JP2006214793A - Device for measuring flow rate - Google Patents

Device for measuring flow rate Download PDF

Info

Publication number
JP2006214793A
JP2006214793A JP2005026051A JP2005026051A JP2006214793A JP 2006214793 A JP2006214793 A JP 2006214793A JP 2005026051 A JP2005026051 A JP 2005026051A JP 2005026051 A JP2005026051 A JP 2005026051A JP 2006214793 A JP2006214793 A JP 2006214793A
Authority
JP
Japan
Prior art keywords
time
flow rate
measurement
resolution
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026051A
Other languages
Japanese (ja)
Inventor
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005026051A priority Critical patent/JP2006214793A/en
Publication of JP2006214793A publication Critical patent/JP2006214793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring a flow rate having high following property even under a condition having strong flow rate variation. <P>SOLUTION: A delay generating means 9 slightly delays the transmission start timing of a first oscillator 2 from a measurement start timing of a time measuring means 7. The propagation time is sequentially determined by a measurement control means 11 while the setting of the delay time is changed with a resolution smaller than the time measuring resolution of the time measuring means 7. Therefore, the time can be read with a resolution further smaller than the time measuring resolution of the time measuring means 7, and continuous repeating measurement is not required. Therefore, the degree of freedom of measurement interval increases, and flow rate measurement having high following property to the flow rate variation is allowed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波信号の伝搬時間を計測することにより流速を検出し、流体の流量を計測する流量計測装置に関するものである。   The present invention relates to a flow rate measuring device that detects a flow rate by measuring a propagation time of an ultrasonic signal and measures a flow rate of a fluid.

従来、この種の流量計においては、ふたつの振動子間の送受信を複数回繰り返すことにより、計測分解能を高めるシングアラウンド法という手法を用いたものが提案されている(例えば、特許文献1参照)。   Conventionally, this type of flowmeter has been proposed using a technique called a sing-around method that increases measurement resolution by repeating transmission and reception between two vibrators a plurality of times (for example, see Patent Document 1). .

図6は、シングアラウンド法を用いた流量計測装置のブロック図である。図6に示すように、流体管路31の途中に、超音波を送信する第1振動子32と、送信された超音波を受信する第2振動子33が流れ方向に配置されていて、送信手段、計時手段等で構成され、ふたつの振動子32、33を用いて超音波の伝搬時間を計測する計測部34と、計測部34を制御する制御部35、計測部34の計測結果を基に流体流量を算出する演算部36とで構成されている。   FIG. 6 is a block diagram of a flow rate measuring apparatus using the sing-around method. As shown in FIG. 6, a first vibrator 32 that transmits ultrasonic waves and a second vibrator 33 that receives the transmitted ultrasonic waves are arranged in the flow direction in the middle of the fluid conduit 31, and transmit. A measurement unit 34 that measures the propagation time of ultrasonic waves using two vibrators 32 and 33, a control unit 35 that controls the measurement unit 34, and a measurement result of the measurement unit 34. And a calculation unit 36 for calculating the fluid flow rate.

図6において、音速をC、流速をv、ふたつの振動子32、33間の距離をL、超音波の伝搬方向と流れの方向とがなす角度をθとし、流体管路31の上流側に配置された第1振動子32から超音波を送信し、下流側に配置された第2振動子33で受信した場合の伝搬時間をt、逆方向の伝搬時間をtとした場合tおよびtは次式で求めることができる。 In FIG. 6, the sound velocity is C, the flow velocity is v, the distance between the two vibrators 32 and 33 is L, the angle formed by the propagation direction of the ultrasonic wave and the flow direction is θ, and upstream of the fluid conduit 31. When the ultrasonic wave is transmitted from the arranged first vibrator 32 and received by the second vibrator 33 arranged on the downstream side, the propagation time is t 1 , and the propagation time in the reverse direction is t 2 , t 1 and t 2 can be obtained by the following expression.

=L/(C+vcosθ) (式1)
=L/(C−vcosθ) (式2)
(式1)および(式2)を変形し、(式3)で流速vが求まる。
t 1 = L / (C + v cos θ) (Formula 1)
t 2 = L / (C−v cos θ) (Formula 2)
(Formula 1) and (Formula 2) are modified, and the flow velocity v is obtained by (Formula 3).

v=L・(1/t −1/t)/2cosθ (式3)
(式3)で求めた値に流体管路31の断面積を掛ければ流体の流量を求めることができる。ところで、(式3)において、括弧内の項は(式4)のように変形できる。
v = L · (1 / t 1 −1 / t 2 ) / 2 cos θ (Formula 3)
The flow rate of the fluid can be obtained by multiplying the value obtained by (Equation 3) by the cross-sectional area of the fluid conduit 31. By the way, in (Equation 3), the term in parentheses can be transformed as in (Equation 4).

(t−t )/t (式4)
ここで、(式4)の分母の項は流速の変化に関わらずほぼ一定の値となるが、分子の項は流速とほぼ比例した値となる。したがって、ふたつの伝搬時間の差を精度よく計測する必要がある。そのため、流速が遅くなるほど、微小な時間差を求める必要があり、単発現象として計測するには計測部34は例えば、ナノ秒オーダーの非常に小さな時間分解能を有する必要がある。これだけの時間分解能を実現するのは難しく、仮に実現できたとしても時間分解能を上げることによる消費電力の増大を招くこととなる。そのため、超音波の送信を何回も繰り返し計測してその平均値を求めることにより必要な時間分解能を実現している。すなわち、計測部34の時間分解能をT、繰り返し回数をMとすれば、この繰り返し計測の間、計測部34を連続して動作させることにより、伝搬時間の計測分解能はT/Mとすることができる。したがって、消費電力を増大させることなく高分解能の計測が実現できる。
特開2000−310550号公報
(T 2 −t 1 ) / t 1 t 2 (Formula 4)
Here, the denominator term in (Equation 4) has a substantially constant value regardless of the change in flow velocity, whereas the numerator term has a value that is substantially proportional to the flow velocity. Therefore, it is necessary to accurately measure the difference between the two propagation times. For this reason, as the flow rate becomes slower, it is necessary to obtain a minute time difference, and in order to measure as a single phenomenon, the measurement unit 34 needs to have a very small time resolution of the order of nanoseconds, for example. It is difficult to realize such a time resolution, and even if it can be realized, power consumption is increased by increasing the time resolution. Therefore, the necessary time resolution is realized by repeatedly measuring the transmission of the ultrasonic wave many times and obtaining the average value. That is, if the time resolution of the measurement unit 34 is T A and the number of repetitions is M, the measurement resolution of the propagation time is T A / M by operating the measurement unit 34 continuously during this repeated measurement. be able to. Therefore, high-resolution measurement can be realized without increasing power consumption.
JP 2000-310550 A

しかしながら、前記従来の構成では、繰り返しの連続動作を前提としているので、一連の計測動作に必要な時間が長くなるため電流消費量が増えてしまう。そのため、家庭用のガスメータのように電池駆動で年単位の動作保証を求められるシステムにおいては、電流消費をできるだけ抑えるために、1度繰り返し計測を終えた後は、ある程度の休止期間を置く必要があった。そのため、流体の局所的な情報しか得ることができないため、比較的短い周期で繰り返される変動性の流れに対しては、追従性が悪いという課題があった。   However, since the conventional configuration is based on the premise of repeated continuous operation, the time required for a series of measurement operations becomes longer, and the current consumption increases. Therefore, in a system that requires battery-driven yearly operation guarantees, such as a home gas meter, it is necessary to leave a certain period of pause after repeating measurement once to minimize current consumption. there were. Therefore, since only local information on the fluid can be obtained, there is a problem that followability is poor with respect to a variable flow that is repeated in a relatively short period.

本発明は、上記従来の課題を解決するもので、計測間隔を自由に設定し、流量変化に対して追従性の高い流量計測装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a flow rate measuring apparatus that freely sets a measurement interval and has high followability to a flow rate change.

前記従来の課題を解決するために、本発明の流体の流量計測装置は、計時手段の計測開始もしくは計測終了と送受信のタイミングに微小時間のずれを発生させる遅延発生手段とを備え、遅延発生手段の遅延時間を計時手段の計時分解能より小さい分解能により所定範囲だけ変更可能としているので、連続の繰り返し計測を行うことなく高い分解能を実現できるため、計測間隔の自由度が高まり、流量変化に対しての追従性を高めることができる。   In order to solve the above-described conventional problems, the fluid flow rate measuring device of the present invention includes delay generation means for generating a minute time difference between the measurement start or measurement end of the time measurement means and the timing of transmission and reception, and the delay generation means The delay time can be changed by a predetermined range with a resolution smaller than the timekeeping resolution of the timekeeping means, so high resolution can be realized without performing continuous repeated measurement, increasing the degree of freedom of measurement intervals and responding to changes in flow rate Can be improved.

本発明の流量計測装置は、連続の繰り返し計測を行うことなく高い分解能を実現できる。   The flow rate measuring apparatus of the present invention can realize high resolution without performing continuous repeated measurement.

第1の発明は、流体管路に設けられ超音波信号を送信する第1振動子と、前記第1振動子から送信された超音波信号を受信する第2振動子と、前記振動子間を超音波が伝搬する毎に発停して伝搬時間を計測する計時手段と、前記計時手段による計測が所定回数に達する毎に前記振動子の送受信方向を反転させる切換手段と、前記計時手段の計測開始もしくは計測終了と送受信のタイミングに微小時間のずれを発生させる遅延発生手段と、前記遅延発生手段と前記切換手段とを制御する計測制御手段と、前記計時手段の計測値と前記遅延時間とを基に流量を求める流量演算手段とを備え、前記計測制御手段は、前記遅延発生手段の遅延時間を前記計時手段の計時分解能より小さい分解能により所定範囲だけ変更可能とすることにより、遅延時間を順次変更しながら計測することで、計時手段の計時分解能より小さい時間分解能を得ることができるため、連続の繰り返し計測を行うことなく高い分解能を実現できるので、計測間隔を自由に設定し、流量変化に対して追従性を高めることができる。   According to a first aspect of the present invention, there is provided a first transducer that is provided in a fluid conduit and transmits an ultrasonic signal, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and the transducer. Timekeeping means that starts and stops each time an ultrasonic wave propagates and measures the propagation time, switching means that reverses the transmission / reception direction of the vibrator every time the measurement by the timekeeping means reaches a predetermined number of times, and measurement by the timekeeping means A delay generating means for generating a minute time difference between the start or end of measurement and transmission / reception timing; a measurement control means for controlling the delay generating means and the switching means; and a measured value of the time measuring means and the delay time. A flow rate calculation means for obtaining a flow rate based on the delay time, and the measurement control means can change the delay time of the delay generation means by a predetermined range with a resolution smaller than the timekeeping resolution of the timekeeping means. By measuring while changing sequentially, a time resolution smaller than the time resolution of the time measuring means can be obtained, so high resolution can be realized without performing continuous repeated measurement, so the measurement interval can be set freely and the flow rate change The followability can be improved.

第2の発明は、特に第1の発明の計測制御手段が、遅延時間の設定範囲を計時手段の計時分解能の整数倍に定めることにより、遅延時間の分解能を順次変更しながら計測することで、計時手段の計時分解能を細かく均等に分割した分解能を得ることができるようになる。   In the second invention, in particular, the measurement control means of the first invention measures the delay time resolution while sequentially changing the delay time resolution by setting the delay time setting range to an integral multiple of the timekeeping resolution of the timekeeping means. It becomes possible to obtain a resolution obtained by finely and evenly dividing the time resolution of the time measuring means.

第3の発明は、特に第1の発明の計測制御手段が、計時手段による計測終了後、所定時間は次の計測を禁止することにより、超音波信号の残響や反射の影響を受けずに計測が可能となるため、計測精度を向上することができる。   In the third aspect of the invention, in particular, the measurement control means of the first aspect of the invention prohibits the next measurement for a predetermined time after the measurement by the time measurement means, thereby preventing the influence of the reverberation or reflection of the ultrasonic signal. Measurement accuracy can be improved.

第4の発明は、特に第2の発明の計測制御手段が、遅延手段の設定値が整数回巡回する毎に送受信の切換を行い、流量演算手段が、送受信切換1対の計測により流量を求めることにより、求められる流量値の分解能を高めることができる。   In the fourth aspect of the invention, in particular, the measurement control means of the second aspect of the invention switches transmission / reception every time the set value of the delay means circulates an integer number of times, and the flow rate calculation means obtains the flow rate by measuring one pair of transmission / reception switching. As a result, the resolution of the required flow rate value can be increased.

第5の発明は、特に第4の発明において計測流量が小さくなるに従って巡回数を多く定めることにより、流速の安定しない小流量時であっても平均化効果により高い精度で流量を求めることができる。   In the fifth aspect of the invention, the flow rate can be obtained with high accuracy due to the averaging effect even at the time of a small flow rate where the flow rate is not stable, particularly by determining the number of circulations as the measured flow rate becomes smaller in the fourth aspect of the invention. .

第6の発明は、特に第4の発明の計時手段を同期クロック発生手段とタイマカウンタとで構成し、計測制御手段は、計測流量が小さくなるに従って、前記同期クロックの発振周期を大とし、遅延時間の設定分解能を前記同期クロックの最小発振周期の1/2以下に定めることにより小流量時には、計測分解能を損なうことなく消費電力を低減できるので、装置全体の消費電力を低減することができる。   According to a sixth aspect of the invention, in particular, the timing means of the fourth aspect of the invention comprises a synchronous clock generation means and a timer counter, and the measurement control means increases the oscillation cycle of the synchronous clock as the measurement flow rate decreases, and delays By setting the time setting resolution to ½ or less of the minimum oscillation period of the synchronous clock, power consumption can be reduced without impairing the measurement resolution when the flow rate is small, so that the power consumption of the entire apparatus can be reduced.

(実施の形態1)
図1は、本発明の第1の実施の形態における流量計側装置のブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram of a flow meter side device according to the first embodiment of the present invention.

図1において、流体管路1の途中に超音波を送信する第1振動子2が流れの上流側に配置され、第1振動子2から送信された超音波を受信する第2振動子3が流れの下流側に配置されている。送信回路4は第1振動子2へ送信信号を出力し、第2振動子3で受信された受信信号は、増幅回路5で増幅された後、基準信号と比較回路6で比較され、発信から受信までの時間が計時手段7で求められる。トリガ手段8は一定周期毎に計時手段7に計時開始を指示すると同時に、遅延発生手段9により微小な遅延時間を発生させ、遅延時間終了後に、送信回路4から超音波駆動信号が送出される。また、第1振動子2および、第2振動子3は切換手段10の作用により送受信の方向の反転が可能である。すなわち、切換手段10から送受信の反転信号が出力されると、第2振動子が送信側、第1振動子が受信側となるように、送信回路4と第2振動子3、増幅回路5と第1振動子3がそれぞれ接続される。計測制御手段11は、切換手段10の切換タイミングや、遅延発生手段9を始めとする計測動作の制御を行っている。そして、計時手段7で求められた伝搬時間を基に、管路の大きさや流れの状態を考慮して流量演算手段12で流量値が求められる。   In FIG. 1, a first vibrator 2 that transmits ultrasonic waves is arranged in the middle of the fluid conduit 1 on the upstream side of the flow, and a second vibrator 3 that receives ultrasonic waves transmitted from the first vibrator 2 is provided. Located downstream of the flow. The transmission circuit 4 outputs a transmission signal to the first vibrator 2, and the reception signal received by the second vibrator 3 is amplified by the amplification circuit 5 and then compared with the reference signal by the comparison circuit 6. The time until reception is obtained by the time measuring means 7. The trigger unit 8 instructs the time measuring unit 7 to start timing at regular intervals, and at the same time, the delay generating unit 9 generates a minute delay time, and after the delay time ends, an ultrasonic drive signal is transmitted from the transmission circuit 4. The first vibrator 2 and the second vibrator 3 can reverse the direction of transmission and reception by the action of the switching means 10. That is, when an inverted signal of transmission / reception is output from the switching means 10, the transmission circuit 4, the second vibrator 3, and the amplification circuit 5 are arranged so that the second vibrator becomes the transmission side and the first vibrator becomes the reception side. The first vibrators 3 are connected to each other. The measurement control unit 11 controls the switching timing of the switching unit 10 and the measurement operation including the delay generation unit 9. Based on the propagation time obtained by the time measuring means 7, the flow rate calculating means 12 obtains the flow rate value in consideration of the size of the pipe line and the flow state.

図2は、計時手段7のブロック図である。同期クロック発生手段13は、周期的にパルス信号を発生する発信器14と、制御ゲート15とで構成されていて、制御ゲート15は発信器14の出力と、外部からの制御信号とを受けて、同期クロックを発生させる。また、タイマカウンタ16は、制御ゲート15から出力される同期クロックの立ち上がりエッジをカウントし、その値は加算器17に加算される。   FIG. 2 is a block diagram of the time measuring means 7. The synchronous clock generating means 13 is composed of a transmitter 14 that periodically generates a pulse signal and a control gate 15. The control gate 15 receives the output of the transmitter 14 and a control signal from the outside. , Generate a synchronous clock. The timer counter 16 counts the rising edge of the synchronous clock output from the control gate 15 and the value is added to the adder 17.

制御ゲート15は、ANDゲートにより構成されていて、制御信号が「H」出力の時に、発信器14から入力の入力信号をそのまま、タイマカウンタ16の同期クロックとして出力する。したがって、計測対象の開始時点で制御信号を「H」、終了時点で、制御信号を「L」として、この間にタイマカウンタ16に入力された同期クロックの数をカウントすることにより、計測対象を計時することが可能となる。   The control gate 15 is composed of an AND gate, and outputs the input signal input from the transmitter 14 as it is as a synchronous clock of the timer counter 16 when the control signal is “H” output. Accordingly, the control signal is set to “H” at the start time of the measurement target, and the control signal is set to “L” at the end time. By counting the number of synchronous clocks input to the timer counter 16 during this time, the measurement target is timed. It becomes possible to do.

次に、伝搬時間の計測方法について説明する。トリガ手段8からトリガ信号が出力されると同時に、制御ゲート15の制御信号が「L」から「H」に変化する。これによって、制御ゲート15から一定周期毎に、タイマカウンタ16に対して同期クロックが入力されるようになり、伝搬時間の計時が開始される。この計時開始のタイミングから僅かな遅延時間Tの後に、送信回路4から送信出力がされる。そして、この遅延時間Tは、可変であり、その設定分解能Tは、計時手段7の計時分解能、すなわち、同期クロックの発振周期Tより小さな値1/3Tに定められている。まず、1回目の送信時の遅延時間TD1は1/3Tであり、以後、2回目の遅延時間TD2は2/3T、3回目の遅延時間TD3はTと、その遅延時間Tは設定分解能T、すなわち1/3Tずつ変化させていく。Tをわずかに変化させることにより、計測点における同期クロックの位相が毎回異なるため、同期クロックの1周期未満のわずかな時間変化の読み取りが可能となる。そして、特に、Tが同期クロックの整数倍に達すると、同期クロックを整数分の1に均等に分割した分解能を得ることができる。 Next, a method for measuring the propagation time will be described. At the same time as the trigger signal is output from the trigger means 8, the control signal of the control gate 15 changes from "L" to "H". As a result, a synchronous clock is input from the control gate 15 to the timer counter 16 at regular intervals, and the propagation time is started. After the timing of the start of counting of the small delay time T D, the transmission output from the transmission circuit 4. Then, the delay time T D is a variable, the set resolution T S is clocked resolution measuring unit 7, namely, is defined from the oscillation period T C of a synchronous clock to a value 1 / 3T C. First, the delay time at the first transmission T D1 is 1 / 3T C, thereafter, the second delay time T D2 is 2 / 3T C, 3-time delay time T D3 is a T C, the delay time T D is set resolution T S, i.e. gradually varied by 1 / 3T C. By slightly changing the T D, because the synchronous clock phase at the measurement point is different every time, it is possible to read a short time change of less than one cycle of the synchronous clock. Then, in particular, the T D reaches an integral multiple of the synchronous clock, it is possible to obtain a resolution which is equally divided into an integer fraction of the synchronization clock.

この分解能向上効果について図3および図4を用いて説明する。図3は、遅延時間がない場合と、遅延時間がTD1、TD2、TD3の場合のタイマカウンタ値を示すものである。それぞれの場合の計数値は、N、N+1、N+1、N+1となる。送受信1回目から3回目までに計数された値であるN+1、N+1、N+1は加算器17で加算され、その加算値である3N+3が流量演算手段12に出力される。 This resolution improvement effect will be described with reference to FIGS. FIG. 3 shows timer counter values when there is no delay time and when the delay times are T D1 , T D2 , and T D3 . The count values in each case are N, N + 1, N + 1, and N + 1. N + 1, N + 1, and N + 1, which are values counted from the first transmission to the third transmission / reception, are added by the adder 17, and the added value 3N + 3 is output to the flow rate calculation means 12.

流量演算手段12では、加算器17で求めた値に対して遅延時間を補正する処理が施される。3つの遅延時間1/3T、2/3T、Tの合計値は2Tと求められるので、3回の伝搬時間の平均値は次式により求めることができる。 In the flow rate calculation means 12, a process for correcting the delay time is performed on the value obtained by the adder 17. Three delay time 1 / 3T C, 2 / 3T C, since the sum from T C is determined to 2T C, average of three propagation time can be calculated by the following equation.

Tave={(3N+3)×T−2T}/3=(N+1/3)・T (式5)
図4は、伝搬時間と、この方式で読み取った場合の計測値の関係をタイマカウンタ16の値で示したものである。図4によれば、時間分解能がカウンタ値の1/3カウント分となり、遅延がない場合の1/3の分解能で時間変化を読み取ることが可能になっているのがわかる。
Tave = {(3N + 3) × T C -2T C} / 3 = (N + 1/3) · T C ( Equation 5)
FIG. 4 shows the relationship between the propagation time and the measured value when read by this method, using the value of the timer counter 16. According to FIG. 4, it can be seen that the time resolution is 1/3 of the counter value, and the time change can be read with a resolution of 1/3 when there is no delay.

上記のような方法で得られる時間分解能は、計時手段7の時間分解能、すなわち同期クロックの周期T、遅延時間の設定分解能T、と前記ふたつの分解能の差T−Tの3者のうち最も小さな値として定義できる。上記の例では、三つの値がそれぞれ、T、1/3T、2/3Tとなるので、時間分解能は1/3Tとなる。なお、遅延時間Tの設定範囲は、先に述べたように計時分解能Tの整数倍に限定されるものではなく、整数倍近傍の値であれば、計時分解能Tをほぼ均等に分割した分解能を得ることができる。また、整数倍から外れた値であったとしても、平均的な分解能は、計時手段7単独で得られる分解能Tよりも小さな値となることは言うまでもない。 The time resolution obtained by the method as described above is the time resolution of the time measuring means 7, that is, the period T C of the synchronous clock, the delay time setting resolution T S , and the difference T C -T S between the two resolutions. Can be defined as the smallest value. In the example above, each of three values, because the T C, 1 / 3T C, 2 / 3T C, the time resolution is 1 / 3T C. The setting range of delay time T D is not limited to an integral multiple of the time resolution T C as previously described, if the value of the integral multiple proximity, timing resolution T C almost equally divided Resolution can be obtained. Further, even if a value out of the integer multiples, the average resolution, it is needless to say that a value smaller than the resolution T C obtained by clocking means 7 alone.

そして、送信間隔がいくらであっても同じ分解能が得られる。したがって、シングアラウンド法のように、連続動作を前提としている場合と異なり、超音波の送信間隔を自由に設定することが可能となり、流量変化に対する追従性を高めることができる。   The same resolution can be obtained regardless of the transmission interval. Therefore, unlike the case of assuming a continuous operation as in the sing-around method, it is possible to freely set the transmission interval of the ultrasonic waves, and the followability to the flow rate change can be improved.

なお、送信間隔が短い場合には、前に送信した超音波の残響や反射波が、後続の送信波と合成されることで計測精度に悪影響を及ぼす場合もあるので、一旦計測が終了した後、所定時間、すなわち、反射や残響の影響がなくなるまでの時間、再計測を禁止する構成とすれば、精度の高い計測が実現できるようになる。この場合、再計測を禁止している間は、制御ゲート15に対する制御信号は「L」になっているため、タイマカウンタ16に対して同期クロックは入力されないので、余分な電力消費を低減できる。   If the transmission interval is short, the reverberation or reflected wave of the previously transmitted ultrasonic wave may be adversely affected by the measurement accuracy by combining it with the subsequent transmission wave. If the configuration is such that re-measurement is prohibited for a predetermined time, that is, the time until the influence of reflection and reverberation is eliminated, highly accurate measurement can be realized. In this case, since the control signal for the control gate 15 is “L” while the remeasurement is prohibited, the synchronization clock is not input to the timer counter 16, and therefore, excessive power consumption can be reduced.

次に、流量演算の方法について説明する。遅延時間の設定値を3回変化させることによって、設定が一巡するので、この時点で、計測制御手段11は、切換手段10により振動子の送受信の方向を反転し、第1振動子2を受信側、第2振動子1を送信側として同様に3回の計測を実行する。そのため、両方向において、高い分解能で伝搬時間を計測することが可能となるので、流量値も同様に高精度で求めることが可能である。   Next, a flow rate calculation method will be described. Since the setting is completed by changing the set value of the delay time three times, at this time, the measurement control unit 11 reverses the direction of transmission / reception of the transducer by the switching unit 10 and receives the first transducer 2. In the same manner, three measurements are performed with the second vibrator 1 as the transmitting side. Therefore, since it is possible to measure the propagation time with high resolution in both directions, the flow rate value can be obtained with high accuracy as well.

なお、流量演算のタイミングは設定一巡毎に限るものではなく、二巡、三巡させた後であっても良い。特に、流量の小さな時は、流速自体が不安定であることが多いため、複数回巡回させてから流量を求めるようにすれば、平均化作用により正確な値を得ることができる。   Note that the flow rate calculation timing is not limited to each set cycle, and may be after two or three cycles. In particular, when the flow rate is small, the flow rate itself is often unstable. Therefore, if the flow rate is obtained after a plurality of circulations, an accurate value can be obtained by averaging.

また、設定一巡もしくは整数回巡回する毎に流量演算を実施する構成に拘る物ではなく、切換タイミングが異なる場合であっても、トータルの積算流量値は同じ精度で得られることは容易に推察できる。   In addition, it is not related to the configuration in which the flow rate calculation is performed every set round or integer rounds, and it can be easily estimated that the total integrated flow rate value can be obtained with the same accuracy even when the switching timing is different. .

なお、本実施の形態においては、超音波の送信を計時手段7の計時開始より遅延させる構成としているが、反対に、計時手段7の計時開始の方を遅延させる構成や、タイマの計測終了を遅延させる構成であっても同様の効果が得られることは言うまでもない。   In the present embodiment, the transmission of the ultrasonic wave is delayed from the start of time measurement by the time measuring means 7, but conversely, the time start of the time measuring means 7 is delayed or the measurement end of the timer is terminated. It goes without saying that the same effect can be obtained even with a delayed configuration.

(実施の形態2)
図5は、実施の形態2における計時手段7のブロック図である。図5が図2と異なるのは発信器14から出力されるクロックパルスを分周器18を通した後に、制御ゲート15へ出力している点である。
(Embodiment 2)
FIG. 5 is a block diagram of the time measuring means 7 in the second embodiment. FIG. 5 differs from FIG. 2 in that the clock pulse output from the transmitter 14 is output to the control gate 15 after passing through the frequency divider 18.

実施の形態1で示した通り、時間分解能は、計時手段の時間分解能、すなわち同期クロックの周期T、遅延時間の設定分解能T、と前記ふたつの分解能の差T−Tの3者のうち最も小さな値として定義できる。分周器18を通す前の発信器14の発信周波数をTとし、TをTの1/2より小さく定めておけば、分周器17により制御ゲート14へ出力する同期クロック周期をどれだけ大きくしても、分解能は常にTとなる。したがって、分解能を損なわずに、タイマカウンタ16の消費電流を低減できる。よって、流体の使用量の少ない時に、分周器18回路を通してタイマカウンタ16に入力される同期クロック周期を長くするように設定すれば、装置全体の総消費電流の低減が図れる。特に、家庭用のガスメータに適用した場合を考えると、長時間電池を交換せずに長い年月動作させることが要求されるため、消費電力を極めて小さく抑える必要があるが、一般家庭におけるガスの使用実態を考えると、ガスを使っていない時間の方が圧倒的に長いため、流量が小さい時に消費電力を低減する効果は極めて高いと言える。 As shown in the first embodiment, the time resolution includes the time resolution of the time measuring means, that is, the period T C of the synchronization clock, the delay time setting resolution T S , and the difference T C -T S between the two resolutions. Can be defined as the smallest value. If the transmission frequency of the transmitter 14 before passing through the frequency divider 18 is T C and T S is set to be smaller than ½ of T C , the synchronous clock cycle output to the control gate 14 by the frequency divider 17 is set. even if just how large, resolution is always T S. Therefore, the current consumption of the timer counter 16 can be reduced without degrading the resolution. Therefore, if the synchronous clock period input to the timer counter 16 through the frequency divider 18 circuit is set to be long when the amount of fluid used is small, the total current consumption of the entire apparatus can be reduced. In particular, when applied to a home gas meter, it is required to operate for many years without replacing the battery for a long time. Considering the actual usage, the time when the gas is not used is overwhelmingly long, so it can be said that the effect of reducing power consumption is extremely high when the flow rate is small.

本発明の流量計測装置は、計測間隔を自由に設定することができるので、例えば脈動流が常時発生するような条件下においても適用可能である。   Since the flow rate measuring device of the present invention can freely set the measurement interval, it can be applied, for example, under conditions where pulsating flow is always generated.

本発明の実施の形態1における流量計測装置のブロック図Block diagram of a flow rate measuring device in Embodiment 1 of the present invention 本発明の実施の形態1における計時手段のブロック図The block diagram of the time measuring means in Embodiment 1 of this invention 本発明の実施の形態1における計時手段の動作を説明するタイミングチャートTiming chart for explaining the operation of the time measuring means in Embodiment 1 of the present invention 本発明の実施の形態1における計時手段の時間分解能を示す特性図The characteristic figure which shows the time resolution of the time measuring means in Embodiment 1 of this invention 本発明の実施の形態2における計時手段のブロック図The block diagram of the time measuring means in Embodiment 2 of this invention 従来の流量計測装置のブロック図Block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

1 流体管路
2 第1振動子
3 第2振動子
7 計時手段
9 遅延発生手段
10 切換手段
11 計測制御手段
12 流量演算手段
13 同期クロック発生手段
16 タイマカウンタ
DESCRIPTION OF SYMBOLS 1 Fluid line 2 1st vibrator 3 2nd vibrator 7 Time measuring means 9 Delay generating means 10 Switching means 11 Measurement control means 12 Flow rate calculating means 13 Synchronous clock generating means 16 Timer counter

Claims (6)

流体管路に設けられ超音波信号を送信する第1振動子と、前記第1振動子から送信された超音波信号を受信する第2振動子と、前記第1、第2振動子間を超音波が伝搬する毎に発停して伝搬時間を計測する計時手段と、前記計時手段による計測が所定回数に達する毎に前記第1、第2振動子の送受信方向を反転させる切換手段と、前記計時手段の計測開始もしくは計測終了と送受信のタイミングに微小時間のずれを発生させる遅延発生手段と、前記遅延発生手段と前記切換手段とを制御する計測制御手段と、前記計時手段の計測値と前記遅延発生手段の遅延時間とを基に流量を求める流量演算手段とを備え、前記計測制御手段は、前記遅延発生手段の遅延時間を前記計時手段の計時分解能より小さい分解能により所定範囲だけ変更可能とした流量計測装置。 A first transducer that is provided in a fluid conduit and transmits an ultrasonic signal, a second transducer that receives an ultrasonic signal transmitted from the first transducer, and an ultrasonic wave between the first and second transducers. A timing unit that starts and stops each time a sound wave propagates and measures a propagation time; a switching unit that reverses the transmission and reception directions of the first and second vibrators every time the measurement by the timing unit reaches a predetermined number of times; and A delay generating means for generating a minute time lag between the start or end of measurement of the time measuring means and the timing of transmission and reception; a measurement control means for controlling the delay generating means and the switching means; a measured value of the time measuring means; A flow rate calculating means for obtaining a flow rate based on a delay time of the delay generating means, wherein the measurement control means can change the delay time of the delay generating means by a predetermined range with a resolution smaller than the time resolution of the time measuring means. did Amount measuring device. 計測制御手段は、遅延時間の設定範囲を計時手段の計時分解能の整数倍になるように定める請求項1に記載の流量計測装置。 2. The flow rate measuring device according to claim 1, wherein the measurement control means determines the delay time setting range to be an integer multiple of the time resolution of the time measuring means. 計測制御手段は、計時手段による計測終了後の所定時間は次の計測を禁止する構成とした請求項1に記載の流量計測装置。 2. The flow rate measuring device according to claim 1, wherein the measurement control means is configured to prohibit the next measurement for a predetermined time after the measurement by the time measuring means is completed. 計測制御手段は、遅延発生手段の設定値が整数回巡回する毎に送受信の切換を行い、流量演算手段は、送受信切換1対の計測により流量を求める構成とした請求項2に記載の流量計測装置。 3. The flow rate measurement according to claim 2, wherein the measurement control unit switches transmission / reception every time the set value of the delay generation unit circulates an integer number of times, and the flow rate calculation unit obtains the flow rate by measuring one pair of transmission / reception switching. apparatus. 計測制御手段は、計測流量が小さくなるに従って流量演算を行うまでの計測回数を多くなるように定めた請求項4に記載の流量計測装置。 The flow rate measuring device according to claim 4, wherein the measurement control means determines the number of measurements until the flow rate calculation is performed as the measured flow rate decreases. 計時手段は同期クロック発生手段とタイマカウンタとで構成され、計測制御手段は、計測流量が小さくなるに従って、前記同期クロックの発振周期を大とし、遅延時間の設定分解能を前記同期クロックの最小発振周期の1/2以下に定める構成とした請求項4に記載の流量計測装置。 The time measuring means comprises a synchronous clock generating means and a timer counter, and the measurement control means increases the synchronous clock oscillation period as the measured flow rate decreases, and the delay time setting resolution is the minimum synchronous clock oscillation period. The flow rate measuring device according to claim 4, wherein the flow rate measuring device is configured to be ½ or less of the above.
JP2005026051A 2005-02-02 2005-02-02 Device for measuring flow rate Pending JP2006214793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026051A JP2006214793A (en) 2005-02-02 2005-02-02 Device for measuring flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026051A JP2006214793A (en) 2005-02-02 2005-02-02 Device for measuring flow rate

Publications (1)

Publication Number Publication Date
JP2006214793A true JP2006214793A (en) 2006-08-17

Family

ID=36978155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026051A Pending JP2006214793A (en) 2005-02-02 2005-02-02 Device for measuring flow rate

Country Status (1)

Country Link
JP (1) JP2006214793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180564A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2008180565A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2017046017A (en) * 2016-12-08 2017-03-02 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method and recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321105A (en) * 1999-05-17 2000-11-24 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2003232664A (en) * 2003-03-07 2003-08-22 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2003270008A (en) * 2002-03-15 2003-09-25 Matsushita Electric Ind Co Ltd Zero correction method of flow meter and flowmeter using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321105A (en) * 1999-05-17 2000-11-24 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2003270008A (en) * 2002-03-15 2003-09-25 Matsushita Electric Ind Co Ltd Zero correction method of flow meter and flowmeter using the same
JP2003232664A (en) * 2003-03-07 2003-08-22 Matsushita Electric Ind Co Ltd Flow rate measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180564A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2008180565A (en) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2017046017A (en) * 2016-12-08 2017-03-02 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method and recording medium

Similar Documents

Publication Publication Date Title
JP4788235B2 (en) Fluid flow measuring device
KR100487690B1 (en) Flowmeter
JP5753970B2 (en) Flow measuring device
JP5524972B2 (en) Flow measuring device
JP2005241546A (en) Doppler ultrasonic flowmeter, processing device thereof and program
WO2012081195A1 (en) Flow volume measuring device
JP4835068B2 (en) Fluid flow measuring device
JP4973035B2 (en) Ultrasonic flow meter
JP2006214793A (en) Device for measuring flow rate
JP3427762B2 (en) Ultrasonic flow meter
JP2008014800A (en) Flow measuring instrument
JP2006214794A (en) Device for measuring flow rate
JPH09133562A (en) Ultrasonic flowmeter
JP5467332B2 (en) Fluid flow measuring device
JP4858220B2 (en) Ultrasonic current meter
JP2008175667A (en) Fluid flow measuring device
JP2008175668A (en) Fluid flow measuring device
JP4485641B2 (en) Ultrasonic flow meter
JP5135807B2 (en) Fluid flow measuring device
JP5135806B2 (en) Fluid flow measuring device
JP2001165764A (en) Method of measuring ultrasonic wave propagation time
JP2003232663A (en) Flow rate measuring device
JP4476022B2 (en) Ultrasonic flow meter
JP4552285B2 (en) Flowmeter
JP5969198B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726