JP5076524B2 - Flow velocity or flow rate measuring device and its program - Google Patents
Flow velocity or flow rate measuring device and its program Download PDFInfo
- Publication number
- JP5076524B2 JP5076524B2 JP2007023937A JP2007023937A JP5076524B2 JP 5076524 B2 JP5076524 B2 JP 5076524B2 JP 2007023937 A JP2007023937 A JP 2007023937A JP 2007023937 A JP2007023937 A JP 2007023937A JP 5076524 B2 JP5076524 B2 JP 5076524B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- reception
- signal
- flow rate
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流速または流量計測装置に関する。 The present invention relates to a flow velocity or flow rate measuring device that uses a vibrator or the like and measures a flow rate of gas or liquid using ultrasonic waves.
従来の流量計測装置について、図9を参照して説明する。流体が流れる流路101の上流側と下流側とに、一対の超音波振動子102,103が配置されており、超音波が流体を斜めに横切るように設定してある(例えば、特許文献1参照)。
A conventional flow rate measuring device will be described with reference to FIG. A pair of
そして、前記一対の超音波振動子102,103間を伝搬する超音波の伝搬時間から流体の流速を計測し、これにもとづき流量を演算していた。例えば、時間差から流速を求め、管路の大きさや流れの状態を考慮して流量値を計算できる。
Then, the flow velocity of the fluid is measured from the propagation time of the ultrasonic wave propagating between the pair of
なお、図中の実線矢印104は流体の流れる方向を示し、破線矢印105は超音波の伝搬する方向を示している。流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している(例えば、特許文献1参照)。
しかしながら、前記従来の構成では、上流側の超音波振動子102から下流側の超音波振動子103へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波振動子103から上流側の超音波振動子102へ超音波を伝播させ、超音波の伝搬時間Tduを交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて時間差を求め流量を演算していた。
However, in the conventional configuration, ultrasonic waves are propagated from the
この際、所定の振幅が得られる受信波形の部分に参照レベルを設定してトリガーレベルとし、伝播時間を計測していた。したがって、トリガ−レベルよりも前の零クロス点を用いて超音波の伝搬時間を計測することができなかった。 At this time, a reference level is set to a received waveform portion where a predetermined amplitude can be obtained as a trigger level, and a propagation time is measured. Therefore, the propagation time of the ultrasonic wave cannot be measured using the zero cross point before the trigger level.
このため、超音波の到達時間に不確かな時間が含まれることになり、誤差となる場合があり、高精度な流れ計測を実現することができない、という課題を有していた。 For this reason, an uncertain time is included in the arrival time of the ultrasonic wave, which may cause an error, and there is a problem that high-accuracy flow measurement cannot be realized.
即ち、超音波の受信波形は、一般に駆動回路で駆動される周波数で立上がり、順次、超音波変換器固有の振動周波数に変化する。 That is, the ultrasonic reception waveform generally rises at a frequency driven by a drive circuit, and sequentially changes to a vibration frequency unique to the ultrasonic transducer.
あるいは、流路の側壁などからの反射波の影響を受けるなどするため、超音波の受信波形は受信点に近い立上がり部分は周波数が安定しているが、トリガ−レベルを設定するような比較的受信振幅の大きい部分では、上流側と下流側とで受信する波形に差が発生し、伝播時間の誤差として検知されることになる。 Alternatively, since the reception waveform of the ultrasonic wave is affected by the reflected wave from the side wall of the flow path or the like, the frequency at the rising portion near the reception point is stable, but the trigger level is relatively high. In the portion where the reception amplitude is large, a difference occurs in the waveform received between the upstream side and the downstream side, which is detected as an error in propagation time.
また、流路101の側壁などで反射した超音波が受信波に若干遅れて到達し、受信波として受信されるので、受信波形がオフセット分を差し引いた場合にゼロ点を通過する零クロス点が不確かになることもあった。
In addition, since the ultrasonic wave reflected by the side wall of the
さらに、本来到達時間より長時間計測することは、計測装置をそれだけの間余分に動作することになるため消費電流の増大という課題も有していた。 Furthermore, the measurement for a longer time than the arrival time originally has the problem of increasing the current consumption because the measurement device is operated extra for that time.
本発明は、前記従来の課題を解決するもので、受信した超音波の零クロス点の到達時間を計測し、順次更新することにより、トリガ−レベルよりも前の零クロス点を用いて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現することを目的としている。 The present invention solves the above-mentioned conventional problem, and measures the arrival time of the zero cross point of the received ultrasonic wave and sequentially updates the ultrasonic wave using the zero cross point before the trigger level. Therefore, it is possible to reduce the error included in the propagation time of the ultrasonic wave so as to be able to measure the arrival time of the ultrasonic wave, and to realize the power saving operation while realizing the highly accurate measurement.
前記従来の課題を解決するために、本発明の流速または流量計測装置は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、前記受信点検知手段の出力を記憶する受信点記憶手段と、前記受信点記憶手段の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段と前記受信手段と前記受信波判定手段と受信点検知手段と前記受信点記憶手段と前記計時手段と前記流量演算手段との少なくとも1つを制御する制御手段を備え、前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新して記憶し、前記計時手段は、前記受信波判定手段の信号が出力される直前に前記受信点記憶手段に記憶されている前記受信点検知手段の出力を用いて前記伝搬時間を算出するようにしたものである。 In order to solve the above-described conventional problems, the flow velocity or flow rate measuring device according to the present invention includes a pair of vibrators that are arranged in a flow path through which a fluid to be measured flows and that transmits and receives ultrasonic waves, and a transmission unit that drives one of the vibrators. Receiving means for converting the output signal of the other receiving-side transducer into an electric signal, received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value, and a range in which the signal of the receiving means is determined in advance The reception point detection means for outputting a signal, the reception point storage means for storing the output of the reception point detection means, and the propagation time of the ultrasonic signal propagated between the transducers using the signal of the reception point storage means. Timing means for timing, flow rate calculation means for calculating a flow rate based on the time difference of the timing means, the transmission means, the reception means, the received wave determination means, the reception point detection means, the reception point storage means, and the Timekeeping means and the flow rate A control means for controlling at least one of the calculation unit, the reception point storage unit is overwritten and stored until there is an output signal of the reception wave determination unit, the time measuring means, said reception wave determination unit The propagation time is calculated using the output of the reception point detection means stored in the reception point storage means immediately before the signal is output .
この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルよりも前で計測することができる。このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 With this configuration, it is possible to measure the propagation time of the ultrasonic wave propagating between the upstream ultrasonic transducer and the downstream ultrasonic transducer, that is, the arrival time of the ultrasonic wave before the trigger level. For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
本発明の、流速または流量計測装置は、トリガ−レベルよりも前の零クロス点を用いて超音波の伝搬時間あるいは超音波の到達時間を計測することができるので、超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 The flow velocity or flow rate measuring device of the present invention can measure the ultrasonic propagation time or ultrasonic arrival time using the zero cross point before the trigger level, so that the ultrasonic propagation time or arrival time can be measured. The error included in the time can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
第1の発明は被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の送信側振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、前記受信点検知手段の出力を記憶する受信点記憶手段と、前記受信点記憶手段の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段と前記受信手段と前記受信波判定手段と受信点検知手段と前記受信点記憶手段と前記計時手段と前記流量演算手段との少なくとも1つを制御する制御手段を備え、前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新し、前記計時手段は、前記受信波判定手段の信号が出力される直前に前記受信点記憶手段に記憶されている前記受信点検知手段の出力を用いて前記伝搬時間を算出するものである。 According to a first aspect of the present invention, a pair of transducers arranged in a flow path through which a fluid to be measured flows and transmits / receives ultrasonic waves, a transmission unit that drives one transmission-side transducer, and an output signal of the other reception-side transducer are electrically connected. Receiving means for converting to a signal; receiving wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value; receiving point detecting means for outputting a signal when the signal of the receiving means falls within a predetermined range; A reception point storage means for storing the output of the point detection means, a time measurement means for measuring the propagation time of the ultrasonic signal propagated between the transducers using the signal of the reception point storage means, and a time difference between the time measurement means At least one of flow rate calculation means for calculating a flow rate based on the transmission means, the reception means, the received wave determination means, the reception point detection means, the reception point storage means, the timing means, and the flow rate calculation means. Provide control means to control The reception point storage unit is overwritten until an output signal of the reception wave determination unit, the clock means is stored in the reception point storage means immediately before the signal of the reception wave determination unit is outputted The propagation time is calculated using the output of the reception point detection means .
これにより、比較的受信波形の振幅の大きい部分に受信波判定手段によるトリガ−点を設定し、安定してトリガ−を動作させるとともに、その前の零クロス点を伝播時間計測に用いることができるので、誤差の少ない伝播時間を計測することができるとともに、計測時間を短縮化できることで省電力動作を実現することが可能になる。 As a result, the trigger point by the received wave determination means can be set at a portion where the amplitude of the received waveform is relatively large, the trigger can be operated stably, and the previous zero cross point can be used for the propagation time measurement. Therefore, it is possible to measure the propagation time with less error and to realize the power saving operation by shortening the measurement time.
第2の発明は、特に第1の発明で前記制御手段は、前記受信点記憶手段への通電を初回のみ長時間とする電源供給手段を有することにより、最初の計測時は本来受信波が到達す
るよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。
A second invention is, in particular, the control means in the first invention, by having a power supply means for a long time energization of the reception point storage unit for the first time only, originally received wave first time measurement reaches By preparing to store the output of the received wave detection means before the reception, it is possible to reliably receive the received wave.
第3の発明は、特に第1の発明で前記制御手段は、前記受信点記憶手段への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。 A third invention is, in particular, the control means in the first aspect of the present invention, second and subsequent energization to the reception point storage means, by adjusting the timing of the power supply means so as to energize shortened based on previous value By preparing for storing the output of the received wave detection means immediately before the received wave arrives, the received wave can be reliably captured and a power saving operation can be performed.
第4の発明は、特に第1の発明で前記制御手段は、前記受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し、電源供給手段は、前記トリガ手段の出力により前記受信点記憶手段への通電を開始することにより、確実に受信波が到達したことを確認してから受信波検知手段の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。 A fourth invention is particularly the control means in the first invention has a number comprising a trigger means for outputting a signal from the number of times the output is determined in advance the reception point detection unit, the power supply means, said trigger means by starting the energization of the reception point storage means by the output further while reliably improving reliability by preparing for storing output of the reception wave detection means from the received wave is confirmed that it has reached Power saving operation by short time operation becomes possible.
第5の発明は、特に第1の発明で前記制御手段は、前記受信波判定手段の出力後の前記受信点検知手段の出力と、前記受信点記憶手段が記憶する値の差を演算する時間検定手段を有し、前記時間検定手段の値が予め定めた値以内であれば計測を有効とすることで、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。 A fifth aspect of the invention is, in particular the control means in the first invention, the time for calculating the output of the reception point detection unit after output of said reception wave determination unit, the difference between the values of the reception point storage means for storing Having a verification means, and enabling the measurement if the value of the time verification means is within a predetermined value, it is possible to prevent erroneous detection of the zero cross point due to noise, etc. The reliability can be improved by selecting.
第6の発明は、特に第1の発明で前記制御手段は、前記受信波判定手段の出力後の受信点検知手段の出力後、予め定めた時間経過後に電源供給手段を介して前記受信点記憶手段への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。 A sixth aspect of the invention, in particular the control means in the first invention, after the output of the reception point detection unit after output of said reception wave determination unit, said reception point storage via the power supply means after lapse of predetermined time By stopping the power supply to the means, it is possible to stop the operation of measuring and storing an extra zero cross point, and to realize a power saving operation.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
(実施の形態1)
実施の形態1に関する本発明の流速または流量計測装置について説明する。
(Embodiment 1)
The flow velocity or flow rate measuring device of the present invention relating to
図1は本実施の形態の構成を示す流速または流量計測装置のブロック図である。図1おいて、本発明の超音波流量計は被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置している。第1の振動子32または第2の振動子33とを駆動する送信手段34と、第1の振動子32または第2の振動子33の受信信号を受け信号を増幅する受信手段35と、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36と、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37と、前記受信点検知手段37の出力を記憶する受信点記憶手段38と、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39と、前記計時手段39の計時値に基づいて流量を算出する流量演算手段40とを有するものである。
FIG. 1 is a block diagram of a flow velocity or flow rate measuring apparatus showing the configuration of the present embodiment. In FIG. 1, an ultrasonic flowmeter of the present invention includes a
さらに、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段41を設け、第1の振動子32と第2の振動子33が超音波の送受信を切換えて動作するようにしている。
Further, a switching means 41 is provided between the transmission means 34 and the
制御手段42は、前記送信手段34と前記受信手段35と前記受信波判定手段36と、受信点検知手段37と、受信点記憶手段38と、前記計時手段39と前記流量演算手段40と前記切換手段41との少なくとも1つを制御する。 The control means 42 includes the transmission means 34, the reception means 35, the reception wave determination means 36, the reception point detection means 37, the reception point storage means 38, the timing means 39, the flow rate calculation means 40, and the switching. Control at least one of the means 41.
通常の流速または流量計測の動作を説明する。制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。この超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。
A normal flow rate or flow rate measurement operation will be described. Upon receipt of the start signal from the control means 42, the transmission means 34 pulse-drives the
ここで、計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、確度をφ、音速をc、被測定流体の流速をvとする。 Here, the measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the accuracy is φ, the sound velocity is c, and the flow velocity of the fluid to be measured is v.
v=(1/cosφ)*(L/t)−c ・・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
v = (1 / cosφ) * (L / t) −c (Expression 1)
The receiving
また、第1の超音波振動子32と第2の超音波振動子33との送信、受信方向を切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式2),(式3),(式4)より速度vを求めることができる。ここで、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。
Further, the transmission and reception directions of the first
t1=L/(c+v*cosφ)・・・・・・・・(式2)
t2=L/(c−v*cosφ)・・・・・・・・(式3)
v=(L/2*cosφ)*((1/t1)−(1/t2))・・・(式4)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
t1 = L / (c + v * cosφ) (Equation 2)
t2 = L / (c−v * cos φ) (Equation 3)
v = (L / 2 * cosφ) * ((1 / t1) − (1 / t2)) (Expression 4)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the
従来の動作を図2のタイミング図と図3の受信波形とで説明する。制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路31内を伝搬し、時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると受信波判定手段36は受信波が到達したことを判定して信号を出す。
The conventional operation will be described with reference to the timing chart of FIG. 2 and the received waveform of FIG. Measurement is started from the start signal at time t 0 by the control means 42 and the first
この信号を基に受信点検知手段37が動作を開始し、Vref後の最初の零クロス点を受信点として信号を出し、この点までの時間を計時手段39で求める。切換手段41で超音波振動子32,33の送受信の役割を切換えて同様の動作を行い、計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。
Based on this signal, the reception point detection means 37 starts to operate, outputs a signal with the first zero cross point after Vref as the reception point, and the time until this point is obtained by the time measurement means 39. The switching means 41 switches the transmission / reception roles of the
ここで図3のta点はVrefより後になっている。例えば信号波を100kHz、伝搬時間を100μsec前後とすると、taのような零クロス点は5μsec毎に発生する。 Here, the point ta in FIG. 3 is after Vref. For example, if the signal wave is 100 kHz and the propagation time is around 100 μsec, a zero cross point such as ta occurs every 5 μsec.
受信波は、図3でもわかるように、Vrefより前にも到達している。これがVrefより前の信号を利用できればできるほど超音波の到達時間に不確かな時間が含まれにくくなる。さらに5μsec前の信号を利用できれば、100μsecの伝搬時間を計測して
いる場合は5%も計測時間を短縮することが可能になり、消費電流の削減を実現できる。
The received wave reaches even before Vref, as can be seen in FIG. As the signal before Vref can be used, the arrival time of the ultrasonic wave is less likely to include an uncertain time. Further, if a signal before 5 μsec can be used, the measurement time can be shortened by 5% when the propagation time of 100 μsec is measured, and the current consumption can be reduced.
そこで、Vrefより前の零クロス点を検出する方法を説明する。単純に零クロス点を受信波の到達した点、例えば図3のa点を求めることが出来ればよいが、その場合はVrefを設定できない。それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して、誤検知する可能性がある。このような現象を回避して通常のtaより短時間で受信波の到達点を判定するには、Vrefの直前の零クロス点txを検知するようにすればよい。 Therefore, a method for detecting the zero cross point before Vref will be described. It suffices to simply obtain the point where the received wave arrives at the zero cross point, for example, the point a in FIG. 3, but in that case, Vref cannot be set. If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub. In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when the flow rate flows. In order to avoid such a phenomenon and determine the arrival point of the received wave in a shorter time than the normal ta, the zero cross point tx immediately before Vref may be detected.
この動作を実現するには制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路31内を伝搬し、時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると、受信波判定手段36は受信波が到達したことを判定して信号を出す。
In order to realize this operation, measurement is started from the start signal at time t0 by the control means 42 and the first
その前に零クロス点として予め定めた範囲、例えばプラス1mV、マイナス1mV以内に入ると信号を出す受信点検知手段37が動作を開始している。そうすると図4の点aになると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38が記憶する。記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。
Before that, the reception point detection means 37 which outputs a signal when it falls within a predetermined range as a zero cross point, for example, within plus 1 mV or minus 1 mV, starts operation. Then, when the point a in FIG. 4 is reached, the reception
次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38は上書き更新して、最新の受信点データを記憶する。これを点c,点dと繰返しtxの点を記憶した後、受信信号がVrefを越える。
Next, when the point b is reached, the reception
この時初めて、受信波判定手段36が、信号を出力する。制御手段はこの受信波判定手段36から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。この動作を行うことによりtxまでの時間を受信点記憶手段に記憶しているため計時手段39で伝搬時間を求める。切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。その結果、今までは図4のtaまでかかっていた伝搬時間をtxで確定することができる。具体的にはTa−Tfの時間は送信周波数の半周期Tfだけ伝搬時間の計測動作時間を短くすることができることになる。
Only at this time, the received wave determination means 36 outputs a signal. When the signal is output from the reception wave determination unit 36, the control unit prevents the reception
これにより、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルであるVrefよりも前で計測することができる。このため、計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。 Thereby, the propagation time of the ultrasonic wave propagating between the upstream ultrasonic transducer and the downstream ultrasonic transducer, that is, the arrival time of the ultrasonic wave can be measured before the trigger-level Vref. it can. For this reason, the error contained in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement.
また受信点記憶手段37の出力を記憶する受信点記憶手段38は記憶動作を行うのに電力を消費するがどの時点から通電して良いかは前もってわかっていない場合が多い。あまり早く投入すると電力が無駄になるし、受信点を通過してから通電しても意味は無い。そこで図5に示すように制御手段42内に電源供給手段43を設けて電力制御を行う。タイミングは図6で説明する。一番初めに計測を開始する場合はTaが不明である。超音波振動子32,33の物理的距離からおおよその時間は推定できるが確かでは無い。そこで制御手段42は電源供給手段43を用いて受信点記憶手段38への通電タイミングを調節する。
The reception point storage means 38 for storing the output of the reception point storage means 37 consumes power to perform the storage operation, but it is often unknown in advance from which time point the power supply can be energized. If it is turned on too early, power is wasted, and there is no point in energizing after passing the reception point. Therefore, as shown in FIG. 5, a power supply means 43 is provided in the control means 42 to perform power control. The timing will be described with reference to FIG. When measurement is started first, Ta is unknown. Although the approximate time can be estimated from the physical distance between the
まず、時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その前時刻t2に電源供給手段43を用いて受信点記憶手段38への通電を開始する。t2はt1より十分短い時間とする。
First, measurement is started from a start signal at time t 0 and the first
このように、制御手段42は受信点検知手段37の出力を記憶する受信点記憶手段38への通電を初回のみ長時間とする電源供給手段43を有することにより、最初の計測時は本来受信波が到達するよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。 As described above, the control means 42 has the power supply means 43 for energizing the reception point storage means 38 for storing the output of the reception point detection means 37 for a long time only for the first time. By preparing to store the output of the received wave detection means before the wave arrives, it is possible to reliably receive the received wave.
また初回により受信点が確定し伝搬時間が求まる。その場合は2回目以降の通電時間を調整することが容易になる。 In addition, the reception point is determined by the first time and the propagation time is obtained. In that case, it becomes easy to adjust the energization time after the second time.
例えば図6で最初はt2において受信点記憶手段38への通電を開始したが、実際に超音波が伝搬して受信したのはt1である。次の計測においては伝搬時間が大幅に変化することが無いため制御手段42にある電源供給手段43はt1に近くてまだ受信信号が到達していないt2まで通電するのを待つことが可能になる。3回目は2回目の伝搬時間を用いたり、または1回目と2回目の移動平均を用いたりして伝播時間を予想し、通電時間を極力短くすることが可能になる。 For example, in FIG. 6, at first, energization of the reception point storage means 38 is started at t2, but it is at t1 that the ultrasonic wave has actually propagated and received. In the next measurement, since the propagation time does not change significantly, the power supply means 43 in the control means 42 can wait for energization to t2, which is close to t1 and has not yet reached the received signal. . The third time uses the second propagation time, or uses the first and second moving averages to predict the propagation time, thereby making it possible to shorten the energization time as much as possible.
このように制御手段42で受信点検知手段37の出力を記憶する受信点記憶手段38への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段43のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。 In this way, the control means 42 adjusts the timing of the power supply means 43 so that the reception point storage means 38 for storing the output of the reception point detection means 37 is energized for the second time and thereafter, based on the previous value. Thus, by preparing for storing the output of the reception wave detection means immediately before the reception wave arrives, the reception wave can be reliably captured and a power saving operation can be performed.
この説明では受信点記憶手段38の通電時間のみ調節するようになっているが、受信信号を増幅する受信手段35から下流の動作が電源投入時に不安定な状態が長く続かなければそれら一式もしくは特に電力を必要とする部位の通電を電源供給手段43で調整すればさらに省電力が可能になる。 In this description, only the energization time of the reception point storage means 38 is adjusted. However, if the operation downstream from the reception means 35 for amplifying the reception signal does not continue to be unstable for a long time when the power is turned on, a set of them or particularly If the power supply means 43 adjusts the energization of the part that requires power, further power saving can be achieved.
また図4の零クロス点aから点dの状態が、図6のt3からt1の付近を拡大したものと同等とする。この場合、受信手段35は受信信号が到達する前から動作し、受信点判定手段37も動作し点a,点b,点c,点d毎に信号を送出している。図7において、制御手段42はこの受信点判定手段37の出力信号をカウントし、予め定めた回数、例えば2回とすると、点bまで受信点が到達し、トリガ手段44が電源供給手段43を介して、受信点記憶手段38への通電を開始する。受信確定するtxまでの通電時間をより短くすることができる。 Further, the state from the zero cross point a to the point d in FIG. 4 is assumed to be equivalent to an enlarged state in the vicinity of t3 to t1 in FIG. In this case, the reception means 35 operates before the reception signal arrives, and the reception point determination means 37 also operates to send a signal for each of the points a, b, c, and d. In FIG. 7, the control means 42 counts the output signal of the reception point determination means 37, and if it is set to a predetermined number of times, for example, twice, the reception point reaches the point b, and the trigger means 44 turns the power supply means 43 on. Then, energization to the reception point storage means 38 is started. The energization time until tx when reception is confirmed can be further shortened.
このように制御手段42は受信点検知手段37の出力が予め定めた回数より多くなると信号を出すトリガ手段44を有し電源供給手段43は前記トリガ手段の出力により受信点検知手段37の出力を記憶する受信点記憶手段38への通電を開始することにより、確実に受信波が到達したことを確認してから受信波検知手段37の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。 As described above, the control means 42 has the trigger means 44 for outputting a signal when the output of the reception point detection means 37 exceeds the predetermined number of times, and the power supply means 43 outputs the output of the reception point detection means 37 by the output of the trigger means. By starting energization to the reception point storage means 38 to be stored, it is possible to confirm that the reception wave has arrived reliably, and to prepare for storing the output of the reception wave detection means 37, thereby improving reliability. Furthermore, power saving operation by a short time operation becomes possible.
また受信信号が図4の零クロス点txより先Vrefを越えた後は受信手段35より後段の回路は計時手段39、流量演算手段40以外を動作する必要が無い。したがって受信波判定手段36により受信波がVrefを越えたことを検知すると制御手段42は受信点記憶手段38への通電を停止して省電力動作を行うとともに必要のない受信回路の通電動
作を停止することが可能である。停止を行う時点はVrefを越えた直後でも良いし、また通電停止時の信号によりノイズが発生して計時手段39などの動作に悪影響を与えてもよくないため次の零クロス点taを検知してから通電停止してもよい。
Further, after the received signal exceeds Vref before the zero cross point tx in FIG. 4, the circuit subsequent to the receiving means 35 does not need to operate other than the time measuring means 39 and the flow rate calculating means 40. Therefore, when the reception wave determination means 36 detects that the reception wave exceeds Vref, the control means 42 stops the energization to the reception point storage means 38 to perform the power saving operation and to stop the unnecessary energization operation of the reception circuit. Is possible. The time of stopping may be immediately after exceeding Vref, or noise may be generated by a signal at the time of stopping energization and the operation of the timing means 39 etc. may not be adversely affected, so that the next zero cross point ta is detected. The power supply may be stopped after that.
このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力後予め定めた時間経過後に電源供給手段43を介して受信点記憶手段38への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。 In this way, the control means 42 stops the power supply to the reception point storage means 38 via the power supply means 43 after the elapse of a predetermined time after the output of the reception point detection means 37 after the output of the reception wave determination means 36. As a result, the operation of measuring and storing the extra zero cross point can be stopped, and the power saving operation can be realized.
また、図4における零クロス点は受信波にノイズが重畳されていなければほぼ送信周波数の半分の周期で発生してきている。しかし実際に流路に流体が流れている場合はその流体により下流側で何かが動作している。この動作や他の外来ノイズ等により受信波にスパイク状の信号が重畳されることもある。この場合ノイズが零クロスした点を受信点とすると伝搬時間の計算が大きくずれてします。これを防止するため図8に示すように制御手段42に時間検定手段45を設ける。動作を説明する。まず図4と同様に零クロス点を受信し始めると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38が記憶する。記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38は上書き更新して最新の受信点データを記憶する。これを点c、点dと繰返しtxの点を記憶した後、受信信号がVrefを越える。 In addition, the zero cross point in FIG. 4 is generated at a period substantially half the transmission frequency if noise is not superimposed on the received wave. However, when a fluid actually flows in the flow path, something is operating downstream by the fluid. A spike-like signal may be superimposed on the received wave due to this operation or other external noise. In this case, if the point where the noise crosses zero is taken as the receiving point, the calculation of the propagation time will deviate greatly. In order to prevent this, the time verification means 45 is provided in the control means 42 as shown in FIG. The operation will be described. First, similarly to FIG. 4, when the zero cross point starts to be received, the reception point detection means 37 outputs a signal, and the reception point storage means 38 stores the output. If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated. Next, when the point b is reached, the reception point storage means 37 outputs a signal, and the reception point storage means 38 overwrites and updates and stores the latest reception point data. After storing the point c, the point d and the point tx repeatedly, the received signal exceeds Vref.
この時初めて受信波判定手段36が信号を出力する。制御手段はこの受信波判定手段36から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。
At this time, the reception wave determination means 36 outputs a signal for the first time. When the signal is output from the reception wave determination unit 36, the control unit prevents the reception
そして次の零クロス点taの時間を受信点記憶手段38を介さずに直接制御手段の時間検定手段45に送る。時間検定手段45は受信点記憶手段38にあるtxの値とtaの値の差を求める。この差が予め定めた範囲内であればtxはノイズによるものではないと判断し、txを用いて流量を演算する。例えば送信周波数が100kHzとすると周期の1/2の周期は5μsecとなるそこでtx−taが予め定めた5μsec近傍以内であればtxは有効な受信点であると判断する。 Then, the time of the next zero cross point ta is sent directly to the time verification means 45 of the control means without going through the reception point storage means 38. The time verification unit 45 obtains the difference between the tx value and the ta value stored in the reception point storage unit 38. If this difference is within a predetermined range, it is determined that tx is not due to noise, and the flow rate is calculated using tx. For example, if the transmission frequency is 100 kHz, the half of the period is 5 μsec. Therefore, if tx-ta is within a predetermined vicinity of 5 μsec, it is determined that tx is an effective reception point.
このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力と、受信点記憶手段38の値の差を演算する時間検定手段45を有し、前記時間検定手段45の値が予め定めた値以内であれば計測を有効とすることで、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。 As described above, the control means 42 has the time verification means 45 for calculating the difference between the output of the reception point detection means 37 after the output of the reception wave determination means 36 and the value of the reception point storage means 38, and the time verification means 45. If the value is within a predetermined value, measurement can be enabled to prevent false detection of the zero cross point due to noise, etc., and reliability can be improved by selecting an accurate zero cross point. become.
(実施の形態2)
実施の形態2に関する本発明の流速または流量計測装置について説明する。実施の形態1と異なるところは、振動子32,33や送信手段34、受信手段35、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37、前記受信点検知手段37の出力を記憶する受信点記憶手段38、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40、送受信を切換える切換手段41との少なくとも1つを制御する制御手段42の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体46を用いていることである。
(Embodiment 2)
The flow velocity or flow rate measuring apparatus of the present invention relating to the second embodiment will be described. The difference from the first embodiment is that the signals of the reception wave determination means 36 and the reception means 35 that output signals when the signals of the
図1において実施の形態1で示した制御手段42の動作を行うには、予め実験等によりtxを求めるための受信点記憶手段の動作、通電方法を求めておいたり、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求め、ソフトをプログラムとして記憶媒体46に格納しておいたりする。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。
In order to perform the operation of the
切換手段41の動作により送受信の方向が変化するため条件設定などの個数が増加してくるがこれをコンピュータによる動作で調整すると容易に実現可能である。 Since the direction of transmission / reception changes due to the operation of the switching means 41, the number of condition settings and the like increases, but this can be easily realized by adjusting this by operation by a computer.
このように制御手段42の動作をプログラムで行うことができるようになると流量演算の補正係数の条件設定、変更や計測間隔の調整などが容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに流速または流量計測の精度向上を行うことができる。なお本実施例において制御手段42以外の動作もマイコン等によりプログラムで行ってもよい。 As described above, when the operation of the control means 42 can be performed by a program, it is possible to easily set, change, and adjust the measurement interval of the correction coefficient for the flow rate calculation, and to flexibly cope with aging. The accuracy of flow velocity or flow rate measurement can be improved more flexibly. In this embodiment, operations other than the control means 42 may be performed by a program using a microcomputer or the like.
これにより制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、測定方法の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上を行うことができる。 As a result, it has a configuration that has a program for causing the computer to function as a control means, making it easy to set and change the operation of the measurement method and flexibly respond to secular changes, etc. It can be performed.
本発明の流速または流量計測装置は零クロス点を上書きして記憶し続け、受信波が確実に届いたことを示す受信波判定手段に出力信号があるとその動作を停止することにより、比較的受信波形の振幅の大きい部分に受信波判定手段によるトリガ−点を設定し、安定してトリガ−を動作させるとともに、その前の零クロス点を伝播時間計測に用いることができるので、誤差の少ない伝播時間を計測することができるとともに、計測時間を短縮化できることで省電力動作を実現することが可能になり、ガス漏洩に対する保安性能を長期にわたって電池電源により保証する家庭用ガスメータを始めとする流体の流速や流量を計測するシステムに適用できる。 The flow velocity or flow rate measuring device of the present invention overwrites and stores the zero cross point, and when there is an output signal in the received wave determination means indicating that the received wave has arrived reliably, the operation is stopped relatively. Since the trigger point by the received wave judging means is set at the large amplitude portion of the received waveform, the trigger can be operated stably, and the previous zero cross point can be used for the propagation time measurement, so there is little error Fluids such as household gas meters that can measure the propagation time and shorten the measurement time to realize power-saving operation and guarantee the safety performance against gas leakage with a battery power source for a long time. It can be applied to a system that measures the flow velocity and flow rate of
31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 受信波判定手段
37 受信点検知手段
38 受信点記憶手段
39 計時手段
40 流量演算手段
41 切換手段
42 制御手段
43 電源供給手段
44 トリガ手段
45 時間検定手段
46 記憶媒体
Claims (6)
一方の送信側振動子を駆動する送信手段と、
他方の受信側振動子の出力信号を電気信号に変換する受信手段と、
前記受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、
前記受信手段の信号が予め定めた範囲になると信号を出す受信点検知手段と、
前記受信点検知手段の出力を記憶する受信点記憶手段と、
前記振動子間を伝搬した超音波信号の伝搬時間を算出する計時手段と、
前記計時手段の計時値に基づいて流量を算出する流量演算手段と、
前記送信手段と前記受信手段と前記受信波判定手段と受信点検知手段と前記受信点記憶手段と前記計時手段と前記流量演算手段の少なくとも1つを制御する制御手段を備え、
前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新して記憶し、前記計時手段は、前記受信波判定手段の信号が出力される直前に前記受信点記憶手段に記憶されている前記受信点検知手段の出力を用いて前記伝搬時間を算出する流速または流量計測装置。 A pair of transducers arranged in the flow path of the fluid to be measured and transmitting and receiving ultrasonic waves;
Transmission means for driving one transmission-side vibrator;
Receiving means for converting the output signal of the other receiving-side vibrator into an electrical signal;
A received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value;
Receiving point detecting means for outputting a signal when the signal of the receiving means falls within a predetermined range;
Reception point storage means for storing the output of the reception point detection means;
Time measuring means for calculating the propagation time of the ultrasonic signal propagated between the transducers;
Flow rate calculating means for calculating a flow rate based on the time value of the time measuring means;
Control means for controlling at least one of the transmission means, the reception means, the reception wave determination means, the reception point detection means, the reception point storage means, the time measurement means, and the flow rate calculation means;
The reception point storage means overwrites and stores until there is an output signal of the reception wave determination means, and the timing means is stored in the reception point storage means immediately before the signal of the reception wave determination means is output. A flow velocity or flow rate measuring device that calculates the propagation time using the output of the receiving point detecting means .
電源供給手段は、前記トリガ手段の出力により前記受信点記憶手段への通電を開始する請求項1記載の流速または流量計測装置。 Wherein the control means includes a trigger means for outputting a signal becomes more than the number of times the output of the reception point detection unit is predetermined,
Power supply means according to claim 1 the flow velocity or flow rate measurement apparatus according to start energization of the reception point storage means by the output of said trigger means.
前記時間検定手段の値が予め定めた値以内であれば計測を有効とする請求項1記載の流速
または流量計測装置。 Wherein the control means has an output of the reception point detection unit after output of said reception wave determination unit, the time test means the reception point storage means for calculating the difference between the values stored,
The flow velocity or flow rate measuring device according to claim 1, wherein the measurement is valid if the value of the time verification means is within a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007023937A JP5076524B2 (en) | 2007-02-02 | 2007-02-02 | Flow velocity or flow rate measuring device and its program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007023937A JP5076524B2 (en) | 2007-02-02 | 2007-02-02 | Flow velocity or flow rate measuring device and its program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008190930A JP2008190930A (en) | 2008-08-21 |
JP5076524B2 true JP5076524B2 (en) | 2012-11-21 |
Family
ID=39751180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007023937A Expired - Fee Related JP5076524B2 (en) | 2007-02-02 | 2007-02-02 | Flow velocity or flow rate measuring device and its program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5076524B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5228462B2 (en) * | 2007-12-11 | 2013-07-03 | パナソニック株式会社 | Fluid flow measuring device |
JP4992890B2 (en) * | 2008-12-18 | 2012-08-08 | パナソニック株式会社 | Flow velocity or flow rate measuring device |
JP5262891B2 (en) * | 2009-03-23 | 2013-08-14 | パナソニック株式会社 | Flow velocity or flow rate measuring device |
JP5556034B2 (en) * | 2009-03-23 | 2014-07-23 | パナソニック株式会社 | Flow velocity or flow rate measuring device |
WO2015045621A1 (en) | 2013-09-26 | 2015-04-02 | 株式会社村田製作所 | Angular velocity detection element |
CN108625900A (en) * | 2018-07-11 | 2018-10-09 | 贵州安和矿业科技工程股份有限公司 | A kind of fire damp solves analyzer and application method automatically |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005345256A (en) * | 2004-06-02 | 2005-12-15 | Nissan Motor Co Ltd | Ultrasonic fluid measuring apparatus |
-
2007
- 2007-02-02 JP JP2007023937A patent/JP5076524B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008190930A (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6796189B1 (en) | Ultrasonic flowmeter having sequentially changed driving method | |
JP5076524B2 (en) | Flow velocity or flow rate measuring device and its program | |
US8903663B2 (en) | Flow measurement device | |
JP2008190971A (en) | System and program for measuring flow velocity or flow quantity | |
JP4992890B2 (en) | Flow velocity or flow rate measuring device | |
JP5292798B2 (en) | Flow measuring device | |
JP5556034B2 (en) | Flow velocity or flow rate measuring device | |
JP5228462B2 (en) | Fluid flow measuring device | |
JP4153721B2 (en) | Ultrasonic flowmeter and self-diagnosis method of ultrasonic flowmeter | |
JP5292797B2 (en) | Flow measuring device | |
JP2007322194A (en) | Fluid flow measuring instrument | |
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP5262891B2 (en) | Flow velocity or flow rate measuring device | |
JP5177063B2 (en) | Fluid flow measuring device | |
JP2011064516A (en) | Flow measurement device for fluid | |
JP2011064517A (en) | Flow measuring device of fluid | |
JP4686848B2 (en) | Flow measuring device | |
JP2006292370A (en) | Ultrasonic flowmeter | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
JP2006343292A (en) | Ultrasonic flowmeter | |
JP2006308439A (en) | Flow measuring device of fluid | |
JP7246021B2 (en) | ultrasonic flow meter | |
JP7320776B2 (en) | ultrasonic flow meter | |
JP5092413B2 (en) | Flow velocity or flow rate measuring device | |
JP5092414B2 (en) | Flow velocity or flow rate measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100112 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120813 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |