが容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに流速または流量計測の精度向上を行うことができる。
As described above, when the operation of the control means 42 can be performed by a program, it is possible to easily set, change and adjust the measurement interval of the correction coefficient for the flow rate calculation, and to flexibly cope with aging. Therefore, the accuracy of flow velocity or flow rate measurement can be improved more flexibly.

なお、本実施例において制御手段42以外の動作もマイコン等によりプログラムで行ってもよい。   In the present embodiment, operations other than the control means 42 may be performed by a program such as a microcomputer.

これにより、制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、測定方法の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上を行うことができる。   As a result, it has a configuration that has a program for causing the computer to function as a control means, and can easily set and change the operation of the measurement method, and can flexibly cope with aging, etc. Improvements can be made.

本発明の流速または流量計測装置は零クロス点を2つ以上、上書きして記憶し続け、受信波が確実に届いたことを示す受信波最大値判定手段に出力信号があるとその動作を停止する。   The flow velocity or flow rate measuring device of the present invention overwrites and stores two or more zero cross points, and stops the operation when there is an output signal in the received wave maximum value judging means indicating that the received wave has surely arrived. To do.

これにより、比較的受信波形の振幅の大きい部分に受信波判定手段によるトリガ−点を設定し、安定してトリガ−を動作させるとともに、その前の零クロス点のうち最適な2点以上の平均値を伝播時間計測に用いることができるので、誤差の少ない伝播時間を計測することができるとともに、計測時間を短縮化できることで省電力動作を実現することが可能になる。   As a result, the trigger point by the received wave determining means is set at a portion where the amplitude of the received waveform is relatively large, and the trigger is stably operated, and the average of two or more optimum zero cross points before that is averaged. Since the value can be used for the propagation time measurement, it is possible to measure the propagation time with few errors and to realize the power saving operation by shortening the measurement time.

31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 受信波判定手段
37 受信点検知手段
38 受信点記憶手段
39 計時手段
40 流量演算手段
42 制御手段
43 受信波最大値判定手段
44 受信点選択手段
47 時間検定手段
31 flow path 32 first vibrator 33 second vibrator 34 transmission means 35 reception means 36 reception wave determination means 37 reception point detection means 38 reception point storage means 39 timing means 40 flow rate calculation means 42 control means 43 maximum received wave Value determination means 44 Reception point selection means 47 Time verification means

Claims (7)

被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号の最大値を検出して信号を出す受信波最大値判定手段と、受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、前記受信点検知手段の出力を記憶する少なくとも2つ以上の受信点記憶手段と、前記受信点記憶手段の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波最大値判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段の少なくとも1つを制御する制御手段とを備え、前記制御手段は受信波最大値判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値を伝搬時間演算用として選択する受信点選択手段を有し、前記受信点記憶手段は前記受信波最大値判定手段の出力信号があるまで上書き更新する流体の流れ計測装置。 A pair of transducers arranged in a flow path through which the fluid to be measured flows and that transmits and receives ultrasonic waves; a transmission unit that drives one transducer; and a reception unit that converts an output signal of the other reception-side transducer into an electrical signal; Receiving wave maximum value determining means for detecting the maximum value of the signal of the receiving means and outputting the signal, receiving point detecting means for outputting the signal when the signal of the receiving means falls within a predetermined range, and output of the receiving point detecting means At least two or more reception point storage means for storing, a time measurement means for measuring the propagation time of an ultrasonic signal propagated between the transducers using a signal of the reception point storage means, and a time difference between the time measurement means Control for controlling at least one of flow rate calculation means for calculating a flow rate based on the transmission means, reception means, received wave maximum value determination means, reception point detection means, reception point storage means, timing means, and flow rate calculation means Means and The control means has a reception point selection means for selecting a value of the reception point storage means that has been reversed by a predetermined number based on the output of the reception wave maximum value determination means, for calculating the propagation time, and the reception point storage means A fluid flow measuring device for overwriting and updating until there is an output signal of the received wave maximum value judging means. 制御手段は受信点検知手段の出力を記憶する受信点記憶手段への通電を初回のみ長時間とする電源供給手段を有する請求項1記載の流体の流れ計測装置。 2. The fluid flow measuring device according to claim 1, wherein the control means has power supply means for energizing the reception point storage means for storing the output of the reception point detection means for a long time only for the first time. 制御手段は受信点検知手段の出力を記憶する受信点記憶手段への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段のタイミングを調節する請求項1記載の流体の流れ計測装置。 2. The fluid flow according to claim 1, wherein the control means adjusts the timing of the power supply means so that the reception point storage means for storing the output of the reception point detection means is energized for the second time and thereafter, based on the previous value. Measuring device. 制御手段は受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し電源供給手段は前記トリガ手段の出力により受信点検知手段の出力を記憶する受信点記憶手段への通電を開始する請求項1記載の流体の流れ計測装置。 The control means includes trigger means for outputting a signal when the output of the reception point detection means exceeds a predetermined number of times, and the power supply means supplies the reception point storage means for storing the output of the reception point detection means by the output of the trigger means. The fluid flow measuring device according to claim 1, wherein energization is started. 制御手段は受信点記憶手段は最も古いデータから順次上書きされていくよう調節する蓄積制御手段を有する請求項1記載の流体の流れ計測装置。 2. The fluid flow measuring device according to claim 1, wherein the control means has accumulation control means for adjusting the reception point storage means so that the oldest data is sequentially overwritten. 制御手段は受信波最大値判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値と受信波判定手段の出力の差を演算する時間検定手段を有し、前記時間検定手段の値が予め定めた値以内であれば計測を有効とする請求項1記載の流体の流れ計測装置。 The control means has time verification means for calculating a difference between the value of the reception point storage means and the output of the reception wave determination means which is reversed by a predetermined number based on the output of the reception wave maximum value determination means, and the time verification means The fluid flow measuring device according to claim 1, wherein the measurement is valid if the value of is within a predetermined value. 制御手段は受信波最大値判定手段の出力後の受信点検知手段の出力後予め定めた時間経過後に電源供給手段を介して受信点記憶手段への電源供給を停止する請求項1記載の流体の流れ計測装置。 The control means stops the power supply to the reception point storage means via the power supply means after the elapse of a predetermined time after the output of the reception point detection means after the output of the reception wave maximum value determination means. Flow measuring device.
JP2009213952A 2009-09-16 2009-09-16 Flow measuring device of fluid Pending JP2011064517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213952A JP2011064517A (en) 2009-09-16 2009-09-16 Flow measuring device of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213952A JP2011064517A (en) 2009-09-16 2009-09-16 Flow measuring device of fluid

Publications (1)

Publication Number Publication Date
JP2011064517A true JP2011064517A (en) 2011-03-31

Family

ID=43950936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213952A Pending JP2011064517A (en) 2009-09-16 2009-09-16 Flow measuring device of fluid

Country Status (1)

Country Link
JP (1) JP2011064517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172028A1 (en) * 2012-05-17 2013-11-21 パナソニック株式会社 Flow rate measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131105A (en) * 2000-10-26 2002-05-09 Osaka Gas Co Ltd Ultrasonic flow rate measuring method
JP2002162269A (en) * 2000-11-27 2002-06-07 Tokyo Keiso Co Ltd Ultrasonic flowmeter by propagation time difference system
JP2007322194A (en) * 2006-05-31 2007-12-13 Matsushita Electric Ind Co Ltd Fluid flow measuring instrument
JP2008185441A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2009139349A (en) * 2007-12-11 2009-06-25 Panasonic Corp Device for measuring the flow of a fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131105A (en) * 2000-10-26 2002-05-09 Osaka Gas Co Ltd Ultrasonic flow rate measuring method
JP2002162269A (en) * 2000-11-27 2002-06-07 Tokyo Keiso Co Ltd Ultrasonic flowmeter by propagation time difference system
JP2007322194A (en) * 2006-05-31 2007-12-13 Matsushita Electric Ind Co Ltd Fluid flow measuring instrument
JP2008185441A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2009139349A (en) * 2007-12-11 2009-06-25 Panasonic Corp Device for measuring the flow of a fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172028A1 (en) * 2012-05-17 2013-11-21 パナソニック株式会社 Flow rate measurement device
JP2013238562A (en) * 2012-05-17 2013-11-28 Panasonic Corp Flow rate measuring device
US10451470B2 (en) 2012-05-17 2019-10-22 Panasonic Intellectual Property Management Co., Ltd. Flow rate measurement device

Similar Documents

Publication Publication Date Title
US6796189B1 (en) Ultrasonic flowmeter having sequentially changed driving method
JP3716274B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
US8903663B2 (en) Flow measurement device
JP6111422B2 (en) Flow measuring device
JP5076524B2 (en) Flow velocity or flow rate measuring device and its program
JP2008190971A (en) System and program for measuring flow velocity or flow quantity
JP2007187506A (en) Ultrasonic flowmeter
JP4992890B2 (en) Flow velocity or flow rate measuring device
JP4760115B2 (en) Fluid flow measuring device
JP2007017157A (en) Ultrasonic flowmeter
JP5292798B2 (en) Flow measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP5228462B2 (en) Fluid flow measuring device
JP2011064517A (en) Flow measuring device of fluid
JP5556034B2 (en) Flow velocity or flow rate measuring device
JP2011064516A (en) Flow measurement device for fluid
JP5262891B2 (en) Flow velocity or flow rate measuring device
JP5292797B2 (en) Flow measuring device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP3624743B2 (en) Ultrasonic flow meter
JP7320776B2 (en) ultrasonic flow meter
JP7246021B2 (en) ultrasonic flow meter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2000329597A5 (en)
JP5990770B2 (en) Ultrasonic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513