JP5292797B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP5292797B2 JP5292797B2 JP2007326890A JP2007326890A JP5292797B2 JP 5292797 B2 JP5292797 B2 JP 5292797B2 JP 2007326890 A JP2007326890 A JP 2007326890A JP 2007326890 A JP2007326890 A JP 2007326890A JP 5292797 B2 JP5292797 B2 JP 5292797B2
- Authority
- JP
- Japan
- Prior art keywords
- reception
- time
- signal
- point
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims abstract description 43
- 238000001514 detection method Methods 0.000 claims description 32
- 230000005540 biological transmission Effects 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 15
- 230000000644 propagated Effects 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 abstract description 12
- 238000004904 shortening Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 230000001902 propagating Effects 0.000 description 4
- 230000000630 rising Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Description
本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流量計測装置に関する。 The present invention relates to a flow rate measuring apparatus that uses a vibrator or the like and measures a flow rate of a gas or a liquid using ultrasonic waves.
従来の流量計測装置を図9を参照して説明すると、流体が流れる流路101の上流側と下流側とに一対の超音波振動子102,103が配置されており、超音波が流体を斜めに横切るようにしてある。
A conventional flow rate measuring device will be described with reference to FIG. 9. A pair of
そして、前記一対の超音波振動子102,103間を伝搬する超音波の伝搬時間から流体の流速を計測し、これにもとづき流量を演算していた。例えば、時間差から流速を求め、管路の大きさや流れの状態を考慮して流量値を計算できる。
Then, the flow velocity of the fluid is measured from the propagation time of the ultrasonic wave propagating between the pair of
なお、図中の実線矢印104は流体の流れる方向を示し、破線矢印105は超音波の伝搬する方向を示している。流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している(例えば、特許文献1参照)。
しかしながら、前記従来の計測装置では、上流側の超音波振動子102から下流側の超音波振動子103へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波振動子103から上流側の超音波振動子102へ超音波を伝播させ、超音波の伝搬時間Tduを交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて時間差を求め流量を演算していた。
However, in the conventional measuring apparatus, an ultrasonic wave is propagated from the upstream
この際、所定の振幅が得られる受信波形の部分に参照レベルを設定してトリガーレベルとし、伝播時間を計測していた。したがって、トリガ−レベルよりも前の零クロス点を用いて超音波の伝搬時間を計測することができなかった。 At this time, a reference level is set to a received waveform portion where a predetermined amplitude can be obtained as a trigger level, and a propagation time is measured. Therefore, the propagation time of the ultrasonic wave cannot be measured using the zero cross point before the trigger level.
このため、超音波の到達時間に不確かな時間が含まれることになり、誤差となる場合があり、高精度な流れ計測を実現することができないという課題を有していた。 For this reason, an uncertain time is included in the arrival time of the ultrasonic wave, which may cause an error, and there is a problem that high-precision flow measurement cannot be realized.
即ち、超音波の受信波形は、一般に駆動回路で駆動される周波数で立上がり、順次、超音波変換器固有の振動周波数に変化する。 That is, the ultrasonic reception waveform generally rises at a frequency driven by a drive circuit, and sequentially changes to a vibration frequency unique to the ultrasonic transducer.
あるいは、流路の側壁などからの反射波の影響を受けるなどするため、超音波の受信波形は受信点に近い立上がり部分は周波数が安定しているが、トリガ−レベルを設定するような比較的受信振幅の大きい部分では、上流側と下流側とで受信する波形に差が発生し、伝播時間の誤差として検知されることになる。 Alternatively, since the reception waveform of the ultrasonic wave is affected by the reflected wave from the side wall of the flow path or the like, the frequency at the rising portion near the reception point is stable, but the trigger level is relatively high. In the portion where the reception amplitude is large, a difference occurs in the waveform received between the upstream side and the downstream side, which is detected as an error in propagation time.
また、流路101の側壁などで反射した超音波が受信波に若干遅れて到達し、受信波として受信されるので、受信波形がオフセット分を差し引いた場合にゼロ点を通過する零クロス点が不確かになることもあった。
In addition, since the ultrasonic wave reflected by the side wall of the
さらに本来到達時間より長時間計測することは計測装置をそれだけの間余分に動作することになるため消費電流の増大という課題も有していた。 Furthermore, the measurement for a longer time than the arrival time originally has the problem of increasing the current consumption because the measurement device is operated extra for that time.
本発明は、前記従来の課題を解決するもので、受信した超音波の零クロス点の到達時間を少なくとも連続して2つ計測し、その平均値を用いて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現することを目的としている。 The present invention solves the above-described conventional problems, and measures at least two arrival times of the zero cross point of the received ultrasonic wave continuously, and measures the ultrasonic wave arrival time using the average value. The purpose of this is to reduce the error included in the propagation time of the ultrasonic wave so as to realize high-accuracy measurement and to realize the power saving operation.
前記従来の課題を解決するために、本発明の流量計測装置は、被測定流体の流れる流路に配置され、超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、前記受信波判定手段の信号出力後最初のゼロクロス点及びその1つ前のゼロクロス点の前記受信点検知手段の出力信号を記憶する受信点記憶手段と、前記受信点記憶手段に記憶した2つの信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備え、前記2つの受信点記憶手段に受信した超音波の零クロス点の到達時間を順次記憶していくようにしたものである。
In order to solve the above-described conventional problems, a flow rate measuring device according to the present invention includes a pair of transducers arranged in a flow path through which a fluid to be measured flows and that transmits and receives ultrasonic waves, and a transmission unit that drives one transducer. A receiving means for converting the output signal of the other receiving-side vibrator into an electrical signal, a received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value, and a zero-cross point at which the signal of the receiving means is determined in advance Receiving point detecting means for outputting a signal every time the range is determined, and the first zero cross point after the signal output of the received wave determining means and the output signal of the receiving point detecting means at the previous zero cross point are stored . Based on the time difference between the reception point storage means, the time measurement means for averaging the two signals stored in the reception point storage means and measuring the propagation time of the ultrasonic signal propagated between the transducers, and the time difference between the time measurement means Flow rate calculation to calculate flow rate Control means for controlling at least one of transmission means, reception means, reception wave determination means, reception point detection means, reception point storage means, timing means, and flow rate calculation means, and the two receptions The arrival time at the zero cross point of the received ultrasonic waves is sequentially stored in the point storage means.
この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベル前後の2つの零クロス点から平均して計測することができる。このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is averaged from the two zero cross points before and after the trigger level. Can be measured. For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
本発明の、流速または流量計測装置は、トリガ−レベル前後の零クロス点の平均値を用いて計測することができる。このため、オフセットなどが重畳していても立ち上がりのゼロ点と立下りのゼロ点で相殺することができる。また2点の平均値を用いることにより計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 The flow velocity or flow rate measuring device of the present invention can measure using the average value of the zero cross points before and after the trigger level. For this reason, even if an offset or the like is superimposed, it is possible to cancel the rising zero point and the falling zero point. Further, by using the average value of the two points, an error included in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and a power saving operation can be realized while realizing a highly accurate flow measurement.
第1の発明は、被測定流体の流れる流路に配置され、被測定流体の流れる流路に配置され、超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、前記受信波判定手段の信号出力後最初のゼロクロス点及びその1つ前のゼロクロス点の前記受信点検知手段の出力信号を記憶する受信点記憶手段と、前記受信点記憶手段に記憶した2つの信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備え、2つの受信点記憶手段に受信した超音波の零クロス点の到達時間を順次記憶していくようにしたものである。
1st invention is arrange | positioned at the flow path through which a to-be-measured fluid flows, is arrange | positioned at the flow path through which to-be-measured fluid flows, a pair of vibrator | oscillator which transmits / receives an ultrasonic wave, The transmission means which drives one vibrator, A receiving means for converting the output signal of the other receiving-side transducer into an electrical signal; a received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value; and a zero-cross point at which the signal of the receiving means is predetermined. a reception point detection unit for outputting a signal each time it is a range determined, the reception for storing an output signal of the reception point detection unit of the signal output after the first zero-crossing point and its preceding zero-crossing point of the reception wave determination unit A point storage means, a timing means for averaging the two signals stored in the reception point storage means and measuring the propagation time of the ultrasonic signal propagated between the transducers, and a flow rate based on the time difference between the timing means Flow rate calculating means for calculating A control means for controlling at least one of the transmission means, reception means, reception wave determination means, reception point detection means, reception point storage means, timing means, and flow rate calculation means, and two reception point storage means The arrival time of the received ultrasonic zero-cross point is sequentially stored.
この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベル前後の2つの零クロス点から平均して計測することができる。このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is averaged from the two zero cross points before and after the trigger level. Can be measured. For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
第2の発明は、特に第1の発明で、制御手段は受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し電源供給手段は前記トリガ手段の出力により受信点検知手段の出力を記憶する受信点記憶手段への通電を開始することにより、確実に受信波が到達したことを確認してから受信波検知手段の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。
A second invention is, in particular, in the first inventions, the control means receiving the power supply means includes a trigger means for issuing a number becomes the signal from the number of times the output is predetermined reception point detection unit by the output of said trigger means By starting energization to the reception point storage means for storing the output of the point detection means, it is possible to reliably confirm that the reception wave has arrived and to prepare for storing the output of the reception wave detection means. As a result, the power saving operation by the short time operation becomes possible.
第3の発明は、特に第1の発明で、制御手段は受信点記憶手段は最も古いデータから順次上書きされていくよう調節する蓄積制御手段を有することにより、零クロス点が多くなるような状態でも受信波判定手段の近傍における複数の零クロス点を確実にとらえることができるとともに受信点記憶手段の数を少なくして順次上書きすることで省電力動作が可能になる。
A third invention is, in particular, in the first inventions, the reception point storage means control means by having a storage control unit for adjusting so that is sequentially overwritten from the oldest data, such as zero crossing point is increased Even in the state, a plurality of zero cross points in the vicinity of the received wave determining means can be reliably captured, and a power saving operation can be performed by sequentially overwriting with a reduced number of received point storage means.
第4の発明は、特に第1の発明で制御手段は受信波判定手段の出力後の受信点検知手段の出力後予め定めた時間経過後に電源供給手段を介して受信点記憶手段への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。
A fourth invention is, in particular, power to the first inventions with control means receiving path determination unit reception point storage means via the power supply means in a predetermined time after the inhibitor output of the reception point detection unit after output of By stopping the supply, it is possible to stop the operation of measuring and storing an extra zero cross point, and to realize a power saving operation.
以下本発明の実施の形態を添付図面を参照して説明する。なお、実施の形態によって本発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1おいて、本実施の形態の超音波流量計は、被測定流体の流れる流路31と、前記流路31に配置され、超音波を送受信する第1の振動子32、第2の振動子33と、前記第1の振動子32と前記第2の振動子33を駆動する送信手段34と、前記第1の振動子32と前記第2の振動子33の受信信号を受け信号を増幅する受信手段35と、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36と、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37と、前記受信点検知手段37の出力を記憶する2つの受信点記憶手段38と、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39と、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40とを有するものである。さらに、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段41を設け、第1の振動子32と第2の振動子33が超音波の送受信を切換えて動作するようにしている。
(Embodiment 1)
In FIG. 1, the ultrasonic flowmeter of the present embodiment includes a
制御手段42は、前記送信手段34と前記受信手段35と前記受信波判定手段36と、受信点検知手段37と、受信点記憶手段38と、前記計時手段39と前記流量演算手段40と前記切換手段41との少なくとも1つを制御する。 The control means 42 includes the transmission means 34, the reception means 35, the reception wave determination means 36, the reception point detection means 37, the reception point storage means 38, the timing means 39, the flow rate calculation means 40, and the switching. Control at least one of the means 41.
通常の流速または流量計測の動作を説明する。制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は時間計測始める。
A normal flow rate or flow rate measurement operation will be described. Upon receipt of the start signal from the control means 42, the transmission means 34 pulse-drives the
パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。
An ultrasonic wave is transmitted from the pulse-driven
第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。この超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。
The reception output of the
(計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、確度をφ、音速をc、被測定流体の流速をvとする)
v=(1/cosφ)*(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになって
いることが多い。
(The measurement time obtained from the time measuring
v = (1 / cosφ) * (L / t) −c (Expression 1)
The receiving
また、第1の超音波振動子32と第2の超音波振動子33との送信、受信方向を切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式2、3,4)より速度vを求めることができる。
(上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする)
t1=L/(c+v*cosφ)・・・・・・・・(式2)
t2=L/(c−v*cosφ)・・・・・・・・(式3)
v=(L/2*cosφ)*((1/t1)−(1/t2))・・・(式4)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
Further, the transmission and reception directions of the first
(Measurement time from upstream to downstream is t1, and measurement time from downstream to upstream is t2.)
t1 = L / (c + v * cosφ) (Equation 2)
t2 = L / (c−v * cos φ) (Equation 3)
v = (L / 2 * cosφ) * ((1 / t1) − (1 / t2)) (Expression 4)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, flow rate, distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the
動作を図2のタイミング図と図3の受信波形で説明する。制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。
The operation will be described with reference to the timing chart of FIG. 2 and the received waveform of FIG. Measurement is started from the start signal at time t 0 by the control means 42 and the first
そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると受信波判定手段36が受信波が到達したことを判定して信号を出す。
The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first
この信号を基に受信点検知手段37が動作を開始し、Vref後の最初の零クロス点を受信点として信号を出し、この点までの時間を計時手段39で求める。切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。 Based on this signal, the reception point detection means 37 starts to operate, outputs a signal with the first zero cross point after Vref as the reception point, and the time until this point is obtained by the time measurement means 39. The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained.
ここで図3のta点はVrefより後になっている。これは受信波判定としてVrefの値を用い、その後の零クロス点taを受信点としているためである。零クロス点の基準となる零基準をpとする。 Here, the point ta in FIG. 3 is after Vref. This is because the value of Vref is used for reception wave determination, and the subsequent zero cross point ta is used as the reception point. Let p be the zero reference that is the reference for the zero crossing point.
もしオフセットがプラス側に発生すると零基準はqのようになり零クロス点は本来より早く到達してしまう。反対にオフセットがマイナス側に発生すると零基準はrのようになり零クロス点は本来より遅く発生してしまう。 If the offset occurs on the plus side, the zero reference becomes q and the zero crossing point arrives earlier than originally intended. On the contrary, when the offset occurs on the minus side, the zero reference becomes r and the zero cross point occurs later than originally intended.
同様にノイズが発生して受信波形がプラス側にずれると零クロス点は本来のta点より遅く到達し、反対にノイズ等により受信波形がマイナス側にずれると零クロス点は本来のta点より早く到達してしまう。 Similarly, when noise occurs and the received waveform shifts to the plus side, the zero cross point arrives later than the original ta point, and conversely, if the received waveform shifts to the minus side due to noise or the like, the zero cross point becomes less than the original ta point. It will arrive early.
このように1点だけの受信点判定ではオフセットやノイズ等の外乱で受信時間の精度が悪くなることが考えられる。 In this way, it is conceivable that the reception time accuracy deteriorates due to disturbances such as offset and noise in the reception point determination of only one point.
そこで、このような外乱があっても精度良く零クロス点を検出し受信点を求める方法を説明する。 Therefore, a method for detecting the zero cross point with high accuracy and obtaining the reception point even when there is such a disturbance will be described.
単純に零クロス点を受信波の到達した点、例えば図3のa点を求めることが出来ればよいが、その場合はVrefを設定できない。それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。 It suffices to simply obtain the point where the received wave arrives at the zero cross point, for example, the point a in FIG. 3, but in that case, Vref cannot be set. If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub.
この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応し
て誤検知する可能性がある。
In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows.
このような現象を回避して通常のtaより精度良く受信波の到達点を判定するには零クロス点を連続して2つ求め、その平均値を用いればオフセットのズレを相殺することができる。 In order to avoid such a phenomenon and determine the arrival point of the received wave with higher accuracy than normal ta, two zero cross points can be obtained continuously and the average value can be used to cancel the offset deviation. .
例えば、図3(b)に示すようにオフセットが発生することにより従来の零クロス点はta点からtb、tc点にずれることがある。その場合受信波到達点としてTa時間は非常に不安定となる。 For example, as shown in FIG. 3B, the occurrence of an offset may cause the conventional zero cross point to shift from the ta point to the tb and tc points. In that case, the Ta time as a reception wave arrival point becomes very unstable.
零クロス点を2つ用いて平均をとるとtaに対してtx、tbに対してty、tcに対してtzとなりその平均Ta’は一定値となり安定する。 When the average is obtained using two zero cross points, tx is obtained with respect to ta, ty with respect to tb, and tz with respect to tc.
そこで、Vrefより前の零クロス点を検出し始める方法を説明する。単純に零クロス点を受信波の到達した点、例えば図3のa点から求めることが出来ればよいが、その場合はVrefを設定できない。 Therefore, a method of starting to detect the zero cross point before Vref will be described. It suffices to simply obtain the zero cross point from the point where the received wave arrives, for example, point a in FIG. 3, but in that case, Vref cannot be set.
それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。 If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub.
この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して誤検知する可能性がある。 In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows.
このような現象を回避して通常のtaより短時間で受信波の到達点を判定するにはVrefより前の零クロス点を少なくとも1つ検知し、Vrefの到達点の後の零クロス点と対で平均値をとればよい。 In order to avoid this phenomenon and determine the arrival point of the received wave in a shorter time than the normal ta, at least one zero cross point before Vref is detected, and the zero cross point after the Vref arrival point is detected. What is necessary is just to take an average value in pairs.
この動作を実現するには制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。
In order to realize this operation, measurement is started from the start signal at time t0 by the control means 42 and the first
そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。
The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first
その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると受信波判定手段36が受信波が到達したことを判定して信号を出す。 The received signal is amplified by the receiving means 35, and when the signal level reaches a predetermined value (Vref), the received wave determining means 36 determines that the received wave has arrived and outputs a signal.
そのために零クロス点として予め定めた範囲、例えばプラス1mV、マイナス1mV以内に入ると信号を出す受信点検知手段37が動作を開始している。 For this reason, the reception point detection means 37 that outputs a signal when it falls within a predetermined range as a zero cross point, for example, within plus 1 mV or minus 1 mV, starts operation.
そうすると図4の点aになると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。
Then, when the point a in FIG. 4 is reached, the reception
記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。 If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated.
次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−1に上書きしていく。
Next, when the point b is reached, the reception
この場合、受信点データが記憶手段38の個数より多い場合は最も古い受信点から順次上書きするように制御手段46が書き込む順番を制御するようにしてもよい。 In this case, when the reception point data is larger than the number of storage means 38, the order of writing by the control means 46 may be controlled so that the oldest reception points are overwritten sequentially.
そして受信信号がVrefを越えると初めて受信波判定手段36が信号を出力する。制御手段46はこの受信波判定手段36から信号が出力されると、次の零クロス点を記憶手段28−2に記憶した後これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。 The received wave determination means 36 outputs a signal for the first time when the received signal exceeds Vref. When the signal is output from the reception wave determination means 36, the control means 46 stores the next zero cross point in the storage means 28-2 and then the reception point judging means 37 does not output a signal at the subsequent zero cross point. Or writing to the reception point storage means 38 is prohibited.
この動作を行うことによりtxとtaの零クロス点を記憶しているため、2つの平均を用いて計時手段39で伝搬時間を求める。 Since the zero cross point of tx and ta is stored by performing this operation, the propagation time is obtained by the time measuring means 39 using two averages.
切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。 The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained.
その結果、tx,taの2点で受信到達点を確定できる。今までは図4のtaで伝搬時間を確定していたが、オフセットなどの影響が避けられなかった。 As a result, the reception arrival point can be determined at two points tx and ta. Until now, the propagation time was determined at ta in FIG. 4, but the influence of offset or the like was inevitable.
この方法では計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現できる。 In this method, the error included in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and highly accurate flow measurement can be realized.
また、図4a点より零クロス点が到達するたびに受信点記憶手段38−1と38−2で交互に受信点データを書き込み、受信信号がVrefを越えるとその動作を停止するような構成にするとdとtxを用いて平均処理を行い受信到達点を確定できる。 Further, every time the zero cross point arrives from the point of FIG. 4a, the reception point storage means 38-1 and 38-2 write the reception point data alternately, and the operation is stopped when the reception signal exceeds Vref. Then, an average process is performed using d and tx, and the reception arrival point can be determined.
このような処理により今までは図4のtaまでかかっていた伝搬時間をそれ以前の点で確定することができるため、伝搬時間の計測動作時間を短くすることができることになり、省電力動作を実現できる。具体的には図4におけるTf分は計測時間を短くできる。 By such processing, the propagation time that has been taken up to ta in FIG. 4 can be determined at an earlier point, so that the measurement operation time of the propagation time can be shortened, and the power saving operation can be performed. realizable. Specifically, the measurement time can be shortened for Tf in FIG.
上記説明では受信点記憶手段38を2つ用いた構成で説明したが、これを2つ以上にして順次記憶するような構成とし、その中から連続した2つの零クロス点を用いて伝搬時間を確定してもよい。 In the above description, the configuration using two reception point storage means 38 has been described. However, the configuration is such that two or more reception point storage means 38 are sequentially stored, and the propagation time is determined using two consecutive zero cross points. It may be confirmed.
この場合はノイズなどにより1つの零クロス点のデータが不良となっていても残りの受信データより連続した一対の零クロス点を用いることで計測を継続できる。 In this case, even if data at one zero cross point is defective due to noise or the like, measurement can be continued by using a pair of zero cross points that are continuous from the remaining received data.
そして、超音波の到達時間を任意の連続した2つの零クロス点から平均して計測することができる。 The arrival time of the ultrasonic waves can be measured by averaging from any two continuous zero cross points.
このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
受信点として選択する零クロス点は例えばa点とb点の一対のようにVrefから遠ざかりより到達点として正しい値を選択すると波形の歪みが小さく超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 The zero cross point selected as the receiving point is, for example, a distance from Vref, such as a pair of point a and point b, and selecting a correct value as the arrival point results in small waveform distortion and an error included in the propagation time or arrival time of the ultrasonic wave. The power saving operation can be realized while realizing a highly accurate flow measurement.
しかし、この場合は伝搬時間の誤差をより小さくすることができる反面、ノイズの影響を受けやすい。 However, in this case, the error in the propagation time can be further reduced, but it is easily affected by noise.
また、Vrefに近いtxを選択すると受信波形に歪みが発生している可能性があるがノイズ等の影響を受けずより再現性の高い値が得られる。 If tx close to Vref is selected, there is a possibility that the received waveform is distorted, but a value with higher reproducibility can be obtained without being affected by noise or the like.
高精度と高再現性を考え計測の目的やノイズ状態などの信号状態の場合分けの状態に応じて受信点を変えていくことがより使い勝手のよいシステムとなる。 Considering high accuracy and high reproducibility, changing the reception point according to the state of measurement and the signal classification such as noise state becomes a more convenient system.
このように複数の零クロス点を記憶することによりVrefより予め定めた数だけ逆のぼった受信点を用いて伝搬時間を求め流れ計測を実現できる。 By storing a plurality of zero cross points in this way, it is possible to obtain a flow measurement by obtaining a propagation time using a reception point that is reverse by a predetermined number from Vref.
すなわち、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルであるVrefよりも前ので計測することができる。 That is, the propagation time of the ultrasonic wave propagating between the upstream ultrasonic transducer and the downstream ultrasonic transducer, that is, the arrival time of the ultrasonic wave can be measured before Vref which is the trigger level. .
このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
また、零クロス点が多くなるような状態でも受信波判定手段の近傍における複数の零クロス点を確実にとらえることができるとともに受信点記憶手段の数を適度に少なくして順次上書きすることで省電力動作が可能になる。 In addition, even in a state where the number of zero cross points increases, a plurality of zero cross points in the vicinity of the reception wave determination means can be surely captured, and the number of reception point storage means can be appropriately reduced and overwritten sequentially. Power operation becomes possible.
また、受信点記憶手段37の出力を記憶する受信点記憶手段38は記憶動作を行うのに電力を消費するがどの時点から通電して良いかは前もってわかっていない場合が多い。
In addition, the reception
あまり早く投入すると電力が無駄になるし、受信点を通過してから通電しても意味は無い。 If it is turned on too early, power is wasted, and there is no point in energizing after passing the reception point.
そこで、図5に示すように制御手段42内に電源供給手段43を設けて電力制御を行う。タイミングは図6で説明する。一番初めに計測を開始する場合はTaが不明である。 Therefore, as shown in FIG. 5, a power supply means 43 is provided in the control means 42 to perform power control. The timing will be described with reference to FIG. When measurement is started first, Ta is unknown.
超音波振動子32,33の物理的距離からおおよその時間は推定できるが確かでは無い。そこで制御手段42は電源供給手段43を用いて受信点記憶手段38への通電タイミングを調節する。
Although the approximate time can be estimated from the physical distance between the
まず、時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。
First, measurement is started from a start signal at time t 0 and the first
その前時刻t2に電源供給手段43を用いて受信点記憶手段38への通電を開始する。t2はt1より十分短い時間とする。 At the previous time t2, energization to the reception point storage means 38 is started using the power supply means 43. t2 is a time sufficiently shorter than t1.
このように、制御手段42は受信点検知手段37の出力を記憶する受信点記憶手段38への通電を初回のみ長時間とする電源供給手段43を有することにより、最初の計測時は本来受信波が到達するよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。 As described above, the control means 42 has the power supply means 43 for energizing the reception point storage means 38 for storing the output of the reception point detection means 37 for a long time only for the first time. By preparing to store the output of the received wave detection means before the wave arrives, it is possible to reliably receive the received wave.
また初回により受信点が確定し伝搬時間が求まる。その場合は2回目以降の通電時間を調整することが容易になる。例えば図6で最初はt2において受信点記憶手段38への通電を開始したが、実際に超音波が伝搬して受信したのはt1である。 In addition, the reception point is determined by the first time and the propagation time is obtained. In that case, it becomes easy to adjust the energization time after the second time. For example, in FIG. 6, at first, energization of the reception point storage means 38 is started at t2, but it is at t1 that the ultrasonic wave has actually propagated and received.
次の計測においては伝搬時間が大幅に変化することが無いため制御手段42にある電源供給手段43はt1に近くてまだ受信信号が到達していないt3まで通電するのを待つことが可能になる。
Next the control unit 42 since it is not the propagation time varies considerably in measuring the power supply means 43 to be capable of waiting for energizing until
3回目は2回目の伝搬時間を用いたり、または1回目と2回目の移動平均を用いたりして伝播時間を予想し、通電時間を極力短くすることが可能になる。 The third time uses the second propagation time, or uses the first and second moving averages to predict the propagation time, thereby making it possible to shorten the energization time as much as possible.
このように制御手段42で受信点検知手段37の出力を記憶する受信点記憶手段38への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段43のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。 In this way, the control means 42 adjusts the timing of the power supply means 43 so that the reception point storage means 38 for storing the output of the reception point detection means 37 is energized for the second time and thereafter, based on the previous value. Thus, by preparing for storing the output of the reception wave detection means immediately before the reception wave arrives, the reception wave can be reliably captured and a power saving operation can be performed.
この説明では受信点記憶手段38の通電時間のみ調節するようになっているが、受信信号を増幅する受信手段35から下流の動作が電源投入時に不安定な状態が長く続かなければそれら一式もしくは特に電力を必要とする部位の通電を電源供給手段43で調整すればさらに省電力が可能になる。 In this description, only the energization time of the reception point storage means 38 is adjusted. However, if the operation downstream from the reception means 35 for amplifying the reception signal does not continue to be unstable for a long time when the power is turned on, a set of them or particularly If the power supply means 43 adjusts the energization of the part that requires power, further power saving can be achieved.
また図4の零クロス点aからdの状態が図6のt3からt1の付近を拡大したものと同等とする。 Further, it is assumed that the state of the zero cross points a to d in FIG. 4 is equivalent to the enlarged state in the vicinity of t3 to t1 in FIG.
この場合、受信手段35は受信信号が到達する前から動作し、受信点判定手段37も動作しa,b,c,d毎に信号を送出している。
In this case, the
図7において制御手段42はこの受信点判定手段37の出力信号をカウントし予め予め定めた回数例えば2回とするとb点まで受信点が到達するとトリガ手段44が電源供給手段43を介して受信点記憶手段38への通電を開始する。受信確定するtxまでの通電時間をより短くすることができる。 In FIG. 7, the control means 42 counts the output signal of the reception point determination means 37, and when the number of times reaches a predetermined point, for example, twice, the trigger means 44 passes the power supply means 43 through the power supply means 43 when the reception point reaches the point b. Energization of the storage means 38 is started. The energization time until tx when reception is confirmed can be further shortened.
このように制御手段42は受信点検知手段37の出力が予め定めた回数より多くなると信号を出すトリガ手段44を有し電源供給手段43は前記トリガ手段の出力により受信点検知手段37の出力を記憶する受信点記憶手段38への通電を開始することにより、そこからの零クロス点を複数個Vrefまでの数もしくは予め準備している複数の受信点記憶手段38の個数だけ記憶する。 As described above, the control means 42 has the trigger means 44 for outputting a signal when the output of the reception point detection means 37 exceeds the predetermined number of times, and the power supply means 43 outputs the output of the reception point detection means 37 by the output of the trigger means. By starting energization to the reception point storage means 38 to be stored, the zero cross points from the reception point storage means 38 are stored up to the number of Vrefs or the number of reception point storage means 38 prepared in advance.
そして、その中から連続した2つの零クロス点データを用いて伝搬時間を求める。このように確実に受信波が到達したことを確認してから受信波検知手段37の出力を記憶する準備をすることで信頼性が向上するとともに、さらに短時間動作による省電力動作が可能になる。
Then, the propagation time is obtained using two consecutive zero cross point data. Thus, after confirming that the received wave has arrived reliably, and preparing to store the output of the received
また、図4における零クロス点は受信波にノイズが重畳されていなければほぼ送信周波数の半分の周期で発生してきている。 In addition, the zero cross point in FIG. 4 is generated at a period substantially half the transmission frequency if noise is not superimposed on the received wave.
しかし実際に流路に流体が流れている場合はその流体により下流側で何かが動作している。この動作や他の外来ノイズ等により受信波にスパイク状の信号が重畳されることもある。 However, when a fluid actually flows in the flow path, something is operating downstream by the fluid. A spike-like signal may be superimposed on the received wave due to this operation or other external noise.
この場合ノイズが零クロスした点を受信点とすると伝搬時間の計算が大きくずれてしまう。 In this case, if the point where the noise crosses zero is taken as the reception point, the calculation of the propagation time will be greatly shifted.
これを防止するため図8に示すように制御手段42に時間検定手段45を設ける。動作を説明する。 In order to prevent this, the time verification means 45 is provided in the control means 42 as shown in FIG. The operation will be described.
まず図4と同様に零クロス点を受信し始めると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。記憶する値は送信時点からの経過時間、も
しくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。
First, similarly to FIG. 4, when the reception of the zero cross point starts, the reception point detection means 37 outputs a signal, and the output is stored in the reception point storage means 38-1. If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated.
次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−2が受信点データを記憶する。これを点c、dと繰返しtxの点を記憶した後、受信信号がVrefを越える。 Next, when the point b is reached, the reception point storage means 37 outputs a signal, and the reception point storage means 38-2 stores the reception point data. After storing the points c and d and the point tx, the received signal exceeds Vref.
この時初めて受信波判定手段36が信号を出力する。制御手段はこの受信波判定手段36から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。
At this time, the reception wave determination means 36 outputs a signal for the first time. When the signal is output from the reception wave determination unit 36, the control unit prevents the reception
そして、次の零クロス点taの時間を受信点記憶手段38を介さずに直接制御手段の時間検定手段45に送る。 Then, the time of the next zero cross point ta is sent directly to the time verification means 45 of the control means without going through the reception point storage means 38.
時間検定手段45は受信点記憶手段38にある受信点データの値とtaの値との差を順次求める。 The time verification means 45 sequentially obtains the difference between the value of the reception point data in the reception point storage means 38 and the value of ta.
この差が予め定めた範囲内であればa、b、c、tx点のデータはノイズによるものではないと判断し、流量演算として採用できると判定する。そして、その中の連続して2つの零クロス点を用いて流量を演算する。 If this difference is within a predetermined range, it is determined that the data at points a, b, c, and tx are not due to noise, and it is determined that the data can be adopted as a flow rate calculation. Then, the flow rate is calculated using two zero cross points in succession.
例えば、送信周波数が100kHzとすると周期の1/2の周期は5μsとなるそこでtx−taが予め定めた5μs近傍以内であればtxは有効な受信点であると判断する。 For example, if the transmission frequency is 100 kHz, the half of the cycle is 5 μs. Therefore, if tx-ta is within a predetermined vicinity of 5 μs, it is determined that tx is an effective reception point.
同様にa−taが5μsの整数倍の近傍以内であれば有効な受信点と判断する。以下b、c、d点についても同様に判断していく。 Similarly, if a-ta is within the vicinity of an integer multiple of 5 μs, it is determined as an effective reception point. The same determination is made for points b, c, and d.
このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力と、受信点記憶手段38の値の差を演算する時間検定手段45を有し、前記時間検定手段45の値が予め定めた値以内であれば計測を有効とすることで、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。 As described above, the control means 42 has the time verification means 45 for calculating the difference between the output of the reception point detection means 37 after the output of the reception wave determination means 36 and the value of the reception point storage means 38, and the time verification means 45. If the value is within a predetermined value, measurement can be enabled to prevent false detection of the zero cross point due to noise, etc., and reliability can be improved by selecting an accurate zero cross point. become.
また、受信信号が図4の零クロス点txより先Vrefを越えた後は受信手段35より後段の回路は計時手段39、流量演算手段40以外を動作する必要が無い。 Further, after the received signal exceeds Vref before the zero cross point tx in FIG. 4, the circuit subsequent to the receiving means 35 does not need to operate other than the time measuring means 39 and the flow rate calculating means 40.
したがって、受信波判定手段36により受信波がVrefを越えたことを検知すると制御手段42は受信点記憶手段38への通電を停止して省電力動作を行うとともに必要のない受信回路の通電動作を停止することが可能である。 Therefore, when the received wave determination means 36 detects that the received wave exceeds Vref, the control means 42 stops the energization to the reception point storage means 38 to perform the power saving operation and perform the unnecessary energization operation of the receiving circuit. It is possible to stop.
停止を行う時点はVrefを越えた直後でも良いし、また通電停止時の信号によりノイズが発生して計時手段39などの動作に悪影響を与えてもよくないため次の零クロス点taを検知してから通電停止してもよい。 The time of stopping may be immediately after exceeding Vref, or noise may be generated by a signal at the time of stopping energization and the operation of the timing means 39 etc. may not be adversely affected, so that the next zero cross point ta is detected. The power supply may be stopped after that.
このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力後予め定めた時間経過後に電源供給手段43を介して受信点記憶手段38への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。 In this way, the control means 42 stops the power supply to the reception point storage means 38 via the power supply means 43 after the elapse of a predetermined time after the output of the reception point detection means 37 after the output of the reception wave determination means 36. As a result, the operation of measuring and storing the extra zero cross point can be stopped, and the power saving operation can be realized.
なお、図3(b)で受信到達点をtx,ta2点の平均値Ta’を確定できると説明し
たが、従来の到達点Taと異なるように見えるかもしれないので説明する。
In FIG. 3B, the reception arrival point has been described as being able to determine the average value Ta ′ of the tx and ta2 points, but it will be described because it may seem different from the conventional arrival point Ta.
本来の受信到達点は図3のa点となる。この点だけを検出することは前述したように非常に困難である。 The original reception arrival point is point a in FIG. As described above, it is very difficult to detect only this point.
そこでtaまでの時間Taを求め、予め決まった定数を差し引くことでa点までの時間を求めている。 Therefore, a time Ta to ta is obtained, and a time to point a is obtained by subtracting a predetermined constant.
したがって、txとtaを用いた場合は受信波の4分の1周期(ta−tx)/2の値だけ予め決まった定数を調整すれば受信到達点aまでの時間を演算することが可能である。TaよりTa’の方が誤差が少ないためaまでの時間が安定して求まるわけである。 Therefore, when tx and ta are used, the time to the reception arrival point a can be calculated by adjusting a predetermined constant by a value of a quarter period (ta-tx) / 2 of the received wave. is there. Since Ta 'has less error than Ta, the time to a can be obtained stably.
(実施の形態2)
実施の形態2の流量計測装置について説明する。実施の形態1と異なるところは、振動子32,33や送信手段34、受信手段35、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37、前記受信点検知手段37の出力を記憶する受信点記憶手段38、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40、送受信を切換える切換手段41との少なくとも1つを制御する制御手段42の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体46を用いていることである。
(Embodiment 2)
A flow rate measuring apparatus according to
図1において、実施の形態1で示した制御手段42の動作を行うには、予め実験等によりtxを求めるための受信点記憶手段の動作、通電方法を求めておいたり、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求め、ソフトをプログラムとして記憶媒体46に格納しておく。 In FIG. 1, in order to perform the operation of the control unit 42 shown in the first embodiment, the operation of the reception point storage unit for obtaining tx and the energization method are obtained in advance by experiments or the like, the secular change, the temperature change. Correlation such as operation timing is obtained with respect to the stability of the system, and the software is stored in the storage medium 46 as a program.
通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。 Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.
切換手段41の動作により送受信の方向が変化するため条件設定などの個数が増加してくるがこれをコンピュータによる動作で調整すると容易に実現可能である。 Since the direction of transmission / reception changes due to the operation of the switching means 41, the number of condition settings and the like increases.
このように、制御手段42の動作をプログラムで行うことができるようになると流量演算の補正係数の条件設定、変更や計測間隔の調整などが容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに流速または流量計測の精度向上を行うことができる。 As described above, when the operation of the control means 42 can be performed by a program, it is possible to easily set, change and adjust the measurement interval of the correction coefficient for the flow rate calculation, and to flexibly cope with aging. Therefore, the accuracy of flow velocity or flow rate measurement can be improved more flexibly.
なお本実施の形態において、制御手段42以外の動作もマイコン等によりプログラムで行ってもよい。 In the present embodiment, operations other than the control means 42 may be performed by a program such as a microcomputer.
これにより制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、測定方法の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上を行うことができる。 As a result, it has a configuration that has a program for causing the computer to function as a control means, making it easy to set and change the operation of the measurement method and flexibly respond to secular changes, etc. It can be performed.
本発明の流速または流量計測装置は零クロス点を2つ上書きして記憶し続け、受信波が確実に届いたことを示す受信波判定手段に出力信号があるとその動作を停止する。これにより、比較的受信波形の振幅の大きい部分に受信波判定手段によるトリガ−点を設定し、
安定してトリガ−を動作させるとともに、その前の零クロス点のうち最適な2点の平均値を伝播時間計測に用いることができるので、誤差の少ない伝播時間を計測することができるとともに、計測時間を短縮化できることで省電力動作を実現することが可能になる。
The flow velocity or flow rate measuring apparatus according to the present invention overwrites and memorizes two zero cross points, and stops its operation when there is an output signal in the received wave determining means indicating that the received wave has arrived reliably. As a result, the trigger point by the received wave determining means is set at a portion where the amplitude of the received waveform is relatively large,
The trigger can be operated stably, and the average value of the two optimal points among the previous zero cross points can be used for the propagation time measurement, so that the propagation time with less error can be measured and the measurement can be performed. Since the time can be shortened, it is possible to realize a power saving operation.
31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 受信波判定手段
37 受信点検知手段
38 受信点記憶手段
39 計時手段
40 流量演算手段
41 切換手段
42 制御手段
43 電源供給手段
44 トリガ手段
45 時間検定手段
46 記憶媒体
Claims (4)
一方の振動子を駆動する送信手段と、
他方の受信側振動子の出力信号を電気信号に変換する受信手段と、
受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、
受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、
前記受信波判定手段の信号出力後最初のゼロクロス点及びその1つ前のゼロクロス点の前記受信点検知手段の出力信号を記憶する受信点記憶手段と、
前記受信点記憶手段に記憶した2つの信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、
前記計時手段の計時差に基づいて流量を算出する流量演算手段と、
前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備えた流量計測装置。 A pair of transducers arranged in a flow path through which the fluid to be measured flows, for transmitting and receiving ultrasonic waves;
Transmission means for driving one vibrator;
Receiving means for converting the output signal of the other receiving-side vibrator into an electrical signal;
A received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value;
A reception point detection means for outputting a signal each time the signal of the reception means falls within a range determined as a predetermined zero-cross point ;
Receiving point storage means for storing the output signal of the receiving point detection means at the first zero cross point after the signal output of the received wave determination means and the zero cross point immediately before that;
Time measuring means for measuring the propagation time of the ultrasonic signal propagated between the transducers by averaging the two signals stored in the receiving point storage means;
Flow rate calculation means for calculating a flow rate based on the time difference of the time measuring means;
A flow rate measurement apparatus comprising: a control unit that controls at least one of the transmission unit, the reception unit, the reception wave determination unit, the reception point detection unit, the reception point storage unit, the time measurement unit, and the flow rate calculation unit.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007326890A JP5292797B2 (en) | 2007-12-19 | 2007-12-19 | Flow measuring device |
US12/809,311 US8903663B2 (en) | 2007-12-19 | 2008-12-12 | Flow measurement device |
CN2008801220285A CN101903751B (en) | 2007-12-19 | 2008-12-12 | Flow measurement device |
EP08861745.1A EP2224219B1 (en) | 2007-12-19 | 2008-12-12 | Ultrasonic flow measurement device |
PCT/JP2008/003750 WO2009078161A1 (en) | 2007-12-19 | 2008-12-12 | Flow volume measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007326890A JP5292797B2 (en) | 2007-12-19 | 2007-12-19 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009150680A JP2009150680A (en) | 2009-07-09 |
JP5292797B2 true JP5292797B2 (en) | 2013-09-18 |
Family
ID=40919970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007326890A Active JP5292797B2 (en) | 2007-12-19 | 2007-12-19 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5292797B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3443659B2 (en) * | 2001-12-05 | 2003-09-08 | 松下電器産業株式会社 | Flow measurement device |
JP3596528B2 (en) * | 2002-02-08 | 2004-12-02 | 松下電器産業株式会社 | Flow measurement device |
JP4588508B2 (en) * | 2005-03-28 | 2010-12-01 | 帝人ファーマ株式会社 | Gas flow rate and gas concentration measurement device using ultrasonic propagation time measurement method |
JP4835068B2 (en) * | 2005-08-16 | 2011-12-14 | パナソニック株式会社 | Fluid flow measuring device |
-
2007
- 2007-12-19 JP JP2007326890A patent/JP5292797B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009150680A (en) | 2009-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6796189B1 (en) | Ultrasonic flowmeter having sequentially changed driving method | |
US8903663B2 (en) | Flow measurement device | |
JP5076524B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP3562712B2 (en) | Flow measurement device | |
JP2008190971A (en) | System and program for measuring flow velocity or flow quantity | |
JP4992890B2 (en) | Flow velocity or flow rate measuring device | |
JP5292798B2 (en) | Flow measuring device | |
JP2007187506A (en) | Ultrasonic flowmeter | |
JP5228462B2 (en) | Fluid flow measuring device | |
JP5292797B2 (en) | Flow measuring device | |
JPH1151725A (en) | Ultrasonic flowmeter | |
JP5556034B2 (en) | Flow velocity or flow rate measuring device | |
JP2011064516A (en) | Flow measurement device for fluid | |
JP2011064517A (en) | Flow measuring device of fluid | |
JP2006343292A (en) | Ultrasonic flowmeter | |
JP2006308439A (en) | Flow measuring device of fluid | |
JP3624743B2 (en) | Ultrasonic flow meter | |
JP5262891B2 (en) | Flow velocity or flow rate measuring device | |
JPH1144563A (en) | Apparatus for measuring flow rate | |
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP7320776B2 (en) | ultrasonic flow meter | |
JP2007322194A (en) | Fluid flow measuring instrument | |
JP7246021B2 (en) | ultrasonic flow meter | |
JP2000329597A5 (en) | ||
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101210 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20110113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120823 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130527 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5292797 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |