JP4835068B2 - Fluid flow measuring device - Google Patents

Fluid flow measuring device Download PDF

Info

Publication number
JP4835068B2
JP4835068B2 JP2005235733A JP2005235733A JP4835068B2 JP 4835068 B2 JP4835068 B2 JP 4835068B2 JP 2005235733 A JP2005235733 A JP 2005235733A JP 2005235733 A JP2005235733 A JP 2005235733A JP 4835068 B2 JP4835068 B2 JP 4835068B2
Authority
JP
Japan
Prior art keywords
time
measurement
flow rate
fluid flow
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005235733A
Other languages
Japanese (ja)
Other versions
JP2007051889A (en
Inventor
晃一 竹村
大介 別荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005235733A priority Critical patent/JP4835068B2/en
Publication of JP2007051889A publication Critical patent/JP2007051889A/en
Application granted granted Critical
Publication of JP4835068B2 publication Critical patent/JP4835068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波信号の伝搬時間を計測することにより流体の流速を検出し、必要に応じて流体の流量を計測する流体の流れ計測装置に関するものである。   The present invention relates to a fluid flow measurement device that detects the flow velocity of a fluid by measuring the propagation time of an ultrasonic signal and measures the flow rate of the fluid as necessary.

従来、この種の流れ計測装置においては、二つの振動子間の送受信を複数回繰り返すことにより、計測分解能を高めるシングアラウンド法という手法を用いたものが提案されている(例えば、特許文献1参照)。   Conventionally, this type of flow measurement device has been proposed using a technique called a sing-around method that increases measurement resolution by repeating transmission and reception between two vibrators a plurality of times (see, for example, Patent Document 1). ).

図8は、シングアラウンド法を用いた流量計測装置のブロック図である。流体管路31の途中に、超音波を送信する第1振動子32と、送信された超音波を受信する第2振動子33が流れ方向に配置されていて、これら一対の振動子32、33を用いて超音波の伝搬時間を計測する計測部34と、計測部34を制御する制御部35、計測部34の計測結果を基に流体の流速および/または流量を求める演算部36とで構成されている。   FIG. 8 is a block diagram of a flow rate measuring apparatus using the sing-around method. A first vibrator 32 that transmits ultrasonic waves and a second vibrator 33 that receives the transmitted ultrasonic waves are disposed in the flow direction in the middle of the fluid conduit 31, and the pair of vibrators 32 and 33. And a control unit 35 for controlling the measurement unit 34, and a calculation unit 36 for determining the flow velocity and / or flow rate of the fluid based on the measurement result of the measurement unit 34. Has been.

ここで、音速をC、流速をv、一対の振動子32、33間の距離をL、超音波の伝搬方向と流れの方向とがなす角度をθとし、流体管路31の上流側に配置された第1振動子32から超音波を送信し、下流側に配置された第2振動子33で受信した場合の伝搬時間をt1、逆方向の伝搬時間をt2とした場合t1およびt2は次式で求めることができる。   Here, the sound velocity is C, the flow velocity is v, the distance between the pair of transducers 32 and 33 is L, and the angle between the ultrasonic wave propagation direction and the flow direction is θ, and is arranged upstream of the fluid conduit 31. When the ultrasonic wave is transmitted from the first vibrator 32 and received by the second vibrator 33 disposed on the downstream side, the propagation time is t1, and the reverse propagation time is t2, t1 and t2 are It can be obtained by an expression.

t1=L/(C+vcosθ) (式1)
t2=L/(C−vcosθ) (式2)
(式1)および(式2)を変形し、(式3)で流速vが求まる。
t1 = L / (C + v cos θ) (Formula 1)
t2 = L / (C−v cos θ) (Formula 2)
(Formula 1) and (Formula 2) are modified, and the flow velocity v is obtained by (Formula 3).

v=L・(1/t1 −1/t2)/2cosθ (式3)
(式3)で求めた値に流体管路31の断面積を掛ければ流体の流量を求めることができる。
v = L · (1 / t1−1 / t2) / 2 cos θ (Formula 3)
The flow rate of the fluid can be obtained by multiplying the value obtained by (Equation 3) by the cross-sectional area of the fluid conduit 31.

ところで、(式3)において、括弧内の項は(式4)のように変形できる。   By the way, in (Equation 3), the term in parentheses can be transformed as in (Equation 4).

(t2−t1)/t1・t2 (式4)
ここで、(式4)の分母の項は流速の変化に関わらずほぼ一定の値となるが、分子の項は流速とほぼ比例した値となる。したがって、ふたつの伝搬時間の差を精度よく計測する必要がある。
(T2-t1) / t1 · t2 (Formula 4)
Here, the denominator term in (Equation 4) has a substantially constant value regardless of the change in flow velocity, whereas the numerator term has a value that is substantially proportional to the flow velocity. Therefore, it is necessary to accurately measure the difference between the two propagation times.

そのため、流速が遅くなるほど、微小な時間差を求める必要があり、単発現象として計測するには計測部34は,例えば、ナノ秒オーダーの非常に小さな時間分解能を有する必要がある。これだけの時間分解能を実現するのは難しく、仮に実現できたとしても時間分解能を上げることによる消費電力の増大を招くこととなる。   For this reason, as the flow rate becomes slower, it is necessary to obtain a minute time difference, and in order to measure as a single phenomenon, the measurement unit 34 needs to have a very small time resolution on the order of nanoseconds, for example. It is difficult to realize such a time resolution, and even if it can be realized, power consumption is increased by increasing the time resolution.

その結果、超音波の送信を何回も繰り返し計測してその平均値を求めることにより必要な時間分解能を実現している。すなわち、計測部34の時間分解能をTA、繰り返し回数をMとすれば、この繰り返し計測の間、計測部34を連続して動作させることにより、伝搬時間の計測分解能はTA/Mとすることができる。したがって、消費電力を増大させることなく高分解能の計測が実現できる。
特開2000−310550号公報
As a result, the necessary time resolution is realized by repeatedly measuring the transmission of ultrasonic waves and obtaining the average value. That is, if the time resolution of the measurement unit 34 is TA and the number of repetitions is M, the measurement resolution of the propagation time can be set to TA / M by continuously operating the measurement unit 34 during this repeated measurement. it can. Therefore, high-resolution measurement can be realized without increasing power consumption.
JP 2000-310550 A

しかしながら、前記従来の構成では、繰り返しの連続動作を前提としているので、一連の計測動作に必要な時間が長くなり電流消費量が増えてしまう。したがって、家庭用のガスメータのように電池駆動で年単位の動作保証を求められるシステムにおいては、電流消費をできるだけ抑えるために、1度繰り返し計測を終えた後は、ある程度の休止期間を置く必要があった。   However, since the conventional configuration is based on the premise of repeated continuous operation, the time required for a series of measurement operations becomes longer and current consumption increases. Therefore, in a system such as a home gas meter that requires battery-operated yearly operation guarantee, it is necessary to leave a certain period of pause after repeating measurement once in order to reduce current consumption as much as possible. there were.

その結果、流体の局所的な情報しか得ることができず、比較的短い周期で繰り返される変動性の流れに対しては、追従性が悪いという課題があった。   As a result, only local information of the fluid can be obtained, and there is a problem that followability is poor with respect to a variable flow repeated at a relatively short period.

本発明は、上記従来の課題を解決するもので、計測間隔を自由に設定し、流量などの変化に対して追従性の高い流体の流れ計測装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a fluid flow measurement device that can set a measurement interval freely and has high followability to changes in flow rate and the like.

前記従来の課題を解決するために、本発明の流体の流れ計測装置は、超音波信号によって連続して複数回発生するゼロクロス点を予め定められた数だけ検出する検出手段と、検出手段で検出した各ゼロクロス点までの経過時間を計測する計時手段と、計時手段で求めた経過時間の平均値を求めることにより伝搬時間を求める時間演算手段とを備えているので、ゼロクロス点の検出回数分だけ計時手段の計測分解能が高められることになり、連続の繰り返し計測を行うことなく高い分解能を実現できるため、計測間隔の自由度が高まり、流量変化に対しての追従性を高めることができる。   In order to solve the above-described conventional problems, the fluid flow measurement device according to the present invention is configured to detect a predetermined number of zero-cross points that are generated a plurality of times in succession by an ultrasonic signal, and a detection unit. It has time measuring means to measure the elapsed time to each zero cross point and time calculation means to find the propagation time by calculating the average value of the elapsed time obtained by the time measuring means, so only the number of detection times of zero cross points Since the measurement resolution of the time measuring means is increased and a high resolution can be realized without performing continuous repeated measurement, the degree of freedom of the measurement interval is increased and the followability to the flow rate change can be improved.

本発明の流量計測装置は、連続の繰り返し計測を行うことなく高い分解能を実現できる。   The flow rate measuring apparatus of the present invention can realize high resolution without performing continuous repeated measurement.

第1の発明は、流体管路に設けられ超音波信号を送信する第1振動子と、前記第1振動子から送信された超音波信号を受信する第2振動子と、前記第2振動子で受信された超音波信号によって連続して複数回発生するゼロクロス点を予め定められた数だけ検出する検出手段と、前記第1振動子の送信開始より起動し前記検出手段で検出されたゼロクロス点各々の経過時間を計時した後停止する計時手段と、前記計時手段で計測された値の平均値を用いて伝搬時間を算出する時間演算手段と、前記計時手段による計測が予め定めた回数終了する毎に前記第1振動子および第2振動子の送受信の役割を切り替える切替手段と、前記時間演算手段で求めた双方向の伝搬時間を用いて流速および/または流量を算出する演算手段とを備え、前記流量演算手段で求めた流量が大きくなるにしたがって、前記検出手段で検出するゼロクロス点の数を少なくしたことにより、検出手段で超音波信号のゼロクロス点を予め定められた数だけ検出し、計時手段で計測された送信開始から各ゼロクロス点までの経過時間の平均値を求めることにより伝搬時間を求めているので、ゼロクロス点の検出回数分だけ計時手段の計測分解能が高められることになり、連続の繰り返し計測を行うことなく高い分解能を実現できるので、計測間隔を自由に設定し、流速および/または流量変化に対して追従性を高めることができる。さらに、演算手段で求めた流量が大きくなるにしたがって、検出手段で検出するゼロクロス点の数を少なく定めたことにより、高流速および/または大流量時の装置の動作時間が低減されるので、消費電流の低減が可能となる。 According to a first aspect of the present invention, a first transducer that is provided in a fluid conduit and transmits an ultrasonic signal, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and the second transducer Detecting means for detecting a predetermined number of zero-cross points that are generated a plurality of times in succession by the ultrasonic signal received at the time, and a zero-cross point that is activated from the start of transmission of the first transducer and detected by the detecting means Time measuring means for stopping after measuring each elapsed time, time calculating means for calculating a propagation time using an average value of values measured by the time measuring means, and measurement by the time measuring means are completed a predetermined number of times. Switching means for switching the transmission / reception roles of the first vibrator and the second vibrator every time, and calculation means for calculating the flow velocity and / or flow rate using the bidirectional propagation time obtained by the time calculation means. , The flow rate calculation As the flow rate obtained by the means increases, the number of zero cross points detected by the detecting means is reduced, so that the detecting means detects a predetermined number of zero cross points of the ultrasonic signal, and the time measuring means Since the propagation time is obtained by calculating the average value of the elapsed time from the measured transmission start to each zero cross point, the measurement resolution of the time measuring means is increased by the number of times of detection of the zero cross point, and continuous repetition Since high resolution can be realized without performing measurement, it is possible to freely set the measurement interval and improve followability with respect to flow velocity and / or flow rate change. Furthermore, as the flow rate obtained by the calculation means increases, the number of zero-cross points detected by the detection means is reduced, thereby reducing the operating time of the device at high flow rates and / or high flow rates. The current can be reduced.

第2の発明は、特に第1の発明の計時手段が、同期クロックとタイマカウンタで構成され、同期クロックの発振周期と超音波信号の発振周期を互いに素な関係に定めたことにより、各ゼロクロス点における同期クロックの位相が毎回異なるため、計測分解能をより確実に高めることが可能となる。   In the second invention, in particular, the time measuring means of the first invention is composed of a synchronous clock and a timer counter, and the oscillation period of the synchronous clock and the oscillation period of the ultrasonic signal are determined to be in a relatively prime relationship. Since the phase of the synchronous clock at the point is different every time, the measurement resolution can be more reliably increased.

第3の発明は、特に第1または第2の発明の計時手段の計測終了後、所定時間は次の計測を禁止することにより、超音波信号の残響や反射の影響を受けずに計測が可能となるた
め、計測精度を向上することができる。
In the third invention, the measurement can be performed without being affected by the reverberation or reflection of the ultrasonic signal by prohibiting the next measurement for a predetermined time after the measurement of the time measuring means of the first or second invention is completed. Therefore, measurement accuracy can be improved.

第4の発明は、特に第1または第2の発明の演算手段で求めた流速および/または流量が小さくなるにしたがって、切換手段が送受信を切り替えるまでの計測回数を多く定めたことにより、演算処理の頻度が低減されるので、消費電力の低減が可能となる。   According to the fourth aspect of the invention, in particular, as the flow velocity and / or flow rate obtained by the computing means of the first or second invention is reduced, the number of times of measurement until the switching means switches between transmission and reception is increased, so that the arithmetic processing is performed. Therefore, the power consumption can be reduced.

第6の発明は、特に第5の発明の検出手段で検出するゼロクロス点の数に応じて、時間演算手段で求める伝搬時間に補正を加えることにより、常に正確な伝搬時間の計測が可能となり、結果として計測精度が向上する。   According to the sixth aspect of the invention, it is possible to always measure the propagation time accurately by adding correction to the propagation time obtained by the time calculation means, particularly according to the number of zero cross points detected by the detection means of the fifth invention. As a result, measurement accuracy is improved.

第7の発明は、特に第6の発明の検出手段で検出するゼロクロス点の数を、偶数に定めたことにより、検出手段の出力特性にかかわらず、正確な伝搬時間が求められるようになり、結果として計測精度が向上する。   According to the seventh aspect of the invention, in particular, by setting the number of zero cross points detected by the detection means of the sixth invention to an even number, an accurate propagation time can be obtained regardless of the output characteristics of the detection means. As a result, measurement accuracy is improved.

第8の発明は、特に第6の発明の検出手段で検出するゼロクロス点を、交流信号の立ち上がりもしくは立下りのみに限定したことにより、検出手段の出力特性にかかわらず、正確な伝搬時間が求められるようになり、結果として計測精度が向上する。   In the eighth aspect of the invention, in particular, the zero cross point detected by the detection means of the sixth aspect of the invention is limited to only the rising or falling edge of the AC signal, so that an accurate propagation time can be obtained regardless of the output characteristics of the detection means. As a result, the measurement accuracy is improved.

(実施の形態1)
図1において、流体管路1の途中に超音波を送信する第1振動子2が流れの上流側に配置され、第1振動子2から送信された超音波を受信する第2振動子3が流れの下流側に配置されている。
(Embodiment 1)
In FIG. 1, a first vibrator 2 that transmits ultrasonic waves is arranged in the middle of the fluid conduit 1 on the upstream side of the flow, and a second vibrator 3 that receives ultrasonic waves transmitted from the first vibrator 2 is provided. Located downstream of the flow.

第1振動子2と第2振動子3は送受信の役割を反転する切換手段4を介して後段の処理ブロックに繋がれている。つまり、この切換手段4の作用により第1振動子2を送信側、第2振動子3を受信側とすることが可能である。トリガ手段5は計測開始を指示するトリガ信号を出力し、この信号と同期して送信回路6から超音波駆動信号が出力される。   The first vibrator 2 and the second vibrator 3 are connected to a subsequent processing block through switching means 4 that reverses the role of transmission and reception. That is, by the action of the switching means 4, it is possible to make the first vibrator 2 the transmitting side and the second vibrator 3 the receiving side. The trigger means 5 outputs a trigger signal that instructs the start of measurement, and an ultrasonic drive signal is output from the transmission circuit 6 in synchronization with this signal.

送信回路6の出力信号は切換手段4を介して第1振動子2へ出力され、第1振動子2から超音波信号が出力される。第1振動子2から送信され第2振動子3で受信された超音波信号は、切換手段4を介して増幅回路7で増幅された後、検出手段8に出力される。検出手段8では、交流信号である超音波信号と、そのゼロ点との大小比較を行い、大小関係の逆転する点をゼロクロス点と判断し、そのゼロクロス点を予め定められた数だけ検出した後、動作を停止する。   An output signal of the transmission circuit 6 is output to the first transducer 2 via the switching unit 4, and an ultrasonic signal is output from the first transducer 2. The ultrasonic signal transmitted from the first transducer 2 and received by the second transducer 3 is amplified by the amplification circuit 7 via the switching unit 4 and then output to the detection unit 8. The detection means 8 compares the size of the ultrasonic signal, which is an AC signal, with its zero point, determines that the point where the magnitude relationship is reversed is the zero cross point, and detects the zero cross point by a predetermined number. Stop the operation.

そして、トリガ手段5の出力と同時に計測を開始した計時手段9により検出手段8で検出された各々のゼロクロス点についての経過時間が計測される。計時手段9の計測結果は、一旦、記憶手段10に出力された後、時間演算手段11に出力され、必要な演算を施すことにより超音波の伝搬時間に変換される。   And the elapsed time about each zero crossing point detected by the detection means 8 is measured by the time measuring means 9 which started measurement simultaneously with the output of the trigger means 5. The measurement result of the time measuring means 9 is once outputted to the storage means 10 and then outputted to the time calculating means 11 and converted into ultrasonic propagation time by performing necessary calculations.

トリガ手段5によるトリガ信号の出力から計時手段9の停止までを1回の計測動作とみなし、1回の計測動作が終了した後、適当な時間間隔(1回の伝搬時間より遥かに長い時間)を置いた後、再度トリガ手段5によるトリガ信号出力から計時手段9による計時動作までの一連の動作が間欠的に繰り返される。   The time from the trigger signal output by the trigger means 5 to the stop of the time measuring means 9 is regarded as one measurement operation, and after one measurement operation is completed, an appropriate time interval (much longer than one propagation time). Then, a series of operations from the trigger signal output by the trigger unit 5 to the time measuring operation by the time measuring unit 9 is repeated intermittently.

更に、時間演算手11で求めた伝搬時間は、積算手段12に出力される。積算手段12
では、伝搬時間の積算値が求められる。そして、計時手段9による計測が予め定められた回数終了する毎に、積算値が流量演算手段13に出力されると共に、切換手段4によって、第1振動子2および第2振動子3の送受信の役割が変更され、逆方向(流れの下流から上流へ向けての超音波送信)の伝搬時間の積算値が同様の手順で算出される。そして、順方向、逆方向それぞれの1組の伝搬時間を元に流量演算手段12で流量値が求められる。
Further, the propagation time obtained by the time calculator 11 is output to the integrating means 12. Integration means 12
Then, the integrated value of the propagation time is obtained. Each time the measurement by the time measuring means 9 is completed a predetermined number of times, the integrated value is output to the flow rate calculating means 13, and the switching means 4 transmits and receives the first vibrator 2 and the second vibrator 3. The role is changed, and the integrated value of the propagation time in the reverse direction (ultrasonic transmission from downstream to upstream of the flow) is calculated in the same procedure. Then, a flow rate value is obtained by the flow rate calculation means 12 based on a set of propagation times in the forward direction and the reverse direction.

また、計測制御手段14は、装置全体の動作を制御し、計測開始のタイミングをトリガ手段4に指示する役割や、送受信の役割変更を切換手段4に指示する役割を担っている。   Further, the measurement control unit 14 controls the operation of the entire apparatus, and plays a role of instructing the trigger unit 4 at a measurement start timing and a role of instructing the switching unit 4 to change a transmission / reception role.

図2は、計時手段9を示し、同期クロック発生手段15は、周期的にパルス信号を発生する発信器16と、制御ゲート17とで構成されていて、この制御ゲート17は発信器16の出力と、外部からの制御信号とを受けて、同期クロックを発生させる。   FIG. 2 shows the time measuring means 9, and the synchronous clock generating means 15 is composed of a transmitter 16 that periodically generates a pulse signal and a control gate 17, and this control gate 17 is an output of the transmitter 16. In response to an external control signal, a synchronous clock is generated.

また、タイマカウンタ18は、制御ゲート17から出力される同期クロックの立ち上がりエッジをカウントする。制御ゲート17は、ANDゲートにより構成されていて、制御信号が「H」出力の時に、発信器16から入力の入力信号をそのまま、タイマカウンタ18の同期クロックとして出力する。   The timer counter 18 counts rising edges of the synchronous clock output from the control gate 17. The control gate 17 is composed of an AND gate, and outputs the input signal input from the transmitter 16 as it is as a synchronous clock of the timer counter 18 when the control signal is “H” output.

したがって、計測対象の開始時点で制御信号を「H」、終了時点で、制御信号を「L」として、この間にタイマカウンタ18に入力された同期クロックの数をカウントすることにより、計測対象を計時することが可能となる。   Therefore, the control signal is set to “H” at the start time of the measurement target, the control signal is set to “L” at the end time, and the number of synchronous clocks input to the timer counter 18 during this period is counted, thereby measuring the measurement target. It becomes possible to do.

図3は、検出手段8の動作と計時手段9の動作を示し、計時手段9で計測した値から伝搬時間が求められる手順について説明する。検出手段8は、二つの閾値電圧VAおよびVBと増幅回路7から出力される受信信号とを比較する電子回路で構成されている。   FIG. 3 shows the operation of the detection means 8 and the operation of the time measuring means 9, and the procedure for obtaining the propagation time from the value measured by the time measuring means 9 will be described. The detection means 8 is composed of an electronic circuit that compares the two threshold voltages VA and VB with the reception signal output from the amplifier circuit 7.

まず、受信信号が閾値電圧VAを超えた時点T0により超音波信号の到達が検知され、閾値電圧VBとの比較処理を有効とするイネーブル信号が「H」となる。以降、比較手段8の出力として、閾値電圧VBが大きければ「L」、受信信号が大きければ「H」が出力される。超音波の受信信号は交流信号であり、閾値電圧VBはこの交流信号のゼロ点となるように調整されている。   First, the arrival of the ultrasonic signal is detected at time T0 when the received signal exceeds the threshold voltage VA, and the enable signal that validates the comparison process with the threshold voltage VB becomes “H”. Thereafter, as the output of the comparison means 8, “L” is output if the threshold voltage VB is large, and “H” is output if the received signal is large. The ultrasonic reception signal is an AC signal, and the threshold voltage VB is adjusted to be the zero point of this AC signal.

図3に示すように、検出手段8の出力は連続して何回も反転する。ここで、送信開始から各反転ポイントまでの経過時間を、最初からT1,T2・・・T6とする。計時手段9は、これらの反転ポイントにおけるタイマカウンタ17の値を記憶手段10へ出力する。   As shown in FIG. 3, the output of the detection means 8 is inverted several times continuously. Here, let the elapsed time from the start of transmission to each inversion point be T1, T2,... T6 from the beginning. The time measuring means 9 outputs the value of the timer counter 17 at these inversion points to the storage means 10.

予め定められた6回のゼロクロス点の検出が終了すると、イネーブル信号が「L」となり、以降、閾値電圧VBと超音波信号との比較処理は終了し、検出手段8の出力は最終状態で維持される。計時手段9では、予め定めた回数である6回分の値が取り込まれると、制御ゲート17へ出力する制御信号が「L」となり、タイマカウンタ18に対する同期クロックの供給が停止され計時手段9の計測動作が終了する。   When six predetermined zero-crossing points are detected, the enable signal becomes “L”. Thereafter, the comparison processing between the threshold voltage VB and the ultrasonic signal is completed, and the output of the detecting means 8 is maintained in the final state. Is done. In the time measuring means 9, when the value for six times which is a predetermined number of times is taken, the control signal output to the control gate 17 becomes “L”, the supply of the synchronous clock to the timer counter 18 is stopped, and the time measuring means 9 The operation ends.

記憶手段10に記憶された6つの計測値は、時間演算手段11に出力され、時間演算手段11では、6つの計測値の平均値が求められる。   The six measurement values stored in the storage unit 10 are output to the time calculation unit 11, and the time calculation unit 11 obtains an average value of the six measurement values.

ここで、超音波信号の発振周期と、計時手段9の同期クロックの発振周期の位相関係が完全に重ならない限りは、比較手段8の出力の反転タイミングにおける、同期クロックの位相が毎回異なることになり、同期クロックの発振周期よりも小さい時間変化の識別が可能となる。   Here, as long as the phase relationship between the oscillation cycle of the ultrasonic signal and the oscillation cycle of the synchronization clock of the time measuring means 9 does not completely overlap, the phase of the synchronization clock at the inversion timing of the output of the comparison means 8 is different every time. Thus, it is possible to identify a time change smaller than the oscillation period of the synchronous clock.

同期クロックの発振周期をTsとし、反転入力回数をNとすれば、計時手段9で求めたN個の計測値の平均値を求めることにより、計時手段の見かけ上の分解能は平均的にTs/Nに高められることになる。   If the oscillation period of the synchronous clock is Ts and the number of inversion inputs is N, the average resolution of the N measured values obtained by the time measuring means 9 is obtained, so that the apparent resolution of the time measuring means is averaged by Ts / N will be raised.

特に、超音波信号の発信周期と同期クロックの発信周期を互いに素、すなわち、両者の比が整数値近傍の値にならないように設定することにより、検出ポイント毎の位相のずれが確実なものとなる。したがって、Nを適当な数に定めることにより、計時手段9の1回の動作で時間分解能を高めることができる。   In particular, by setting the transmission cycle of the ultrasonic signal and the transmission cycle of the synchronous clock to be relatively prime, that is, the ratio between the two does not become a value near the integer value, the phase shift for each detection point is ensured. Become. Therefore, by setting N to an appropriate number, the time resolution can be increased by one operation of the time measuring means 9.

以上のように、実施の形態1によれば、検出手段で超音波信号のゼロクロス点を予め定められた数だけ検出し、計時手段で送信開始から各ゼロクロス点までの経過時間を計測し、時間演算手段11でその平均値を求めることにより伝搬時間を求めているので、ゼロクロス点の検出回数分だけ計時手段の計測分解能が高められることになり、シングラウンド法のように連続の送受信を行うことなく間欠的な計測ができ、計測処理間隔を自由に設定することが可能となり、結果として流速および/または流量変化に対する追従性の高い流れ計測装置を提供することが可能となる。   As described above, according to the first embodiment, the detection means detects a predetermined number of zero cross points of the ultrasonic signal, and the time measuring means measures the elapsed time from the start of transmission to each zero cross point. Since the propagation time is obtained by obtaining the average value by the computing means 11, the measurement resolution of the time measuring means is increased by the number of times of detection of the zero cross point, and continuous transmission and reception is performed as in the thin ground method. Therefore, intermittent measurement can be performed, and the measurement processing interval can be freely set. As a result, it is possible to provide a flow measurement device having high followability to a change in flow velocity and / or flow rate.

なお、計時手段9による計測が終わった後、次の計測を行う際には、適当な禁制時間、すなわち、計測禁止時間を設ければ、前回の超音波信号の残響や反射の影響を受けずに、正確な計測が可能である。この場合、再計測を禁止している間は、制御ゲート17に対する制御信号は「L」になっているため、禁制時間が如何に長くなろうとも、タイマカウンタ18に対して同期クロックは入力されないので、余分な電力消費を低減できる。   In addition, when the next measurement is performed after the measurement by the time measuring means 9, if an appropriate forbidden time, that is, a measurement prohibited time is provided, it is not affected by reverberation or reflection of the previous ultrasonic signal. In addition, accurate measurement is possible. In this case, since the control signal for the control gate 17 is “L” while the re-measurement is prohibited, no synchronization clock is input to the timer counter 18 no matter how long the forbidden time becomes. Therefore, extra power consumption can be reduced.

(実施の形態2)
図4は、本発明の実施の形態2の動作を説明する特性図である。図4では、計測流量と、切替手段4が2つの振動子の送受信を切り替えるまでの計測回数との関係を示している。つまり、前回の計測流量を元に、次の計測流量を推定し、切替手段4を動作させる頻度を決定している。図で示すように、流量が減少するにしたがって、送受信切替えに要する設定回数を増やしている。流量演算手段13は、積算手段12で求める伝搬時間の積算値の、送信方向の異なるふたつの値を1対として流量を求めているので、計測流量が小さくなる毎に、処理時間が長く消費電力増大の原因となる流量演算の頻度が小さくなり、結果として、消費電流が低減される。特に、家庭用のガスメータの様に、電池交換なしで10年間という長い稼動時間を要求される装置においてはその実施効果は大きい。
(Embodiment 2)
FIG. 4 is a characteristic diagram for explaining the operation of the second embodiment of the present invention. FIG. 4 shows the relationship between the measured flow rate and the number of measurements until the switching unit 4 switches between transmission and reception of the two vibrators. That is, based on the previous measured flow rate, the next measured flow rate is estimated, and the frequency at which the switching means 4 is operated is determined. As shown in the figure, as the flow rate decreases, the set number of times required for transmission / reception switching is increased. Since the flow rate calculation means 13 obtains the flow rate as a pair of two values with different transmission directions of the accumulated value of the propagation time obtained by the accumulation means 12, each time the measured flow rate becomes smaller, the processing time becomes longer. The frequency of the flow rate calculation that causes the increase is reduced, and as a result, the current consumption is reduced. In particular, in a device such as a home gas meter that requires a long operation time of 10 years without battery replacement, the implementation effect is great.

(実施の形態3)
図5では、例えば、計測流量と検出手段8で検出するゼロクロス点の数を示している。横軸の計測流量は1回前の計測流量を示している。つまり、前回の計測流量を元に、次の計測流量を推定し、検出手段8で検出するゼロクロス点の数を変更している。
(Embodiment 3)
FIG. 5 shows, for example, the measured flow rate and the number of zero cross points detected by the detection means 8. The measured flow rate on the horizontal axis indicates the measured flow rate one time before. In other words, the next measured flow rate is estimated based on the previous measured flow rate, and the number of zero cross points detected by the detection means 8 is changed.

図で示すように、流量がQ[L/h]未満の領域では、検出点の数は6点であり、以下、流量が増える毎に検出点の数は、段階的に減っていき、Q[L/h]以上の領域では、計測点の数は1点になっている。 As shown in the figure, in the region where the flow rate is less than Q 1 [L / h], the number of detection points is 6, and hereinafter, the number of detection points decreases step by step as the flow rate increases. In the area above Q 5 [L / h], the number of measurement points is one.

この構成によれば、細かな分解能が必要な小流量のときには、計測ポイントを増やし、逆に、分解能を粗くしても影響の小さな大流量の時には計測ポイントを減らす構成としている。これによって、計測ポイントの少ない大流量時は、電子回路の動作時間が削減され、装置全体の消費電流を浪費することがなくなるので、消費電力低減という効果を得られる。   According to this configuration, the number of measurement points is increased at a small flow rate that requires fine resolution, and conversely, the measurement point is decreased at a large flow rate that has little influence even if the resolution is rough. Thus, when the flow rate is small with a small number of measurement points, the operation time of the electronic circuit is reduced, and the current consumption of the entire apparatus is not wasted.

特に、家庭用のガスメータの様に、電池交換なしで10年間という長い稼動時間を要求
される装置においては実施効果は大きい。
In particular, in a device such as a home gas meter that requires a long operation time of 10 years without battery replacement, the implementation effect is great.

次に、図6を用いて、伝搬時間の求め方について説明する。図6において波形Aは、例えば、流量がQ1未満の時の検出手段8の出力波形の一例、波形Bは流量がQ5以上の時の出力波形の一例である。なお、本来、両者の波形は、時間絶対値が流れの速さの違う分だけ異なっているが、簡単のため、時間軸を揃えて表示している。   Next, how to determine the propagation time will be described with reference to FIG. In FIG. 6, a waveform A is an example of an output waveform of the detection means 8 when the flow rate is less than Q1, and a waveform B is an example of an output waveform when the flow rate is Q5 or more. Although both waveforms are originally different in time absolute value by different flow speeds, they are displayed with the same time axis for simplicity.

まず、波形Aの場合には、検出点の数が6点であるため、計時手段9ではTA1〜TA6を計測して、その平均値を時間演算手段10で求める。このとき、求められる平均値は、TA3とTA4の中点の時間、すなわち、3番目と4番目のゼロクロス点の中点の時間を求めることになる。一方、波形Bの場合には、計時手段9ではTB1のみを計測するため、平均値もTB1となり、最初のゼロクロス点の時間を求めることになる。   First, in the case of the waveform A, since the number of detection points is 6, the time measuring means 9 measures TA1 to TA6 and the average value is obtained by the time calculating means 10. At this time, the obtained average value is the time at the midpoint of TA3 and TA4, that is, the time at the midpoint of the third and fourth zero cross points. On the other hand, in the case of the waveform B, since the time measuring means 9 measures only TB1, the average value is also TB1, and the time of the first zero cross point is obtained.

したがって、このままでは、両者の検出ポイントにはずれが生じる。ゼロクロス点の1点分が、超音波信号の0.5周期と等しいので、両者の時間差は1.25周期分となる。   Therefore, in this state, the detection points of both are displaced. Since one point of the zero cross point is equal to 0.5 period of the ultrasonic signal, the time difference between them is 1.25 period.

よって、TA1からTA6までの平均値から超音波信号の1.25周期分を差し引けば、波形A、Bともに最初のゼロクロス点の時間を求めることができる。   Therefore, by subtracting 1.25 cycles of the ultrasonic signal from the average value from TA1 to TA6, the time of the first zero cross point can be obtained for both waveforms A and B.

図7は、検出手段8により検出されるゼロクロス点の数と、時間演算手段11における演算補正量ΔTとの関係を示している。   FIG. 7 shows the relationship between the number of zero cross points detected by the detection means 8 and the calculation correction amount ΔT in the time calculation means 11.

図7において横軸はゼロクロス点の数、縦軸は補正量ΔTと超音波信号の周期TWとの比ΔT/TWを示している。図で示すように、検出点の数が1点の時の補正量が0で、以降、検出点の数が1つ増える毎に0.25周期分の補正を加えれば良いことになる。   In FIG. 7, the horizontal axis represents the number of zero cross points, and the vertical axis represents the ratio ΔT / TW between the correction amount ΔT and the period TW of the ultrasonic signal. As shown in the figure, when the number of detection points is one, the correction amount is 0, and thereafter, every time the number of detection points increases, correction for 0.25 period may be applied.

このようにして求めた補正量ΔTを時間演算手段11で求めた平均値から差し引けば、検出手段8で検出するゼロクロス点の数にかかわらず、常に最初のゼロクロス点の時間を求めることが可能になる。   If the correction amount ΔT obtained in this way is subtracted from the average value obtained by the time calculation means 11, the time of the first zero cross point can always be obtained regardless of the number of zero cross points detected by the detection means 8. become.

上記の計算は、検出手段8の出力波形のデューティーが50%no時に成り立つ。しかし、検出手段8の閾値VBが交流信号のゼロ点からずれた場合や、回路のオフセットの影響などによりデューティーが50%とは限らない。デューティーが50%からずれた場合には、上記の補正方法では若干の誤差が生じる。そこで、より正確な補正を行うために、検出点の数を偶数に限定すれば、検出手段8の出力信号のデューティーとは無関係に、正確な補正が実現できる。   The above calculation is valid when the duty of the output waveform of the detection means 8 is 50% no. However, the duty is not necessarily 50% when the threshold value VB of the detection means 8 deviates from the zero point of the AC signal or due to the influence of the offset of the circuit. When the duty deviates from 50%, a slight error occurs in the above correction method. Therefore, if the number of detection points is limited to an even number in order to perform more accurate correction, accurate correction can be realized regardless of the duty of the output signal of the detection means 8.

また、検出点の数を、検出手段8の出力の立ち上がりもしくは立下りのみに限定する構成であっても同様の効果が得られる。   The same effect can be obtained even if the number of detection points is limited to only the rise or fall of the output of the detection means 8.

本発明の流量計測装置は、計測間隔を自由に設定することができるので、例えば脈動流が常時発生するような条件下においても適用可能である。   Since the flow rate measuring device of the present invention can freely set the measurement interval, it can be applied, for example, under conditions where pulsating flow is always generated.

本発明の実施の形態1における流れ計測装置のブロック図The block diagram of the flow measurement apparatus in Embodiment 1 of this invention 本発明の実施の形態1における計時手段のブロック図The block diagram of the time measuring means in Embodiment 1 of this invention 本発明の実施の形態1における計時手段の動作を説明するタイミングチャートTiming chart for explaining the operation of the time measuring means in Embodiment 1 of the present invention 本発明の実施の形態2における流れ計測装置の動作を説明する特性図FIG. 6 is a characteristic diagram for explaining the operation of the flow measuring apparatus according to the second embodiment of the present invention. 本発明の実施の形態3における流れ計測装置の動作を説明する特性図FIG. 6 is a characteristic diagram for explaining the operation of the flow measuring apparatus according to the third embodiment of the present invention. 本発明の実施の形態3における計時手段の動作を説明するタイミングチャートTiming chart for explaining the operation of the timing means in Embodiment 3 of the present invention 本発明の実施の形態3における時間演算手段の補正特性図Correction characteristic diagram of time calculation means in Embodiment 3 of the present invention 従来の流れ計測装置のブロック図Block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

1 流体管路
2 第1振動子
3 第2振動子
4 切替手段
8 検出手段
9 計時手段
11 時間演算手段
13 流量演算手段
15 同期クロック発生手段
18 タイマカウンタ
DESCRIPTION OF SYMBOLS 1 Fluid pipe line 2 1st vibrator | oscillator 3 2nd vibrator | oscillator 4 Switching means 8 Detection means 9 Time measuring means 11 Time calculating means 13 Flow rate calculating means 15 Synchronous clock generating means 18 Timer counter

Claims (7)

流体管路に設けられ超音波信号を送信する第1振動子と、
前記第1振動子から送信された超音波信号を受信する第2振動子と、
前記第2振動子で受信された超音波信号によって連続して複数回発生するゼロクロス点を予め定められた数だけ検出する検出手段と、
前記第1振動子の送信開始より起動し前記検出手段で検出されたゼロクロス点各々の経過時間を計時した後停止する計時手段と、
前記計時手段で計測された値の平均値を用いて伝搬時間を算出する時間演算手段と、
前記計時手段による計測が予め定めた回数終了する毎に前記第1振動子および第2振動子の送受信の役割を切り替える切替手段と、
前記時間演算手段で求めた双方向の伝搬時間を用いて流速および/または流量を算出する演算手段とを備え
前記流量演算手段で求めた流量が大きくなるにしたがって、前記検出手段で検出するゼロクロス点の数を少なくする流体の流れ計測装置。
A first transducer that is provided in the fluid conduit and transmits an ultrasonic signal;
A second transducer for receiving an ultrasonic signal transmitted from the first transducer;
Detecting means for detecting a predetermined number of zero-cross points that are continuously generated a plurality of times by the ultrasonic signal received by the second vibrator;
Timing means that starts from the start of transmission of the first oscillator and stops after measuring the elapsed time of each zero cross point detected by the detection means;
Time calculating means for calculating a propagation time using an average value of values measured by the time measuring means;
Switching means for switching the transmission / reception roles of the first vibrator and the second vibrator every time the measurement by the time measuring means is completed a predetermined number of times;
Calculating means for calculating the flow velocity and / or flow rate using the bidirectional propagation time obtained by the time calculating means ,
A fluid flow measurement device that reduces the number of zero-cross points detected by the detection means as the flow rate obtained by the flow rate calculation means increases .
前記計時手段は同期クロックとタイマカウンタで構成され、前記同期クロックの発振周期と前記超音波信号の発振周期を互いに素な関係に定めた請求項1に記載の流体の流れ計測装置。 The clock means is constituted by a synchronous clock and timer counter, the synchronization clock of the fluid flow measuring device according to claim 1, wherein the oscillation period defined disjoint relationship oscillation period and the ultrasound signal. 前記計時手段による計測終了後、所定時間は次の計測を禁止する請求項1または2に記載の流体の流れ計測装置。 The fluid flow measuring device according to claim 1 or 2, wherein after the measurement by the time measuring means is completed, the next measurement is prohibited for a predetermined time. 前記流量演算手段で求めた流量が小さくなるにしたがって、前記切換手段が送受信を切り替えるまでの計測回数を多く設定する請求項1または2に記載の流体の流れ計測装置。 The flow rate in accordance with the flow rate determined is reduced by the operation means, the fluid flow measuring apparatus according to claim 1 or 2, wherein the switching means is set larger the number of measurements to switch between transmission and reception. 前記検出手段で検出するゼロクロス点の数に応じて、前記時間演算手段で求める伝搬時間に補正を加えるようにした請求項1乃至4のいずれか1項に記載の流体の流れ計測装置。 In response to said number of zero-cross points detected by the detecting means, the fluid flow measuring device according to any one of the time calculating claims propagation time calculated by the unit and to add a correction 1-4. 前記検出手段で検出するゼロクロス点の数を偶数に設定した請求項に記載の流体の流れ計測装置。 6. The fluid flow measuring device according to claim 5 , wherein the number of zero cross points detected by the detecting means is set to an even number. 前記検出手段で検出するゼロクロス点を交流信号の立ち上がりもしくは立下りの一方のみに限定した請求項に記載の流体の流れ計測装置。 6. The fluid flow measuring device according to claim 5 , wherein the zero cross point detected by the detecting means is limited to only one of rising and falling of the AC signal.
JP2005235733A 2005-08-16 2005-08-16 Fluid flow measuring device Expired - Fee Related JP4835068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235733A JP4835068B2 (en) 2005-08-16 2005-08-16 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235733A JP4835068B2 (en) 2005-08-16 2005-08-16 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2007051889A JP2007051889A (en) 2007-03-01
JP4835068B2 true JP4835068B2 (en) 2011-12-14

Family

ID=37916440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235733A Expired - Fee Related JP4835068B2 (en) 2005-08-16 2005-08-16 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP4835068B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228462B2 (en) * 2007-12-11 2013-07-03 パナソニック株式会社 Fluid flow measuring device
JP5292798B2 (en) * 2007-12-19 2013-09-18 パナソニック株式会社 Flow measuring device
JP5292797B2 (en) * 2007-12-19 2013-09-18 パナソニック株式会社 Flow measuring device
US8903663B2 (en) 2007-12-19 2014-12-02 Panasonic Corporation Flow measurement device
JP2012242091A (en) * 2011-05-16 2012-12-10 Panasonic Corp Ultrasonic flowmeter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172574A (en) * 1982-04-02 1983-10-11 Yokogawa Hokushin Electric Corp Propagation time measuring circuit
JP3399938B2 (en) * 1994-10-19 2003-04-28 松下電器産業株式会社 Flow measurement method and ultrasonic flow meter
JP3651124B2 (en) * 1996-07-15 2005-05-25 松下電器産業株式会社 Ultrasonic measuring device and flow measuring device including the same

Also Published As

Publication number Publication date
JP2007051889A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4788235B2 (en) Fluid flow measuring device
JP5753970B2 (en) Flow measuring device
KR100487690B1 (en) Flowmeter
JP5524972B2 (en) Flow measuring device
WO2012081195A1 (en) Flow volume measuring device
JP3432210B2 (en) Flow measurement device
JP4835068B2 (en) Fluid flow measuring device
JP2001004419A (en) Flowmeter
JP4973035B2 (en) Ultrasonic flow meter
JP2008014800A (en) Flow measuring instrument
JP3427762B2 (en) Ultrasonic flow meter
JP2006214793A (en) Device for measuring flow rate
JPH09133562A (en) Ultrasonic flowmeter
JP5467332B2 (en) Fluid flow measuring device
JP5135807B2 (en) Fluid flow measuring device
JP5135806B2 (en) Fluid flow measuring device
JP2008185441A (en) Ultrasonic flowmeter
JP2006214794A (en) Device for measuring flow rate
JP2008175667A (en) Fluid flow measuring device
JP2008175668A (en) Fluid flow measuring device
JP4858220B2 (en) Ultrasonic current meter
JP2010014690A (en) Ultrasonic flowmeter and flow measuring method
JP2003232663A (en) Flow rate measuring device
JP4133237B2 (en) Ultrasonic flow meter
JP5548951B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees