JP5292798B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP5292798B2
JP5292798B2 JP2007326891A JP2007326891A JP5292798B2 JP 5292798 B2 JP5292798 B2 JP 5292798B2 JP 2007326891 A JP2007326891 A JP 2007326891A JP 2007326891 A JP2007326891 A JP 2007326891A JP 5292798 B2 JP5292798 B2 JP 5292798B2
Authority
JP
Japan
Prior art keywords
reception
time
signal
output
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007326891A
Other languages
Japanese (ja)
Other versions
JP2009150681A (en
Inventor
文一 芝
晃一 竹村
大介 別荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007326891A priority Critical patent/JP5292798B2/en
Priority to PCT/JP2008/003750 priority patent/WO2009078161A1/en
Priority to US12/809,311 priority patent/US8903663B2/en
Priority to EP08861745.1A priority patent/EP2224219B1/en
Priority to CN2008801220285A priority patent/CN101903751B/en
Publication of JP2009150681A publication Critical patent/JP2009150681A/en
Application granted granted Critical
Publication of JP5292798B2 publication Critical patent/JP5292798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in finding the propagation time of an ultrasonic wave that a difference arises between a waveform received on the upstream side and one on the downstream side in a portion where a received amplitude is comparatively large and that the difference is to be detected as an error in propagation time. <P>SOLUTION: A received signal is amplified by a reception means 35 while a receiving point storing means 38 causes the latest receiving point data to be stored in order in a plurality of storage parts until the level of the signal reaches a previously determined value (Vref). The average value of a plurality of zero crossing points in the vicinity of Vref can be used as a reception point, making it possible to measure the propagation time with errors reduced such as an upper or lower offset and to materialize power saving operation through the shortening of measurement time. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流量計測装置に関する。   The present invention relates to a flow rate measuring apparatus that uses a vibrator or the like and measures a flow rate of a gas or a liquid using ultrasonic waves.

従来の流体の流れ計測装置を図9を参照して説明すると、流体が流れる流路101の上流側と下流側とに一対の超音波振動子102,103が配置されており、超音波が流体を斜めに横切るようにしてある。   A conventional fluid flow measuring device will be described with reference to FIG. 9. A pair of ultrasonic vibrators 102 and 103 are arranged on the upstream side and the downstream side of a flow path 101 through which a fluid flows, and the ultrasonic waves are fluidized. Is crossed diagonally.

そして、前記一対の超音波振動子102,103間を伝搬する超音波の伝搬時間から流体の流速を計測し、これにもとづき流量を演算していた。例えば、時間差から流速を求め、管路の大きさや流れの状態を考慮して流量値を計算できる。   Then, the flow velocity of the fluid is measured from the propagation time of the ultrasonic wave propagating between the pair of ultrasonic transducers 102 and 103, and the flow rate is calculated based on this. For example, the flow rate value can be calculated in consideration of the size of the pipeline and the flow state by obtaining the flow velocity from the time difference.

なお、図中の実線矢印104は流体の流れる方向を示し、破線矢印105は超音波の伝搬する方向を示している。流体の流れる方向と、超音波の伝搬する方向とは角θで交叉している(例えば、特許文献1参照)。
特開2002−13958号公報
In addition, the solid line arrow 104 in a figure shows the direction through which a fluid flows, and the broken line arrow 105 has shown the direction through which an ultrasonic wave propagates. The direction in which the fluid flows and the direction in which the ultrasonic waves propagate intersect at an angle θ (for example, see Patent Document 1).
JP 2002-13958 A

しかしながら、前記従来の計測装置では、上流側の超音波振動子102から下流側の超音波振動子103へ超音波を伝播させ、超音波の伝搬時間Tudを、また下流側の超音波振動子103から上流側の超音波振動子102へ超音波を伝播させ、超音波の伝搬時間Tduを交互に計測し、計測した超音波の伝播時間Tud、Tduなどを用いて時間差を求め流量を演算していた。   However, in the conventional measuring apparatus, an ultrasonic wave is propagated from the upstream ultrasonic transducer 102 to the downstream ultrasonic transducer 103, and the ultrasonic propagation time Tud is determined. The ultrasonic wave is propagated from the ultrasonic wave to the ultrasonic transducer 102 on the upstream side, the ultrasonic wave propagation time Tdu is measured alternately, and the flow rate is calculated by calculating the time difference using the measured ultrasonic wave propagation times Tud and Tdu. It was.

この際、所定の振幅が得られる受信波形の部分に参照レベルを設定してトリガーレベルとし、伝播時間を計測していた。したがって、トリガ−レベルよりも前の零クロス点を用いて超音波の伝搬時間を計測することができなかった。   At this time, a reference level is set to a received waveform portion where a predetermined amplitude can be obtained as a trigger level, and a propagation time is measured. Therefore, the propagation time of the ultrasonic wave cannot be measured using the zero cross point before the trigger level.

このため、超音波の到達時間に不確かな時間が含まれることになり、誤差となる場合があり、高精度な流れ計測を実現することができないという課題を有していた。即ち、超音波の受信波形は、一般に駆動回路で駆動される周波数で立上がり、順次、超音波変換器固有の振動周波数に変化する。   For this reason, an uncertain time is included in the arrival time of the ultrasonic wave, which may cause an error, and there is a problem that high-precision flow measurement cannot be realized. That is, the ultrasonic reception waveform generally rises at a frequency driven by a drive circuit, and sequentially changes to a vibration frequency unique to the ultrasonic transducer.

あるいは、流路の側壁などからの反射波の影響を受けるなどするため、超音波の受信波形は受信点に近い立上がり部分は周波数が安定しているが、トリガ−レベルを設定するような比較的受信振幅の大きい部分では、上流側と下流側とで受信する波形に差が発生し、伝播時間の誤差として検知されることになる。   Alternatively, since the reception waveform of the ultrasonic wave is affected by the reflected wave from the side wall of the flow path or the like, the frequency at the rising portion near the reception point is stable, but the trigger level is relatively high. In the portion where the reception amplitude is large, a difference occurs in the waveform received between the upstream side and the downstream side, which is detected as an error in propagation time.

また、流路101の側壁などで反射した超音波が受信波に若干遅れて到達し、受信波として受信されるので、受信波形がオフセット分を差し引いた場合にゼロ点を通過する零クロス点が不確かになることもあった。   In addition, since the ultrasonic wave reflected by the side wall of the channel 101 arrives at the received wave with a slight delay and is received as the received wave, a zero cross point that passes through the zero point when the received waveform is subtracted from the offset is obtained. Sometimes it was uncertain.

さらに本来到達時間より長時間計測することは計測装置をそれだけの間余分に動作することになるため消費電流の増大という課題も有していた。   Furthermore, the measurement for a longer time than the arrival time originally has the problem of increasing the current consumption because the measurement device is operated extra for that time.

本発明は、前記従来の課題を解決するもので、トリガーレベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現することを目的としている。   The present invention solves the above-described conventional problem, and uses at least two continuous arrival times of the received ultrasonic zero crossing point before the trigger level, and obtains an average value of the ultrasonic wave. An object of the present invention is to realize a power saving operation while realizing a highly accurate measurement by reducing the error included in the propagation time of the ultrasonic wave so that the arrival time can be measured.

前記従来の課題を解決するために、本発明の流速または流量計測装置は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、前記受信波判定手段の信号出力以前に前記受信点検知手段で出力された複数の出力信号を記憶する受信点記憶手段と、前記受信点記憶手段で記憶した2つ以上の偶数個の信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備え、前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新し、前記複数の受信点記憶手段に受信した超音波の零クロス点の到達時間を順次記憶していくようにしたものである。
In order to solve the above-described conventional problems, the flow velocity or flow rate measuring device according to the present invention includes a pair of transducers that are arranged in a flow path through which a fluid to be measured flows and that transmits and receives ultrasonic waves, and a transmission unit that drives one transducer. Receiving means for converting the output signal of the other receiving-side transducer into an electrical signal, received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value, and a zero cross signal determined by the signal of the receiving means. Receiving point detecting means for outputting a signal every time a point is determined as a point ; receiving point storing means for storing a plurality of output signals output by the receiving point detecting means before signal output of the received wave determining means ; A time measuring means for measuring the propagation time of the ultrasonic signal propagated between the transducers by averaging two or more even number signals stored in the receiving point storage means , and a flow rate based on the time difference of the time measuring means. A flow rate calculating means for calculating Control means for controlling at least one of the transmission means, reception means, reception wave determination means, reception point detection means, reception point storage means, timing means, and flow rate calculation means, and the reception point storage means Overwriting is updated until there is an output signal from the received wave determination means, and the arrival times of the zero cross points of the received ultrasonic waves are sequentially stored in the plurality of reception point storage means.

この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて超音波の到達時間を計測することができるようにして超音波の伝播時間に含まれる誤差を少なくし、高精度な計測を実現しつつ、省電力動作を実現できる。   With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is set to zero of the received ultrasonic wave before the trigger level. Using at least two cross point arrival times in succession, the average value can be obtained and the ultrasonic arrival time can be measured to reduce the error contained in the ultrasonic propagation time and achieve high accuracy. Power saving operation can be realized while realizing simple measurement.

本発明の、流速または流量計測装置は、トリガ−レベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて超音波の到達時間を計測することができる。このためオフセットなどが重畳していても立ち上がりのゼロ点と立下りのゼロ点で相殺することができる。また複数の零クロス点の平均値を用いることにより計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。   The flow velocity or flow rate measuring apparatus according to the present invention uses at least two continuous arrival times of the received ultrasonic zero crossing points before the trigger level and obtains an average value to obtain the ultrasonic arrival time. Can be measured. For this reason, even if an offset or the like is superimposed, it is possible to cancel the rising zero point and the falling zero point. Also, by using the average value of multiple zero cross points, the error included in the measured ultrasonic propagation time or arrival time can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement. .

第1の発明は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、一方の振動子を駆動する送信手段と、他方の受信側振動子の出力信号を電気信号に変換する受信手段と、受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、前記受信波判定手段の信号出力以前に前記受信点検知手段で出力された複数の出力信号を記憶する受信点記憶手段と、前記受信点記憶手段で記憶した2つ以上の偶数個の信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、前記計時手段の計時差に基づいて流量を算出する流量演算手段と、前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備え、前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新するようにしたものである。
According to a first aspect of the present invention, a pair of transducers arranged in a flow path through which a fluid to be measured flows transmits / receives ultrasonic waves, a transmission unit that drives one transducer, and an output signal of the other reception-side transducer as an electrical signal A receiving means for converting the signal into the signal, a received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value, and a receiving point for outputting the signal each time the signal of the receiving means falls within a predetermined range for determining a zero-cross point. Detection means; reception point storage means for storing a plurality of output signals output from the reception point detection means before signal output from the reception wave determination means; and two or more even numbers stored in the reception point storage means Measuring means for measuring the propagation time of the ultrasonic signal that has propagated between the transducers by averaging the signals of, the flow rate calculating means for calculating the flow rate based on the time difference of the time measuring means, the transmitting means, the receiving means, Received wave judgment means, reception point detection And a control means for controlling at least one of a stage, a reception point storage means, a timing means, and a flow rate calculation means, and the reception point storage means overwrites and updates until there is an output signal of the reception wave determination means It is a thing.

この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の伝播時間、即ち、超音波の到達時間をトリガ−レベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて計測することができる。このためオフセットなどが重畳していても立ち上がりのゼロ点と立下りのゼロ点で相殺することができる。また複数の零クロス点の平均値を用いることにより計測した超
音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現しつつ、省電力動作を実現できる。
With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is set to zero of the received ultrasonic wave before the trigger level. By using at least two cross point arrival times in succession, the average value can be obtained and measured. For this reason, even if an offset or the like is superimposed, it is possible to cancel the rising zero point and the falling zero point. Also, by using the average value of multiple zero cross points, the error included in the measured ultrasonic propagation time or arrival time can be reduced, and power saving operation can be realized while realizing highly accurate flow measurement. .

の発明は特に第1の発明で制御手段は受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し電源供給手段は前記トリガ手段の出力により受信点検知手段の出力を記憶する受信点記憶手段への通電を開始することにより、確実に受信波が到達したことを確認してから受信波検知手段の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。
The second invention is particularly the first invention, wherein the control means has trigger means for outputting a signal when the output of the reception point detection means exceeds a predetermined number of times, and the power supply means is the reception point detection means by the output of the trigger means. By starting energization to the reception point storage means for storing the output of the received signal, reliability is improved by making sure that the received wave has arrived and preparing for storing the output of the received wave detection means. At the same time, a power saving operation by a short time operation becomes possible.

の発明は特に第1の発明で制御手段は受信波判定手段の出力により、予め定めた数だけ逆のぼった受信点記憶手段の値と受信波判定手段の出力の差を演算する時間検定手段を有し、前記時間検定手段の値が予め定めた値以内であれば計測を有効とすることにより、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。
The third invention is particularly the first invention, wherein the control means calculates the difference between the value of the reception point storage means and the output of the reception wave judgment means which is reversed by a predetermined number based on the output of the reception wave judgment means. If the value of the time verification means is within a predetermined value, the measurement can be validated to prevent erroneous detection of the zero cross point due to noise, etc. By doing so, reliability can be improved.

の発明は特に第1の発明で制御手段は受信波判定手段の出力後の受信点検知手段の出力後予め定めた時間経過後に電源供給手段を介して受信点記憶手段への電源供給を停止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。
The fourth aspect of the invention is particularly the first aspect of the invention, in which the control means supplies power to the reception point storage means via the power supply means after the elapse of a predetermined time after the output of the reception point detection means after the output of the reception wave determination means. By stopping, it is possible to stop the operation of measuring and storing an extra zero cross point, and to realize a power saving operation.

(実施の形態1)
図1おいて、本発明の超音波流量計は被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、前記第1の振動子32と前記第2の振動子33を駆動する送信手段34と、前記第1の振動子32と前記第2の振動子33の受信信号を受け信号を増幅する受信手段35と、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36と、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37と、前記受信点検知手段37の出力を記憶する2つの受信点記憶手段38と、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39と、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40とを有するものである。
(Embodiment 1)
In FIG. 1, an ultrasonic flowmeter of the present invention includes a flow path 31 through which a fluid to be measured flows, a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 31. Installed, a transmission means 34 for driving the first vibrator 32 and the second vibrator 33, and received signals of the first vibrator 32 and the second vibrator 33, amplifies the signal. Receiving means 35, received wave determining means 36 for outputting a signal when the signal of the receiving means 35 reaches a predetermined value, receiving point detecting means 37 for outputting a signal when the signal of the receiving means 35 falls within a predetermined range, Two reception point storage means 38 for storing the output of the reception point detection means 37; a time measurement means 39 for measuring the propagation time of the ultrasonic signal propagated between the transducers using the signal of the reception point storage means 38; The flow rate is calculated based on the time difference of the time measuring means 39. Those having a quantity computing means 40.

さらに、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段41を設け、第1の振動子32と第2の振動子33が超音波の送受信を切換えて動作するようにしている。受信点記憶手段38は少なくとも2つ以上の記憶部を有し、記憶開始後は前記受信波判定手段36の出力信号があるまで上書き更新するようになっ
ている。
Further, a switching means 41 is provided between the transmission means 34 and the first vibrator 32, and between the second vibrator 33 and the reception means 35, and the first vibrator 32 and the second vibrator 33 are ultrasonic waves. It operates by switching between transmission and reception. The reception point storage means 38 has at least two or more storage units, and after the start of storage, it is overwritten and updated until there is an output signal of the reception wave determination means 36.

制御手段42は、前記送信手段34と前記受信手段35と前記受信波判定手段36と、受信点検知手段37と、受信点記憶手段38と、前記計時手段39と前記流量演算手段40と前記切換手段41との少なくとも1つを制御する。   The control means 42 includes the transmission means 34, the reception means 35, the reception wave determination means 36, the reception point detection means 37, the reception point storage means 38, the timing means 39, the flow rate calculation means 40, and the switching. Control at least one of the means 41.

通常の流速または流量計測の動作を説明する。制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は時間計測始める。   A normal flow rate or flow rate measurement operation will be described. Upon receipt of the start signal from the control means 42, the transmission means 34 pulse-drives the first vibrator 32 for a certain time, and at the same time, the time measuring means 39 starts measuring time.

パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。   An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33.

第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。   The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing.

この超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。   When the reception of the ultrasonic wave is determined, the operation of the time measuring means 39 is stopped, and the flow velocity is obtained from the time information t according to (Equation 1).

但し、計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、確度をφ、音速をc、被測定流体の流速をvとする。   However, the measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the accuracy is φ, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=(1/cosφ)*(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
v = (1 / cosφ) * (L / t) −c (Expression 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

また、第1の超音波振動子32と第2の超音波振動子33との送信、受信方向を切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式2、3,4)より速度vを求めることができる。   Further, the transmission and reception directions of the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. The speed v can be obtained from Equations 2, 3, and 4).

但し、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。   However, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.

t1=L/(c+v*cosφ)・・・・・・・・(式2)
t2=L/(c−v*cosφ)・・・・・・・・(式3)
v=(L/2*cosφ)*((1/t1)−(1/t2))・・・(式4)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。
t1 = L / (c + v * cosφ) (Equation 2)
t2 = L / (c−v * cos φ) (Equation 3)
v = (L / 2 * cosφ) * ((1 / t1) − (1 / t2)) (Expression 4)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, flow rate, distance, and the like.

流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。   When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 31.

動作を図2のタイミング図と図3の受信波形で説明する。制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。   The operation will be described with reference to the timing chart of FIG. 2 and the received waveform of FIG. Measurement is started from the start signal at time t 0 by the control means 42 and the first ultrasonic transducer 32 is driven via the transmission means 34.

そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。   The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1.

その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)に
なると受信波判定手段36が受信波が到達したことを判定して信号を出す。この信号を基に受信点検知手段37が動作を開始し、Vref後の最初の零クロス点を受信点として信号を出し、この点までの時間を計時手段39で求める。切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。
The received signal is amplified by the receiving means 35, and when the signal level reaches a predetermined value (Vref), the received wave determining means 36 determines that the received wave has arrived and outputs a signal. Based on this signal, the reception point detection means 37 starts to operate, outputs a signal with the first zero cross point after Vref as the reception point, and the time until this point is obtained by the time measurement means 39. The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained.

ここで、図3(a)のta点はVrefより後になっている。これは受信波判定としてVrefの値を用い、その後の零クロス点taを受信点としているためである。   Here, the point ta in FIG. 3A is after Vref. This is because the value of Vref is used for reception wave determination, and the subsequent zero cross point ta is used as the reception point.

例えば、信号波を100kHz、伝搬時間を100μs前後とすると、taのような零クロス点は5μs毎に発生する。   For example, if the signal wave is 100 kHz and the propagation time is around 100 μs, a zero cross point such as ta occurs every 5 μs.

受信波は図3でもわかるようにVrefより前にも到達している。これがVrefより前の信号を利用できればできるほど超音波の到達時間に不確かな時間が含まれにくくなる。さらに5μs前の信号を利用できれば100μsの伝搬時間を計測している場合は5%も計測時間を短縮することが可能になり、消費電流の削減を実現できる。零クロス点の基準となる零基準をpとする。   As can be seen from FIG. 3, the received wave reaches before Vref. As the signal before Vref can be used, the arrival time of the ultrasonic wave is less likely to include an uncertain time. Further, if a signal before 5 μs can be used, the measurement time can be shortened by 5% when the propagation time of 100 μs is measured, and the current consumption can be reduced. Let p be the zero reference that is the reference for the zero crossing point.

もし、オフセットがプラス側に発生すると零基準はqのようになり零クロス点は本来より早く到達してしまう。反対にオフセットがマイナス側に発生すると零基準はrのようになり零クロス点は本来より遅く発生してしまう。   If the offset occurs on the plus side, the zero reference becomes q and the zero crossing point arrives earlier than originally intended. On the contrary, when the offset occurs on the minus side, the zero reference becomes r and the zero cross point occurs later than originally intended.

同様にノイズが発生して受信波形がプラス側にずれると零クロス点は本来のta点より遅く到達し、反対にノイズ等により受信波形がマイナス側にずれると零クロス点は本来のta点より早く到達してしまう。   Similarly, when noise occurs and the received waveform shifts to the plus side, the zero cross point arrives later than the original ta point, and conversely, if the received waveform shifts to the minus side due to noise or the like, the zero cross point becomes less than the original ta point. It will arrive early.

このように1点だけの受信点判定ではオフセットやノイズ等の外乱で受信時間の精度が悪くなることが考えられる。   In this way, it is conceivable that the reception time accuracy deteriorates due to disturbances such as offset and noise in the reception point determination of only one point.

そこで、Vrefより前の零クロス点を検出し、オフセットなどの外乱が発生しても制度よく受信点を求める方法を説明する。   Therefore, a method will be described in which a zero cross point before Vref is detected, and a reception point is obtained systematically even when a disturbance such as an offset occurs.

単純に零クロス点を受信波の到達した点、例えば図3のa点を求めることが出来ればよいが、その場合はVrefを設定できない。   It suffices to simply obtain the point where the received wave arrives at the zero cross point, for example, the point a in FIG. 3, but in that case, Vref cannot be set.

それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して誤検知する可能性がある。   If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub. In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows.

このような現象を回避して通常のtaより精度良く受信波の到達点を判定するには零クロス点を連続して2つ以上偶数個求め、その平均値を用いればオフセットのズレを相殺することができる。   In order to avoid such a phenomenon and determine the arrival point of the received wave with higher accuracy than normal ta, two or more consecutive zero cross points are obtained, and the average value is used to cancel the offset deviation. be able to.

例えば、図3(b)に示すようにオフセットが発生することにより従来の零クロス点はta点からtb、tc点にずれることがある。   For example, as shown in FIG. 3B, the occurrence of an offset may cause the conventional zero cross point to shift from the ta point to the tb and tc points.

その場合受信波到達点としてTa時間は非常に不安定となる。零クロス点を2つ用いて平均をとるとtaに対してtx、tbに対してty、tcに対してtzとなりその平均Ta’は一定値となり安定する。ここではVrefより後のtbを用いているが、この操作はVrefより前の受信波を用いて零クロス点を2つ用いても同様の効果はある。   In that case, the Ta time as a reception wave arrival point becomes very unstable. When the average is obtained using two zero cross points, tx is obtained with respect to ta, ty with respect to tb, and tz with respect to tc. Here, tb after Vref is used, but this operation has the same effect even if two zero cross points are used using a received wave before Vref.

零クロス点を偶数個用いると零基準のズレによる受信点の変動を2個用いた場合よりより平均操作により絞り込むことが可能になる。   When an even number of zero cross points are used, it is possible to narrow down by averaging operation more than when two reception point fluctuations due to zero reference deviation are used.

そこで、Vrefより前の零クロス点を検出し始める方法を説明する。単純に零クロス点を受信波の到達した点、例えば図3のa点から求めることが出来ればよいが、その場合はVrefを設定できない。   Therefore, a method of starting to detect the zero cross point before Vref will be described. It suffices to simply obtain the zero cross point from the point where the received wave arrives, for example, point a in FIG. 3, but in that case, Vref cannot be set.

それに近い次のb点を受信波到達点とするとVrefは破線のVref−subとしなければならない。この場合は零信号に近いため流量が流れた場合の波形の変化や少しのノイズ等で反応して誤検知する可能性がある。   If the next b point close to it is a reception wave arrival point, Vref must be a broken line Vref-sub. In this case, since it is close to a zero signal, there is a possibility of erroneous detection by reacting with a change in waveform or a little noise when a flow rate flows.

このような現象を回避して通常のtaより短時間で受信波の到達点を判定するにはVrefより前の零クロス点を少なくとも2つ以上偶数個検知し、その平均値をとればよい。   In order to avoid such a phenomenon and determine the arrival point of the received wave in a shorter time than the normal ta, it is only necessary to detect an even number of at least two zero cross points before Vref and take the average value.

この動作を実現するには制御手段42による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。   In order to realize this operation, measurement is started from the start signal at time t0 by the control means 42 and the first ultrasonic transducer 32 is driven via the transmission means 34.

そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その受信信号は受信手段35で増幅されその信号レベルが予め定めた値(Vref)になると受信波判定手段36が受信波が到達したことを判定して信号を出す。   The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1. The received signal is amplified by the receiving means 35, and when the signal level reaches a predetermined value (Vref), the received wave determining means 36 determines that the received wave has arrived and outputs a signal.

そのために、零クロス点として予め定めた範囲、例えばプラス1mV、マイナス1mV以内に入ると信号を出す受信点検知手段37が動作を開始している。   For this reason, the reception point detecting means 37 that outputs a signal when it falls within a predetermined range as a zero cross point, for example, within plus 1 mV or minus 1 mV, starts operation.

そうすると図4の点aになると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。   Then, when the point a in FIG. 4 is reached, the reception point detection unit 37 outputs a signal, and the reception point storage unit 38-1 stores the output. If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated.

次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−2に記憶する。同様に順次その次の点cにおける受信点データは受信点記憶手段38−3に記憶する。   Next, at the point b, the reception point storage means 37 outputs a signal and stores it in the reception point storage means 38-2. Similarly, the reception point data at the next point c is sequentially stored in the reception point storage means 38-3.

この場合、受信点データが受信点記憶手段38の個数より多い場合は最も古い受信点から順次上書きするように制御手段46が書き込む順番を制御するようにしてもよい。   In this case, when the reception point data is larger than the number of reception point storage means 38, the control unit 46 may control the order of writing so that the oldest reception points are overwritten sequentially.

例えば、図4(b)のように受信点記憶手段38−4まで記憶すると次は受信点記憶手段38−1に戻って上書きしていくような構成である。   For example, as shown in FIG. 4B, after storing up to the reception point storage unit 38-4, the next is to return to the reception point storage unit 38-1 and overwrite.

そして受信信号がVrefを越えると初めて受信波判定手段36が信号を出力する。制御手段46はこの受信波判定手段36から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。   The received wave determination means 36 outputs a signal for the first time when the received signal exceeds Vref. When the signal is output from the reception wave determination means 36, the control means 46 prevents the reception point judging means 37 from outputting a signal at the subsequent zero cross point, or writes to the reception point storage means 38. Ban.

この動作を行うことによりtxまでの零クロス点を少なくとも1つ以上記憶しているため、その中から2つ以上の偶数個を利用し、その平均値を用いて計時手段39で伝搬時間を求める。   Since at least one zero crossing point up to tx is stored by performing this operation, two or more even numbers are used among them, and the propagation time is obtained by the time measuring means 39 using the average value. .

この構成により、上流側の超音波振動子と下流側の超音波振動子間を伝播する超音波の
伝播時間、即ち、超音波の到達時間をトリガ−レベルよりも前の受信した超音波の零クロス点の到達時間を少なくとも連続して2つ以上使い、その平均値を求めて計測することができる。
With this configuration, the propagation time of the ultrasonic wave propagating between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, that is, the arrival time of the ultrasonic wave is set to zero of the received ultrasonic wave before the trigger level. By using at least two cross point arrival times in succession, the average value can be obtained and measured.

このためオフセットなどが重畳していても立ち上がりのゼロ点と立下りのゼロ点で相殺することができる。切換手段41で送受信を切換えて同様の動作を行い計時手段39で求めた時間と先ほど求めた時間の差に基づいて流量演算手段40が流量を算出する。その結果、今までは図4のtaまでかかっていた伝搬時間をtxもしくはそれ以前の零クロス点まで確定することができる。   For this reason, even if an offset or the like is superimposed, it is possible to cancel the rising zero point and the falling zero point. The switching means 41 switches between transmission and reception to perform the same operation, and the flow rate calculation means 40 calculates the flow rate based on the difference between the time obtained by the time measuring means 39 and the time previously obtained. As a result, the propagation time that has been required up to ta in FIG. 4 can be determined up to tx or a zero cross point before that.

具体的にはTa−Tfの時間は送信周波数の半周期Tfの整数分だけ伝搬時間の計測動作時間を短くすることができることになる。   Specifically, the Ta-Tf time can shorten the measurement operation time of the propagation time by an integral number of the half cycle Tf of the transmission frequency.

いままでは図4のtaで伝搬時間を確定していたが、オフセットなどの影響が避けられなかった。この方法では複数の零クロス点の平均値を用いることにより計測した超音波の伝搬時間あるいは到達時間に含まれる誤差を小さくすることができ、高精度な流れ計測を実現できる。   Although the propagation time was fixed at ta in FIG. 4 as it was, the influence of offset and the like was inevitable. In this method, by using the average value of a plurality of zero cross points, an error included in the propagation time or arrival time of the measured ultrasonic wave can be reduced, and highly accurate flow measurement can be realized.

また、零クロス点が多くなるような状態でも受信波判定手段の近傍における複数の零クロス点を確実にとらえることができるとともに受信点記憶手段の数を適度に少なくして順次上書きすることで省電力動作が可能になる。   In addition, even in a state where the number of zero cross points increases, a plurality of zero cross points in the vicinity of the reception wave determination means can be surely captured, and the number of reception point storage means can be appropriately reduced and overwritten sequentially. Power operation becomes possible.

また、受信点記憶手段37の出力を記憶する受信点記憶手段38は記憶動作を行うのに電力を消費するがどの時点から通電して良いかは前もってわかっていない場合が多い。   In addition, the reception point storage unit 38 that stores the output of the reception point storage unit 37 consumes power to perform the storage operation, but it is often not known in advance from which point in time it may be energized.

あまり早く投入すると電力が無駄になるし、受信点を通過してから通電しても意味は無い。   If it is turned on too early, power is wasted, and there is no point in energizing after passing the reception point.

そこで、図5に示すように制御手段42内に電源供給手段43を設けて電力制御を行う。タイミングは図6で説明する。一番初めに計測を開始する場合はTaが不明である。超音波振動子32,33の物理的距離からおおよその時間は推定できるが確かでは無い。   Therefore, as shown in FIG. 5, a power supply means 43 is provided in the control means 42 to perform power control. The timing will be described with reference to FIG. When measurement is started first, Ta is unknown. Although the approximate time can be estimated from the physical distance between the ultrasonic transducers 32 and 33, it is not certain.

そこで制御手段42は電源供給手段43を用いて受信点記憶手段38への通電タイミングを調節する。   Therefore, the control means 42 uses the power supply means 43 to adjust the energization timing to the reception point storage means 38.

まず、時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の超音波振動子32を駆動する。   First, measurement is started from a start signal at time t 0 and the first ultrasonic transducer 32 is driven via the transmission unit 34.

そこで発生した超音波信号は流路内を伝搬し時刻t1で第1の超音波振動子32から出た超音波は第2の超音波振動子33に到達する。その前時刻t2に電源供給手段43を用いて受信点記憶手段38への通電を開始する。t2はt1より十分短い時間とする。   The ultrasonic signal generated there propagates through the flow path, and the ultrasonic wave emitted from the first ultrasonic transducer 32 reaches the second ultrasonic transducer 33 at time t1. At the previous time t2, energization to the reception point storage means 38 is started using the power supply means 43. t2 is a time sufficiently shorter than t1.

このように、制御手段42は受信点検知手段37の出力を記憶する受信点記憶手段38への通電を初回のみ長時間とする電源供給手段43を有することにより、最初の計測時は本来受信波が到達するよりも前に受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえることが可能になる。   As described above, the control means 42 has the power supply means 43 for energizing the reception point storage means 38 for storing the output of the reception point detection means 37 for a long time only for the first time. By preparing to store the output of the received wave detection means before the wave arrives, it is possible to reliably receive the received wave.

また、初回により受信点が確定し伝搬時間が求まる。その場合は2回目以降の通電時間を調整することが容易になる。   In addition, the reception point is determined by the first time and the propagation time is obtained. In that case, it becomes easy to adjust the energization time after the second time.

例えば、図6で最初はt2において受信点記憶手段38への通電を開始したが、実際に超音波が伝搬して受信したのはt1である。   For example, in FIG. 6, at first, energization to the reception point storage unit 38 is started at t2, but it is at t1 that the ultrasonic wave actually propagates and is received.

次の計測においては伝搬時間が大幅に変化することが無いため制御手段42にある電源供給手段43はt1に近くてまだ受信信号が到達していないtまで通電するのを待つことが可能になる。 Next the control unit 42 since it is not the propagation time varies considerably in measuring the power supply means 43 to be capable of waiting for energizing until t 3 when yet received signal closer to t1 has not reached Become.

3回目は2回目の伝搬時間を用いたり、または1回目と2回目の移動平均を用いたりして伝播時間を予想し、通電時間を極力短くすることが可能になる。   The third time uses the second propagation time, or uses the first and second moving averages to predict the propagation time, thereby making it possible to shorten the energization time as much as possible.

このように制御手段42で受信点検知手段37の出力を記憶する受信点記憶手段38への通電を2回目以降、前回の値を基に短く通電するよう電源供給手段43のタイミングを調節することにより、受信波が到達する直前から受信波検知手段の出力を記憶する準備をすることで確実に受信波をとらえるとともに省電力動作が可能になる。   In this way, the control means 42 adjusts the timing of the power supply means 43 so that the reception point storage means 38 for storing the output of the reception point detection means 37 is energized for the second time and thereafter, based on the previous value. Thus, by preparing for storing the output of the reception wave detection means immediately before the reception wave arrives, the reception wave can be reliably captured and a power saving operation can be performed.

この説明では受信点記憶手段38の通電時間のみ調節するようになっているが、受信信号を増幅する受信手段35から下流の動作が電源投入時に不安定な状態が長く続かなければそれら一式もしくは特に電力を必要とする部位の通電を電源供給手段43で調整すればさらに省電力が可能になる。   In this description, only the energization time of the reception point storage means 38 is adjusted. However, if the operation downstream from the reception means 35 for amplifying the reception signal does not continue to be unstable for a long time when the power is turned on, a set of them or particularly If the power supply means 43 adjusts the energization of the part that requires power, further power saving can be achieved.

また図4(a)の零クロス点aからdの状態が図6のt3からt1の付近を拡大したものと同等とする。この場合、受信手段35は受信信号が到達する前から動作し、受信点判定手段37も動作しa,b,c,d毎に信号を送出している。   Further, the state from the zero cross point a to d in FIG. 4A is equivalent to the enlarged state in the vicinity of t3 to t1 in FIG. In this case, the reception unit 35 operates before the reception signal arrives, and the reception point determination unit 37 also operates to send a signal for each of a, b, c, and d.

図7において、制御手段42はこの受信点判定手段37の出力信号をカウントし予め予め定めた回数例えば2回とするとb点まで受信点が到達するとトリガ手段44が電源供給手段43を介して受信点記憶手段38への通電を開始する。受信確定するtxまでの通電時間をより短くすることができる。   In FIG. 7, the control means 42 counts the output signal of the reception point determination means 37, and when the number of times reaches a predetermined number of times, for example, twice, the trigger means 44 receives via the power supply means 43 when the reception point reaches the point b. Energization of the point storage means 38 is started. The energization time until tx when reception is confirmed can be further shortened.

このように制御手段42は受信点検知手段37の出力が予め定めた回数より多くなると信号を出すトリガ手段44を有し電源供給手段43は前記トリガ手段の出力により受信点検知手段37の出力を記憶する受信点記憶手段38への通電を開始することにより、そこからの零クロス点を複数個Vrefまでの数もしくは予め準備している複数の受信点記憶手段38の個数だけ記憶する。そしてその中から連続した2つの零クロス点データを用いて伝搬時間を求める。   As described above, the control means 42 has the trigger means 44 for outputting a signal when the output of the reception point detection means 37 exceeds the predetermined number of times, and the power supply means 43 outputs the output of the reception point detection means 37 by the output of the trigger means. By starting energization to the reception point storage means 38 to be stored, the zero cross points from the reception point storage means 38 are stored up to the number of Vrefs or the number of reception point storage means 38 prepared in advance. And the propagation time is calculated | required using two continuous zero crossing point data from them.

このように確実に受信波が到達したことを確認してから受信波検知手段37の出力を記憶する準備をすることで信頼性が向上するとともにさらに短時間動作による省電力動作が可能になる。   Thus, by confirming that the received wave has arrived reliably, and preparing to store the output of the received wave detecting means 37, the reliability is improved and a power saving operation by a shorter time operation becomes possible.

また、図4における零クロス点は受信波にノイズが重畳されていなければほぼ送信周波数の半分の周期で発生してきている。   In addition, the zero cross point in FIG. 4 is generated at a period substantially half the transmission frequency if noise is not superimposed on the received wave.

しかし実際に流路に流体が流れている場合はその流体により下流側で何かが動作している。この動作や他の外来ノイズ等により受信波にスパイク状の信号が重畳されることもある。この場合ノイズが零クロスした点を受信点とすると伝搬時間の計算が大きくずれてしまう。   However, when a fluid actually flows in the flow path, something is operating downstream by the fluid. A spike-like signal may be superimposed on the received wave due to this operation or other external noise. In this case, if the point where the noise crosses zero is taken as the reception point, the calculation of the propagation time will be greatly shifted.

これを防止するため図8に示すように制御手段42に時間検定手段45を設ける。   In order to prevent this, the time verification means 45 is provided in the control means 42 as shown in FIG.

動作を説明する。まず、図4と同様に零クロス点を受信し始めると受信点検知手段37が信号を出力し、その出力を受信点記憶手段38−1が記憶する。   The operation will be described. First, similarly to FIG. 4, when the reception of the zero cross point starts, the reception point detection means 37 outputs a signal, and the reception point storage means 38-1 stores the output.

記憶する値は送信時点からの経過時間、もしくは経過時間を計測できる特定一定時間幅を有するパルス数等とすると後の演算が容易になる。   If the value to be stored is the elapsed time from the time of transmission or the number of pulses having a specific fixed time width in which the elapsed time can be measured, the subsequent calculation is facilitated.

次に点bになると同様に受信点記憶手段37が信号を出力し、受信点記憶手段38−2が受信点データを記憶する。   Next, when the point b is reached, the reception point storage means 37 outputs a signal, and the reception point storage means 38-2 stores the reception point data.

これを点c、dと繰返しtxの点を記憶した後、受信信号がVrefを越える。   After storing the points c and d and the point tx, the received signal exceeds Vref.

この時初めて受信波判定手段36が信号を出力する。制御手段はこの受信波判定手段36から信号が出力されると、これ以降の零クロス点で受信点見地手段37が信号を出さないようにするか、もしくは受信点記憶手段38への書き込みを禁止する。   At this time, the reception wave determination means 36 outputs a signal for the first time. When the signal is output from the reception wave determination unit 36, the control unit prevents the reception point determination unit 37 from outputting a signal at the subsequent zero cross point or prohibits writing to the reception point storage unit 38. To do.

そして、次の零クロス点taの時間を受信点記憶手段38を介さずに直接制御手段の時間検定手段45に送る。   Then, the time of the next zero cross point ta is sent directly to the time verification means 45 of the control means without going through the reception point storage means 38.

時間検定手段45は受信点記憶手段38にある受信点データの値とtaの値との差を順次求める。   The time verification means 45 sequentially obtains the difference between the value of the reception point data in the reception point storage means 38 and the value of ta.

この差が予め定めた範囲内であればa、b、c、tx点のデータはノイズによるものではないと判断し、流量演算として採用できると判定する。そしてその中の連続して2つ以上の偶数個の零クロス点を用いて流量を演算する。   If this difference is within a predetermined range, it is determined that the data at points a, b, c, and tx are not due to noise, and it is determined that the data can be adopted as a flow rate calculation. Then, the flow rate is calculated using two or more even-numbered zero cross points in succession.

例えば、送信周波数が100kHzとすると周期の1/2の周期は5μsとなるそこでtx−taが予め定めた5μs近傍以内であればtxは有効な受信点であると判断する。   For example, if the transmission frequency is 100 kHz, the half of the cycle is 5 μs. Therefore, if tx-ta is within a predetermined vicinity of 5 μs, it is determined that tx is an effective reception point.

同様にa−taが5μsの整数倍の近傍以内であれば有効な受信点と判断する。以下b、c、d点についても同様に判断していく。   Similarly, if a-ta is within the vicinity of an integer multiple of 5 μs, it is determined as an effective reception point. The same determination is made for points b, c, and d.

このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力と、受信点記憶手段38の値の差を演算する時間検定手段45を有し、前記時間検定手段45の値が予め定めた値以内であれば計測を有効とすることで、ノイズなどによる零クロス点の誤検知を防止することができ正確な零クロス点を選定することで信頼性の向上が可能になる。   As described above, the control means 42 has the time verification means 45 for calculating the difference between the output of the reception point detection means 37 after the output of the reception wave determination means 36 and the value of the reception point storage means 38, and the time verification means 45. If the value is within a predetermined value, measurement can be enabled to prevent false detection of the zero cross point due to noise, etc., and reliability can be improved by selecting an accurate zero cross point. become.

また受信信号が図4の零クロス点txより先Vrefを越えた後は受信手段35より後段の回路は計時手段39、流量演算手段40以外を動作する必要が無い。   Further, after the received signal exceeds Vref before the zero cross point tx in FIG. 4, the circuit subsequent to the receiving means 35 does not need to operate other than the time measuring means 39 and the flow rate calculating means 40.

したがって、受信波判定手段36により受信波がVrefを越えたことを検知すると制御手段42は受信点記憶手段38への通電を停止して省電力動作を行うとともに必要のない受信回路の通電動作を停止することが可能である。   Therefore, when the received wave determination means 36 detects that the received wave exceeds Vref, the control means 42 stops the energization to the reception point storage means 38 to perform the power saving operation and perform the unnecessary energization operation of the receiving circuit. It is possible to stop.

停止を行う時点はVrefを越えた直後でも良いし、また通電停止時の信号によりノイズが発生して計時手段39などの動作に悪影響を与えてもよくないため次の零クロス点taを検知してから通電停止してもよい。   The time of stopping may be immediately after exceeding Vref, or noise may be generated by a signal at the time of stopping energization and the operation of the timing means 39 etc. may not be adversely affected, so that the next zero cross point ta is detected. The power supply may be stopped after that.

このように制御手段42は受信波判定手段36の出力後の受信点検知手段37の出力後予め定めた時間経過後に電源供給手段43を介して受信点記憶手段38への電源供給を停
止することにより、余分な零クロス点を計測して記憶する動作を停止することができ省電力動作を実現することが可能になる。
In this way, the control means 42 stops the power supply to the reception point storage means 38 via the power supply means 43 after the elapse of a predetermined time after the output of the reception point detection means 37 after the output of the reception wave determination means 36. As a result, the operation of measuring and storing the extra zero cross point can be stopped, and the power saving operation can be realized.

なお、図3(b)で受信到達点をtx,ta2点の平均値Ta’を確定できると説明したが、従来の到達点Taと異なるように見えるかもしれないので説明する。   Although it has been described in FIG. 3B that the average value Ta ′ of the tx and ta2 points can be determined as the reception arrival point, it will be described because it may seem different from the conventional arrival point Ta.

本来の受信到達点は図3のa点となる。この点だけを検出することは前述したように非常に困難である。   The original reception arrival point is point a in FIG. As described above, it is very difficult to detect only this point.

そこで、taまでの時間Taを求め、予め決まった定数を差し引くことでa点までの時間を求めている。   Therefore, the time Ta to ta is obtained, and the time to point a is obtained by subtracting a predetermined constant.

したがって、txとtaを用いた場合は受信波の4分の1周期(ta−tx)/2の値だけ予め決まった定数を調整すれば受信到達点aまでの時間を演算することが可能である。TaよりTa’の方が誤差が少ないためaまでの時間が安定して求まるわけである。この説明は2点の零クロス点を用いているが偶数個の零クロス点の場合も同様に安定する。   Therefore, when tx and ta are used, the time to the reception arrival point a can be calculated by adjusting a predetermined constant by a value of a quarter period (ta-tx) / 2 of the received wave. is there. Since Ta 'has less error than Ta, the time to a can be obtained stably. This explanation uses two zero cross points, but the case of an even number of zero cross points is similarly stable.

(実施の形態2)
実施の形態2の流量計測装置について説明する。実施の形態1と異なるところは、振動子32,33や送信手段34、受信手段35、受信手段35の信号が予め定めた値になると信号を出す受信波判定手段36、受信手段35の信号が予め定めた範囲になると信号を出す受信点検知手段37、前記受信点検知手段37の出力を記憶する受信点記憶手段38、前記受信点記憶手段38の信号を用いて振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段39、前記計時手段39の計時差に基づいて流量を算出する流量演算手段40、送受信を切換える切換手段41との少なくとも1つを制御する制御手段42の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体46を用いていることである。
(Embodiment 2)
A flow rate measuring apparatus according to Embodiment 2 will be described. The difference from the first embodiment is that the signals of the reception wave determination means 36 and the reception means 35 that output signals when the signals of the vibrators 32 and 33, the transmission means 34, the reception means 35, and the reception means 35 reach predetermined values. Receiving point detecting means 37 that outputs a signal when it falls within a predetermined range, receiving point storing means 38 that stores the output of the receiving point detecting means 37, and the signal transmitted from the receiving point storing means 38 that has propagated between the transducers. Operation of control means 42 for controlling at least one of time measuring means 39 for measuring the propagation time of the sound wave signal, flow rate calculating means 40 for calculating the flow based on the time difference of the time measuring means 39, and switching means 41 for switching between transmission and reception. The storage medium 46 having a program for causing the computer to function is ensured.

図1において、実施の形態1で示した制御手段42の動作を行うには、予め実験等によりtxを求めるための受信点記憶手段の動作、通電方法を求めておいたり、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求め、ソフトをプログラムとして記憶媒体46に格納しておく。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。   In FIG. 1, in order to perform the operation of the control unit 42 shown in the first embodiment, the operation of the reception point storage unit for obtaining tx and the energization method are obtained in advance by experiments or the like, the secular change, the temperature change. Correlation such as operation timing is obtained with respect to the stability of the system, and the software is stored in the storage medium 46 as a program. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.

切換手段41の動作により送受信の方向が変化するため条件設定などの個数が増加してくるがこれをコンピュータによる動作で調整すると容易に実現可能である。   Since the direction of transmission / reception changes due to the operation of the switching means 41, the number of condition settings and the like increases.

このように制御手段42の動作をプログラムで行うことができるようになると流量演算の補正係数の条件設定、変更や計測間隔の調整などが容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに流速または流量計測の精度向上を行うことができる。   As described above, when the operation of the control means 42 can be performed by a program, it is possible to easily set, change, and adjust the measurement interval of the correction coefficient for the flow rate calculation, and to flexibly cope with aging. The accuracy of flow velocity or flow rate measurement can be improved more flexibly.

なお、本実施例において制御手段42以外の動作もマイコン等によりプログラムで行ってもよい。   In the present embodiment, operations other than the control means 42 may be performed by a program such as a microcomputer.

これにより制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、測定方法の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上を行うことができる。   As a result, it has a configuration that has a program for causing the computer to function as a control means, making it easy to set and change the operation of the measurement method and flexibly respond to secular changes, etc. It can be performed.

本発明の流速または流量計測装置は零クロス点を2つ以上、上書きして記憶し続け、受信波が確実に届いたことを示す受信波判定手段に出力信号があるとその動作を停止する。   The flow velocity or flow rate measuring apparatus of the present invention continues to store two or more zero cross points by overwriting, and stops the operation when there is an output signal in the received wave determining means indicating that the received wave has arrived reliably.

これにより、比較的受信波形の振幅の大きい部分に受信波判定手段によるトリガ−点を設定し、安定してトリガ−を動作させるとともに、その前の零クロス点のうち最適な2点以上偶数個の平均値を伝播時間計測に用いることができるので、誤差の少ない伝播時間を計測することができるとともに、計測時間を短縮化できることで省電力動作を実現することが可能になる。   As a result, the trigger point by the reception wave determining means is set at a portion where the amplitude of the reception waveform is relatively large, and the trigger is stably operated. Can be used for the propagation time measurement, so that it is possible to measure the propagation time with little error and to reduce the measurement time, thereby realizing a power saving operation.

本発明の流速または流量計測装置の全体ブロック図Overall block diagram of the flow velocity or flow rate measuring device of the present invention (a)は同計測装置における計測制御手段の動作を示すタイミング図、(b)は同計測装置における送信波の動作を示すタイミング図、(c)は同計測装置における受信波および反射波の動作を示すタイミング図(A) is a timing diagram showing the operation of the measurement control means in the measuring device, (b) is a timing diagram showing the operation of the transmitted wave in the measuring device, and (c) is the operation of the received wave and the reflected wave in the measuring device. Timing diagram showing 同計測装置における受信波を示すタイミング図Timing chart showing received waves in the same measuring device 同計測装置における受信波の測定を示すタイミング図Timing chart showing measurement of received wave in the same measuring device 同計測装置における受信波を示すタイミング図Timing chart showing received waves in the same measuring device 同計測装置における受信点記憶手段の動作を示すタイミング図Timing chart showing the operation of the receiving point storage means in the same measuring device 本発明の流速または流量計測装置他の動作を示す全体ブロック図Overall block diagram showing other operations of the flow velocity or flow rate measuring device of the present invention (a)は同計測装置における計測制御手段の動作を示すタイミング図、(b)は同計測装置における送信波の動作を示すタイミング図、(c)は同計測装置における受信波および反射波の動作を示すタイミング図(A) is a timing diagram showing the operation of the measurement control means in the measuring device, (b) is a timing diagram showing the operation of the transmitted wave in the measuring device, and (c) is the operation of the received wave and the reflected wave in the measuring device. Timing diagram showing 本発明の流速または流量計測装置他の動作を示す全体ブロック図Overall block diagram showing other operations of the flow velocity or flow rate measuring device of the present invention 本発明の流速または流量計測装置他の動作を示す全体ブロック図Overall block diagram showing other operations of the flow velocity or flow rate measuring device of the present invention 従来の流量計測装置の断面図Sectional view of a conventional flow measurement device

符号の説明Explanation of symbols

31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 受信波判定手段
37 受信点検知手段
38 受信点記憶手段
39 計時手段
40 流量演算手段
41 切換手段
42 制御手段
43 電源供給手段
44 トリガ手段
45 時間検定手段
46 記憶媒体
Reference Signs List 31 Flow path 32 First vibrator 33 Second vibrator 34 Transmitting means 35 Receiving means 36 Received wave determining means 37 Receiving point detecting means 38 Receiving point storage means 39 Timing means 40 Flow rate calculating means 41 Switching means 42 Control means 43 Power supply means 44 Trigger means 45 Time verification means 46 Storage medium

Claims (4)

被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、
一方の振動子を駆動する送信手段と、
他方の受信側振動子の出力信号を電気信号に変換する受信手段と、
受信手段の信号が予め定めた値になると信号を出す受信波判定手段と、
受信手段の信号が予め定めたゼロクロス点と判定する範囲になるたびに信号を出す受信点検知手段と、
前記受信波判定手段の信号出力以前に前記受信点検知手段で出力された複数の出力信号を記憶する受信点記憶手段と、
前記受信点記憶手段で記憶した2つ以上の偶数個の信号を平均して振動子間を伝搬した超音波信号の伝搬時間を計時する計時手段と、
前記計時手段の計時差に基づいて流量を算出する流量演算手段と、
前記送信手段、受信手段、受信波判定手段、受信点検知手段、受信点記憶手段、計時手段、および流量演算手段との少なくとも1つを制御する制御手段とを備え、
前記受信点記憶手段は前記受信波判定手段の出力信号があるまで上書き更新する流量計測装置。
A pair of transducers arranged in the flow path of the fluid to be measured and transmitting and receiving ultrasonic waves;
Transmission means for driving one vibrator;
Receiving means for converting the output signal of the other receiving-side vibrator into an electrical signal;
A received wave determining means for outputting a signal when the signal of the receiving means reaches a predetermined value;
A reception point detection means for outputting a signal each time the signal of the reception means falls within a range determined as a predetermined zero-cross point ;
Receiving point storing means for storing a plurality of output signals output by the receiving point detecting means before the signal output of the received wave determining means ;
Time measuring means for measuring the propagation time of the ultrasonic signal that has averaged two or more signals stored in the receiving point storage means and propagated between the transducers;
Flow rate calculation means for calculating a flow rate based on the time difference of the time measuring means;
Control means for controlling at least one of the transmission means, reception means, reception wave determination means, reception point detection means, reception point storage means, timing means, and flow rate calculation means,
The reception point storage means is a flow rate measurement device that overwrites and updates until there is an output signal of the received wave determination means.
制御手段は受信点検知手段の出力が予め定めた回数より多くなると信号を出すトリガ手段を有し電源供給手段は前記トリガ手段の出力により受信点検知手段の出力を記憶する受信点記憶手段への通電を開始する請求項1記載の流量計測装置。 The control means includes trigger means for outputting a signal when the output of the reception point detection means exceeds a predetermined number of times, and the power supply means supplies the reception point storage means for storing the output of the reception point detection means by the output of the trigger means. The flow rate measuring device according to claim 1 which starts energization. 制御手段は受信波判定手段の出力後の受信点検知手段の出力と、受信点記憶手段の値の差を演算する時間検定手段を有し、前記時間検定手段の値が予め定めた値以内であれば計測を有効とする請求項1記載の流量計測装置。 The control means has time verification means for calculating the difference between the output of the reception point detection means after the output of the reception wave determination means and the value of the reception point storage means, and the value of the time verification means is within a predetermined value. The flow rate measuring device according to claim 1, wherein if present, measurement is effective. 制御手段は受信波判定手段の出力後の受信点検知手段の出力後予め定めた時間経過後に電源供給手段を介して受信点記憶手段への電源供給を停止する請求項1記載の流量計測装置。 2. The flow rate measuring device according to claim 1, wherein the control means stops power supply to the reception point storage means via the power supply means after elapse of a predetermined time after output of the reception point detection means after output of the reception wave determination means.
JP2007326891A 2007-12-19 2007-12-19 Flow measuring device Active JP5292798B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007326891A JP5292798B2 (en) 2007-12-19 2007-12-19 Flow measuring device
PCT/JP2008/003750 WO2009078161A1 (en) 2007-12-19 2008-12-12 Flow volume measuring apparatus
US12/809,311 US8903663B2 (en) 2007-12-19 2008-12-12 Flow measurement device
EP08861745.1A EP2224219B1 (en) 2007-12-19 2008-12-12 Ultrasonic flow measurement device
CN2008801220285A CN101903751B (en) 2007-12-19 2008-12-12 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326891A JP5292798B2 (en) 2007-12-19 2007-12-19 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2009150681A JP2009150681A (en) 2009-07-09
JP5292798B2 true JP5292798B2 (en) 2013-09-18

Family

ID=40919972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326891A Active JP5292798B2 (en) 2007-12-19 2007-12-19 Flow measuring device

Country Status (1)

Country Link
JP (1) JP5292798B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064516A (en) * 2009-09-16 2011-03-31 Panasonic Corp Flow measurement device for fluid
JP7298186B2 (en) * 2019-02-26 2023-06-27 セイコーエプソン株式会社 Ultrasonic measuring device and ultrasonic measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443659B2 (en) * 2001-12-05 2003-09-08 松下電器産業株式会社 Flow measurement device
JP3596528B2 (en) * 2002-02-08 2004-12-02 松下電器産業株式会社 Flow measurement device
JP4588508B2 (en) * 2005-03-28 2010-12-01 帝人ファーマ株式会社 Gas flow rate and gas concentration measurement device using ultrasonic propagation time measurement method
JP4835068B2 (en) * 2005-08-16 2011-12-14 パナソニック株式会社 Fluid flow measuring device

Also Published As

Publication number Publication date
JP2009150681A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US6796189B1 (en) Ultrasonic flowmeter having sequentially changed driving method
JP3716274B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
US8903663B2 (en) Flow measurement device
JP2011158470A (en) Ultrasonic flowmeter
JP5076524B2 (en) Flow velocity or flow rate measuring device and its program
JP2008190971A (en) System and program for measuring flow velocity or flow quantity
JP5292798B2 (en) Flow measuring device
JP4992890B2 (en) Flow velocity or flow rate measuring device
JP5123469B2 (en) Ultrasonic flow meter
JP5228462B2 (en) Fluid flow measuring device
JP2006343292A (en) Ultrasonic flowmeter
JP2006308439A (en) Flow measuring device of fluid
JPH1151725A (en) Ultrasonic flowmeter
JP5292797B2 (en) Flow measuring device
JP5556034B2 (en) Flow velocity or flow rate measuring device
JP2011064516A (en) Flow measurement device for fluid
JP2011064517A (en) Flow measuring device of fluid
JP5262891B2 (en) Flow velocity or flow rate measuring device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP3624743B2 (en) Ultrasonic flow meter
JP5177063B2 (en) Fluid flow measuring device
JP4686848B2 (en) Flow measuring device
JP7320776B2 (en) ultrasonic flow meter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP7246021B2 (en) ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5292798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151