JP5467332B2 - Fluid flow measuring device - Google Patents

Fluid flow measuring device Download PDF

Info

Publication number
JP5467332B2
JP5467332B2 JP2009094811A JP2009094811A JP5467332B2 JP 5467332 B2 JP5467332 B2 JP 5467332B2 JP 2009094811 A JP2009094811 A JP 2009094811A JP 2009094811 A JP2009094811 A JP 2009094811A JP 5467332 B2 JP5467332 B2 JP 5467332B2
Authority
JP
Japan
Prior art keywords
pulsation
measurement
time
fluid flow
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009094811A
Other languages
Japanese (ja)
Other versions
JP2010243432A (en
Inventor
晃一 竹村
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009094811A priority Critical patent/JP5467332B2/en
Publication of JP2010243432A publication Critical patent/JP2010243432A/en
Application granted granted Critical
Publication of JP5467332B2 publication Critical patent/JP5467332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波信号の伝搬時間を計測することにより流体の流速および/または流量を計測する流れの計測装置に関するものである。   The present invention relates to a flow measuring device that measures the flow velocity and / or flow rate of a fluid by measuring the propagation time of an ultrasonic signal.

従来、この種の流量計においては、一対の振動子間の送受信を複数回繰り返すことにより、計測分解能を高めるシングアラウンド法という手法を用いたものが提案されている。この種の計測装置を家庭用のガスメータに適用した例を図7を用いて説明する。   Conventionally, this type of flow meter has been proposed that uses a technique called a sing-around method that increases measurement resolution by repeating transmission and reception between a pair of transducers a plurality of times. An example in which this type of measuring device is applied to a household gas meter will be described with reference to FIG.

流体管路41の途中で、しかも上、下流側には、一対の超音波送受信用の第1,第2振動子42,43が斜めに対向するごとく配置されていて、超音波が流体を流れを斜めに横切るように伝搬するように設定されている。   A pair of ultrasonic transmission / reception first and second transducers 42 and 43 are disposed in the middle of the fluid conduit 41 and on the upstream and downstream sides so that the ultrasonic waves flow through the fluid. It is set to propagate so as to cross diagonally.

また、前記超音波の伝搬時間を計測する計測部44と、この計測部44を制御する制御部45と、前記計測部44の計測結果を基に流体の流速および/または流量を演算する演算部46とが設けてある。   In addition, the measurement unit 44 that measures the propagation time of the ultrasonic wave, the control unit 45 that controls the measurement unit 44, and the calculation unit that calculates the flow velocity and / or flow rate of the fluid based on the measurement result of the measurement unit 44 46 is provided.

今、音速をC、流速をv、の振動子間の距離をL、超音波の伝搬方向と流れの方向とがなす角度をθとし、上流側に配置された振動子42から超音波を送信し、下流側に配置された振動子43にで受信した場合の伝搬時間をt、逆方向の伝搬時間をtとした場合、tおよびtは次式で求めることができる。 Now, the sound velocity is C, the flow velocity is v, the distance between the transducers is L, and the angle between the ultrasonic propagation direction and the flow direction is θ, and the ultrasonic waves are transmitted from the transducer 42 arranged on the upstream side. When the propagation time when received by the transducer 43 arranged on the downstream side is t 1 and the propagation time in the reverse direction is t 2 , t 1 and t 2 can be obtained by the following equations.

=L/(C+vcosθ) (式1)
=L/(C−vcosθ) (式2)
(式1)および(式2)を変形し、(式3)で流速vが求まる。
t 1 = L / (C + v cos θ) (Formula 1)
t 2 = L / (C−v cos θ) (Formula 2)
(Formula 1) and (Formula 2) are modified, and the flow velocity v is obtained by (Formula 3).

v=L・(1/t−1/t)/2cosθ (式3)
必要に応じて、(式3)で求めた値に流体管路の断面積を掛ければ流体の流量を求めることができる。
v = L · (1 / t 1 −1 / t 2 ) / 2 cos θ (Formula 3)
If necessary, the fluid flow rate can be obtained by multiplying the value obtained in (Equation 3) by the cross-sectional area of the fluid conduit.

ところで、(式3)において、括弧内の項は下記のように変形できる。   By the way, in (Equation 3), the terms in parentheses can be modified as follows.

(t−t)/t (式4)
ここで、(式4)の分母の項は流速の変化に関わらずほぼ一定の値となるが、分子の項は流速とほぼ比例した値となる。
(T 2 −t 1 ) / t 1 t 2 (Formula 4)
Here, the denominator term in (Equation 4) has a substantially constant value regardless of the change in flow velocity, whereas the numerator term has a value that is substantially proportional to the flow velocity.

したがって、二つの伝搬時間の差を精度よく計測する必要がある。そのため、流速が遅くなるほど、微小な時間差を求める必要があり、単発現象として計測するには計測部44は、例えば、nsオーダーの非常に小さな時間分解能を有する必要がある。   Therefore, it is necessary to accurately measure the difference between the two propagation times. For this reason, as the flow rate becomes slower, it is necessary to obtain a minute time difference. To measure as a single phenomenon, the measurement unit 44 needs to have a very small time resolution, for example, in the order of ns.

これだけの時間分解能を実現するのは難しく、仮に実現できたとしても時間分解能を上げることによる消費電力の増大を招くこととなる。そのため、超音波の送信を何回も繰り返し実行し、その一連の繰り返し計測の所要時間を計測部44で計測する。そして、その平均値を求めることにより必要な時間分解能を実現している。   It is difficult to realize such a time resolution, and even if it can be realized, power consumption is increased by increasing the time resolution. Therefore, ultrasonic transmission is repeatedly performed many times, and the time required for the series of repeated measurements is measured by the measurement unit 44. The required time resolution is realized by obtaining the average value.

すなわち、計測部44の時間分解能をT、繰り返し回数をMとすれば、この繰り返し計測の間、計測部44を連続して動作させることにより、伝搬時間の計測分解能はT
Mとすることができる。
That is, if the time resolution of the measurement unit 44 is T A and the number of repetitions is M, the measurement resolution of the propagation time is T A / by operating the measurement unit 44 continuously during this repeated measurement.
M.

この種の計測装置は、流体流路内の圧力が安定している時には精度の高い計測が実現できるが、例えば、一般家庭にエネルギー源として供給されるガス流量を計測するガスメータに適用した場合には、脈動現象と呼ばれる固有の課題に直面する。   This type of measuring device can achieve highly accurate measurement when the pressure in the fluid flow path is stable. For example, when applied to a gas meter that measures the flow rate of gas supplied to an ordinary household as an energy source. Face an inherent challenge called the pulsation phenomenon.

これは、例えばGHPと呼ばれるガスエンジンを利用した空調機のように、ガスエンジンの回転に同期して周辺のガス供給配管内の圧力に変動を及ぼす現象である。   This is a phenomenon that fluctuates the pressure in the surrounding gas supply piping in synchronization with the rotation of the gas engine, such as an air conditioner using a gas engine called GHP.

この脈動が発生した場合、ガス器具を使用していない場合であっても、圧力の変動に同期してガスが配管内を移動し、その動きに影響されて、あたかもガスが流れているかの如き計測値が検出されてしまう。   When this pulsation occurs, even when the gas appliance is not used, the gas moves in the pipe in synchronization with the pressure fluctuation, and it is affected by the movement as if the gas is flowing. A measurement value is detected.

この現象による影響を抑える方法として、繰り返し計測回数Mを計測精度が維持できる最低限の回数に抑えた上で、計測間隔を短くし、小刻みに比較的長時間連続して実行して連続して計測した結果を用いて流量演算を行うというものがある。   As a method to suppress the effect of this phenomenon, the number of repeated measurements M is kept to the minimum number that can maintain the measurement accuracy, the measurement interval is shortened, and it is continuously executed for a relatively long time in small increments. There is one that performs flow rate calculation using the measured result.

特に、計測間隔を圧力変動周期よりも充分短い間隔で行うことで、流速変動波形の位相状態を満遍なく捉えることができるようになり、それらを平均化することで、変動成分を取り除いた真の流速(流量)を検出する効果を狙っている(例えば、特許文献1参照)。   In particular, if the measurement interval is sufficiently shorter than the pressure fluctuation period, the phase state of the flow velocity fluctuation waveform can be captured evenly, and by averaging them, the true flow velocity with the fluctuation component removed The effect of detecting (flow rate) is aimed (see, for example, Patent Document 1).

しかし、このような計測方法常時続けることは消費電力の点では得策ではない。   However, it is not a good idea in terms of power consumption to continue such a measurement method at all times.

そこで、不要な消費電力を小さくするために、検出した流速の変動量に応じて、計測回数を制御する、すなわち、流量変動が小さく脈動がないと判断できる状況下においては計測回数を小さく、流量変動が大きく脈動があると判断される状況下においては、計測回数を大きくするというものである(例えば、特許文献2参照)。   Therefore, in order to reduce unnecessary power consumption, the number of measurements is controlled according to the detected flow rate fluctuation amount. In a situation where it is determined that there is a large fluctuation and pulsation, the number of measurements is increased (see, for example, Patent Document 2).

特開2002−350202号公報JP 2002-350202 A 特開2003−222548号公報JP 2003-222548 A

しかしながら、前記従来の構成では、複数回の流量計測値の変動値をもとに変動を検知するため、応答遅れが生じ、その結果、圧力変動起動時には、変動の影響を受けて誤計測の原因となったり、変動停止時には、不要な電力消費を招くなどの課題があった。   However, in the conventional configuration, since the fluctuation is detected based on the fluctuation value of the flow rate measurement value of a plurality of times, a response delay occurs. As a result, at the time of starting the pressure fluctuation, the influence of the fluctuation causes the erroneous measurement. There were problems such as incurring unnecessary power consumption at the time of fluctuation stop.

本発明は、上記従来の課題を解決するもので、脈動の有無を瞬時に判定し、脈動有無に応じた計測方法に瞬時に切り替え可能な応答性の高い流体の流れ計測装置を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, and provides a fluid flow measurement device with high responsiveness that can instantaneously determine the presence or absence of pulsation and instantly switch to a measurement method according to the presence or absence of pulsation. It is aimed.

前記従来の課題を解決するために、本発明の流体の流れ流量計測装置は、流体流路に設けられ、超音波信号を発信、受信する第1振動子および第2振動子と、前記振動子間における超音波信号の伝搬時間を計測する計時手段と、前記両振動子の送受信方向を切り替えながら前記計時手段により順、逆双方向の超音波信号の伝搬時間を計測する単位計測工程を定められた間隔で複数回連続して実行し、前記実行回数分の伝搬時間を基に流速および/または流量を演算する演算手段と、前記1単位計測工程毎の順逆両方向の伝搬時間差を求める時間差検出手段と、前記時間差検出手段で求めた相前後する二つの単位計測工程における伝搬時間差の変動量を求める変動量検出手段と、前記変動量検出手段で求めた変動量から流体流路内の圧力脈動の有無を判定する脈動検知手段と、前記脈動検知手段の判定結果を元に前記単位計測工程の実行回数を制御する計測制御手段とを備えたもので、脈動の有無を瞬時に判定し、脈動有無に応じた計測方法に瞬時に切り替え可能な応答性の高い流体の流れ計測装置を提供できる。
In order to solve the above-described conventional problems, a fluid flow rate measuring device according to the present invention is provided in a fluid flow path, and transmits and receives an ultrasonic signal. The first vibrator and the second vibrator, and the vibrator A time measuring means for measuring the propagation time of the ultrasonic signal between them, and a unit measuring step for measuring the propagation time of the forward and reverse ultrasonic signals by the time measuring means while switching the transmission / reception direction of the two transducers. And a time difference detecting means for calculating a flow time difference in both forward and reverse directions for each unit measurement step, and a calculation means for calculating a flow velocity and / or a flow rate based on a propagation time corresponding to the number of execution times. When the variation amount detecting means for determining the variation of transit time in the two unit measurement step of tandem which has been determined by the time difference detecting means, the pressure pulsation of the fluid flow path from the amount of variation which has been determined by the variation amount detecting means Which was provided with a pulsation detection means for determining free, and a measurement control means for controlling the number of times of execution of the unit measurement process based on the determination result of the pulse detecting means, and determining the presence or absence of pulsations instantaneously, pulsating presence It is possible to provide a fluid flow measuring device with high responsiveness that can be instantaneously switched to a measuring method according to the above.

本発明の流量計測装置は、脈動の有無を瞬時に判定し、脈動有無に応じた計測方法に瞬時に切り替え可能な応答性の高い計測が可能である。   The flow rate measuring device of the present invention can determine the presence or absence of pulsation instantaneously and perform highly responsive measurement that can be instantaneously switched to a measurement method according to the presence or absence of pulsation.

本発明の実施の形態1における流体の流れ計測装置のブロック図1 is a block diagram of a fluid flow measurement device according to Embodiment 1 of the present invention. 同装置の動作を説明するタイムチャートTime chart explaining the operation of the device 同装置における計時手段の構成図Configuration diagram of timing means in the same device 同装置における計時手段の動作を説明するタイムチャートTime chart explaining operation of time measuring means in the same device 同装置における計時手段の動作を説明するタイムチャートTime chart explaining operation of time measuring means in the same device 同装置における計時手段の動作を説明するタイムチャートTime chart explaining operation of time measuring means in the same device 従来の流体の流れ計測装置のブロック図Block diagram of a conventional fluid flow measurement device

第1の発明は、流体流路に設けられ、超音波信号を発信、受信する第1振動子および第2振動子と、前記振動子間における超音波信号の伝搬時間を計測する計時手段と、前記両振動子の送受信方向を切り替えながら前記計時手段により順、逆双方向の超音波信号の伝搬時間を計測する単位計測工程を定められた間隔で複数回連続して実行し、前記実行回数分の伝搬時間を基に流速を演算する流速演算手段と、前記1単位計測工程毎の順逆両方向の伝搬時間差を求める時間差検出手段と、前記時間差検出手段で求めた相前後する二つの単位計測工程における伝搬時間差の変動量を求める変動量検出手段と、前記変動量検出手段で求めた変動量から流体流路内の圧力脈動の有無を判定する脈動検知手段と、前記脈動検知手段の判定結果を元に前記単位計測工程の実行回数を制御する計測制御手段とを備え構成としているもので、脈動の有無を瞬時に判定し、脈動有無に応じた計測方法に瞬時に切り替え可能な応答性の高い流体の流れ計測装置を提供できる。 1st invention is provided in the fluid flow path, the 1st vibrator and 2nd vibrator which transmit and receive an ultrasonic signal, The time measuring means which measures the propagation time of the ultrasonic signal between the vibrators, A unit measurement step for measuring the propagation time of forward and reverse ultrasonic signals by the time measuring means while switching the transmission / reception directions of the two vibrators is continuously executed a plurality of times at a predetermined interval, A flow rate calculating means for calculating a flow speed based on the propagation time of time, a time difference detecting means for obtaining a propagation time difference in both forward and reverse directions for each of the unit measurement steps, and two unit measurement steps in succession obtained by the time difference detection means . Based on the fluctuation amount detection means for obtaining the fluctuation amount of the propagation time difference, the pulsation detection means for judging the presence or absence of pressure pulsation in the fluid flow path from the fluctuation amount obtained by the fluctuation amount detection means, and the determination result of the pulsation detection means It said to It has a measurement control means that controls the number of executions of the position measurement process, and can quickly determine the presence or absence of pulsation and instantly switch to a measurement method according to the presence or absence of pulsation. A measuring device can be provided.

第2の発明は、特に、第1の発明において、脈動検知手段を、変動量検出手段の出力と予め定めた閾値とを比較し、閾値より大の場合に脈動あり、閾値より小の場合には脈動なしと判定する構成としているので、複雑な演算を施すことなく脈動の有無を判定することが可能である。   In the second invention, in particular, in the first invention, the pulsation detecting means compares the output of the fluctuation amount detecting means with a predetermined threshold value, and when there is a pulsation when it is larger than the threshold value, Since it is determined that there is no pulsation, it is possible to determine the presence or absence of pulsation without performing complicated calculations.

第3の発明は、特に、第2の発明において、脈動検知手段が脈動なしと判定した場合には、計測制御手段は、単位計測工程の実行回数を低減するように制御する構成としているので、脈動がない安定した使用条件では消費電力の低減が可能である。   In the third invention, in particular, in the second invention, when the pulsation detecting means determines that there is no pulsation, the measurement control means is configured to control to reduce the number of executions of the unit measurement process. Power consumption can be reduced under stable use conditions with no pulsation.

第4の発明は、特に、第2の発明において、脈動検知手段が脈動なしと判定した場合には、計測制御手段は、単位計測工程の実行回数を予め定めた最小値で打ち切る構成としているので、脈動がない安定した使用条件では消費電力の低減が可能である。   In the fourth aspect of the invention, in particular, in the second aspect of the invention, when the pulsation detecting unit determines that there is no pulsation, the measurement control unit has a configuration in which the number of executions of the unit measurement step is cut off at a predetermined minimum value. The power consumption can be reduced under stable use conditions with no pulsation.

第5の発明は、特に、第2の発明において、脈動検知手段が脈動ありと判定した場合には、計測制御手段は、単位計測工程の実行回数を増加するように制御する構成としているので、脈動がある条件では、脈動の影響を低減することが可能である。   In the fifth invention, in particular, in the second invention, when the pulsation detecting means determines that there is pulsation, the measurement control means is configured to control to increase the number of executions of the unit measurement process. Under the condition with pulsation, the influence of pulsation can be reduced.

第6の発明は、特に、第2の発明において、脈動検知手段が脈動ありと判定した場合に
は、計測制御手段は、単位計測工程の実行回数を予め定めた最大値とする構成としているので、脈動がある条件では、脈動の影響を低減することが可能である。
In the sixth invention, in particular, in the second invention, when the pulsation detecting means determines that there is pulsation, the measurement control means has a configuration in which the number of executions of the unit measurement process is set to a predetermined maximum value. In the presence of pulsation, the influence of pulsation can be reduced.

第7の発明は、特に、第1から第6のいずれかの発明において、計時手段は基準クロックと前記クロックに基づいて計数を行うカウンタ回路とで構成され、時間差検出手段は、前記カウンタ回路の計数値を用いた減算回路により構成し、単位計測工程から脈動判定までの過程における乗除算を不要とした構成としているので、減算回路を動作させるだけの簡単な演算手法で脈動有無が判定できるので、消費電力が小さくかつ素早い判定が可能である。   In a seventh aspect of the invention, in particular, in any one of the first to sixth aspects of the invention, the time measuring means includes a reference clock and a counter circuit that performs counting based on the clock, and the time difference detecting means is the counter circuit of the counter circuit. Since it is configured with a subtraction circuit using the count value and does not require multiplication / division in the process from the unit measurement process to pulsation determination, it is possible to determine the presence or absence of pulsation with a simple calculation method that only operates the subtraction circuit. The power consumption is small and a quick determination is possible.

第8の発明は、特に、第7の発明の計時手段において、周波数の異なる少なくとも2つ以上の基準クロックとカウンタ回路とで構成され、時間差検出手段は各カウンタ回路毎の時間差を算出し、脈動検知手段は、時間差検出手段で求められた全てのカウンタの計数差の組み合わせから脈動の有無を判定する構成としているので計測分解能を損なうことなく、素早い判定が可能である。   According to an eighth invention, in particular, in the time measuring means of the seventh invention, the time measuring means comprises at least two reference clocks having different frequencies and a counter circuit, and the time difference detecting means calculates a time difference for each counter circuit to generate pulsation. Since the detection means is configured to determine the presence or absence of pulsation from the combination of the count differences of all the counters obtained by the time difference detection means, quick determination is possible without impairing the measurement resolution.

以下本発明の実施の形態を図面を参照しつつ説明する。なお、以下述べる実施の形態が本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiment described below does not limit the present invention.

(実施の形態1)
図1において、流体流路1の途中で、しかも流れ方向上下流側に超音波信号送受信用の第1,第2振動子2,3が斜めに対向して配置され、流体中を超音波信号が斜めに伝搬して横切るようにしてある。
(Embodiment 1)
In FIG. 1, first and second transducers 2 and 3 for transmitting and receiving ultrasonic signals are arranged diagonally opposite to each other in the middle of the fluid flow path 1 and on the upstream and downstream sides in the flow direction. Propagates diagonally and crosses.

送信手段4は、例えば第1振動子2へ駆動信号を出力し、その結果、第1振動子2から出力された超音波信号を第2振動子が受信し、その受信信号が受信手段5で信号処理される。   For example, the transmission unit 4 outputs a drive signal to the first transducer 2, and as a result, the second transducer receives the ultrasonic signal output from the first transducer 2, and the received signal is received by the reception unit 5. Signal processed.

切換手段6は第1振動子2と第2振動子3の送受信の役割を切り換えを行う。   The switching means 6 switches the transmission / reception roles of the first vibrator 2 and the second vibrator 3.

計測制御手段7は、二つの振動子間で実行される送受信の動作全般を制御し、トリガ手段8、繰り返し手段9、遅延手段10、計測工程制御手段11とで構成されている。   The measurement control means 7 controls the overall transmission / reception operation executed between the two vibrators, and is composed of a trigger means 8, a repetition means 9, a delay means 10, and a measurement process control means 11.

先ず、トリガ手段8により計測開始のトリガ出力がなされると、切換手段6が第1振動子2と送信手段4、第2振動子3と受信手段5を接続して、第1振動子2を送信側、第2振動子3を受信側とする計測が開始される。以降の説明のため、これを流れの順方向の計測と称する。   First, when a trigger output for starting measurement is made by the trigger means 8, the switching means 6 connects the first vibrator 2 and the transmission means 4, the second vibrator 3 and the reception means 5, and the first vibrator 2 is connected. Measurement with the transmitting side and the second vibrator 3 as the receiving side is started. For the following description, this will be referred to as forward flow measurement.

送信手段4から駆動信号が出力されると、第1振動子2から超音波信号が出力され、これが第2振動子3に到達すると受信手段5で受信処理を行う。   When a drive signal is output from the transmission unit 4, an ultrasonic signal is output from the first transducer 2, and when this reaches the second transducer 3, reception processing is performed by the reception unit 5.

一旦、受信処理が行われると、繰り返し手段9の作用により、所定のシングアラウンド回数だけ、流れの順方向の計測が繰り返し実行される。本実施の形態ではシングアラウンド回数を4回とするが、これに限られるものではない。   Once the reception process is performed, the forward direction measurement is repeatedly executed by a predetermined number of times of sing-around by the action of the repeating unit 9. In the present embodiment, the number of sing-arounds is four, but the present invention is not limited to this.

4回の繰り返しが完了すると、遅延手段10から所定の遅延時間が発生された後、トリガ手段8が切換手段6に対して送受信の切換信号を出力し、今度は、第2振動子3と送信手段4、第1振動子2と受信手段5が各々接続され、第2振動子3を送信側、第1振動子2を受信側とする計測が開始される。以降の説明のため、これを流れの逆方向の計測と称する。また、この時、トリガ手段8から計測開始のトリガ信号が出力される。   When the four repetitions are completed, after a predetermined delay time is generated from the delay means 10, the trigger means 8 outputs a transmission / reception switching signal to the switching means 6, and this time, transmission with the second vibrator 3 is performed. The means 4, the first vibrator 2 and the receiving means 5 are connected to each other, and measurement is started with the second vibrator 3 as the transmitting side and the first vibrator 2 as the receiving side. For the following explanation, this will be referred to as measurement in the reverse direction of the flow. At this time, a trigger signal for starting measurement is output from the trigger means 8.

送受信の役割が切り換った、逆方向の計測においても、4回の繰り返し計測が実行される。以上のように、流れの順方向の計測(4回のシングアラウンド計測)と、逆方向の計測(4回のシングアラウンド)を交互に1回行う一連の動作を単位計測工程と称する。   Even in the measurement in the reverse direction in which the roles of transmission and reception are switched, four repeated measurements are executed. As described above, a series of operations in which measurement in the forward direction of the flow (four times around measurement) and measurement in the reverse direction (four times around) are alternately performed once are referred to as a unit measurement step.

最初に実行される単位計測工程を第1計測工程とすると、これが完了すると、遅延手段10から遅延信号が出力されて、第1計測工程同様の動作が繰り返される。これを第2計測工程とする。計測工程制御手段11によって、規定の回数の計測工程が実行された後、流量演算が実行される。   If the unit measurement process executed first is the first measurement process, when this is completed, a delay signal is output from the delay means 10 and the same operation as the first measurement process is repeated. This is the second measurement step. After the measurement process control means 11 executes the measurement process a prescribed number of times, the flow rate calculation is executed.

計時手段12は、トリガ手段8のトリガ信号出力タイミングからシングアラウンド終了までの時間を計測し、第1加算手段13は、各単位計測工程の順方向の計測における計時手段12の計測値を積算し、第2加算手段14は、各計測工程の逆方向の計測における計時手段12の計測値を積算する。   The time measuring means 12 measures the time from the trigger signal output timing of the trigger means 8 to the end of sing-around, and the first addition means 13 integrates the measured values of the time measuring means 12 in the forward measurement of each unit measuring step. The second adding means 14 integrates the measurement values of the time measuring means 12 in the measurement in the reverse direction of each measurement process.

そして、定められたN回の単位計測工程の動作が完了すると、演算手段15が第1加算手段13および第2加算手段14の出力値を用いて流速を算出し、必要に応じてこれに流体流路1の断面積および係数を乗じて流量を演算する。   When the predetermined N unit measurement steps are completed, the calculation means 15 calculates the flow velocity using the output values of the first addition means 13 and the second addition means 14, and adds fluid to this as necessary. The flow rate is calculated by multiplying the cross-sectional area of the channel 1 and the coefficient.

一方、時間差検出手段16は、1単位計測工程が完了する毎に順方向の計測における計時手段12の計測値と、逆方向の計測における計時手段12の計測値の差を求める。   On the other hand, the time difference detection means 16 obtains the difference between the measurement value of the time measurement means 12 in the forward direction measurement and the measurement value of the time measurement means 12 in the reverse direction measurement every time one unit measurement process is completed.

変動量検出手段17は時間差検出手段16で求めた相前後する2回の計測工程の時間差の変動量を求め、脈動検出手段18では、変動量検出手段17の出力を判定閾値と比較して脈動の有無を判定し、判定結果を計測工程制御手段11に出力する。   The fluctuation amount detection means 17 obtains the fluctuation amount of the time difference between the two successive measurement steps obtained by the time difference detection means 16, and the pulsation detection means 18 compares the output of the fluctuation amount detection means 17 with the determination threshold value to pulsate. The determination result is output to the measurement process control means 11.

計測工程制御手段11は、脈動検出手段18の判定結果に応じて、単位計測工程を何回実行して流速、および/または流量を求めるかを設定する。   The measurement process control means 11 sets how many times the unit measurement process is executed to obtain the flow velocity and / or flow rate according to the determination result of the pulsation detection means 18.

次に、図2を用いて先に説明した各部の動作の流れを説明する。図2は第1計測工程で流れの順方向の計測開始を示すトリガ手段8の出力タイミングを原点として横軸が原点からの経過時間、縦軸が各部の動作を示している。   Next, the flow of operation of each unit described above will be described with reference to FIG. FIG. 2 shows the elapsed time from the origin with the output timing of the trigger means 8 indicating the start of measurement in the forward direction of the flow in the first measurement step as the origin, and the vertical axis shows the operation of each part.

先ず、時間tで、計時手段12で計測された第1計測工程の順方向の計測値Td1が、時間差検出手段16に出力されると同時にTd1が第1加算手段13に加算される。 First, at time t 1 , the forward measured value T d1 of the first measurement process measured by the time measuring means 12 is output to the time difference detecting means 16 and at the same time T d1 is added to the first adding means 13. .

その後、所定の遅延時間Tint経過した時間tから流れの逆方向の計測が開始され、時間t3で、計時手段12で計測された第1計測工程の逆方向の計測値Tu1が時間差検出手段16に出力される。 Thereafter, a predetermined delay time T int elapsed time t 2 of the flow of the reverse direction measurement is started at time t3, the reverse direction of the measurement value T u1 time difference detection of the first measurement step measured by the time measuring means 12 It is output to the means 16.

ここで、時間差検出手段16はふたつの計測値Td1とTu1の差、Tdef1を(式5)を使って求める。 Here, the time difference detection means 16 obtains the difference between the two measured values T d1 and T u1 , T def1 using (Equation 5).

def1=Tu1−Td1 (式5)
また、それと同時にTu1が第2加算手段14に加算される。
T def1 = T u1 −T d1 (Formula 5)
At the same time, T u1 is added to the second addition means 14.

以下、同様に第2計測工程以降においても、順方向、逆方向の計測が終わる毎に第1加算手段13と第2加算手段14で交互に加算処理が実行され、逆方向の計測が終わると時間差検出手段16で減算処理が実行されることになる。   Similarly, after the second measurement step, the addition process is alternately executed by the first addition unit 13 and the second addition unit 14 every time the measurement in the forward direction and the reverse direction is completed, and the measurement in the reverse direction is completed. The time difference detection means 16 performs the subtraction process.

したがって、時間tで、第2計測工程の順方向の計測値Td2が、時間tで、第2計測工程の逆方向の計測値Tu2が時間差検出手段16に出力される。 Thus, at time t 5, the forward direction of the measurement value T d2 of the second measuring step, at time t 7, the reverse direction of the measurement value T u2 of the second measurement step is output to the time difference detector 16.

そして、時間差検出手段16で両者の差、Tdef2が求められる。その後、変動量検出手段17がTdef1とTdef2の変動量Δを(式6)を使って求める。 Then, the time difference detection means 16 determines the difference between them, T def2 . Thereafter, found using variation delta 1 of variation amount detection means 17 is T def1 and T def2 (Formula 6).

Δ=Tdef2―Tdef1 (式6)
ここで、流路内の圧力に変動がなくかつ流速に変化がないとすれば、Td1とTd2はほぼ同じ値を示し、Tu1とTu2もほぼ同じ値を示す。したがって、Tdef1およびTdef2もほぼ等しいので、Δはほぼ0と考えられる。
Δ 1 = T def2 −T def1 (Formula 6)
Here, if there is no fluctuation in the pressure in the flow path and there is no change in the flow velocity, T d1 and T d2 show almost the same value, and T u1 and T u2 show almost the same value. Therefore, since T def1 and T def2 are also approximately equal, Δ 1 is considered to be approximately zero.

逆に圧力変動が発生している場合には、その圧力の変動と同期して流速変動が発生する。この場合、Td1とTd2の値は同じ値とならず、同様にTu1とTu2の値同じ値とはならないと考えられる。 Conversely, when pressure fluctuations occur, flow velocity fluctuations occur in synchronization with the pressure fluctuations. In this case, the values of T d1 and T d2 do not become the same value, and similarly, the values of T u1 and T u2 do not become the same value.

したがって、Tdef1とTdef2も違う値を示すものと考えられるので、Δは0にはならず、特に、圧力変動が激しければ、より大きな値が発生すると考えられる。 Therefore, since T def1 and T def2 are considered to show different values, Δ 1 does not become 0. In particular, if the pressure fluctuation is severe, it is considered that a larger value is generated.

したがって、脈動検出手段18では、単位計測工程が終了する毎に、変動量検出手段17から出力される時間差検出手段16の出力の変動量と予め定めた閾値とを比較して、閾値より小さければ脈動なし、閾値より大きければ脈動ありと判定する。   Therefore, the pulsation detecting means 18 compares the fluctuation amount of the output of the time difference detection means 16 output from the fluctuation amount detection means 17 with a predetermined threshold every time the unit measurement process is completed, and if it is smaller than the threshold value. If there is no pulsation and it is larger than the threshold value, it is determined that there is pulsation.

なお、1回の比較判定のみで脈動の有無を判定するよりも複数回の結果を元に連続して数回以上、脈動なしと判定するというように多数回一致の考えを用いれば、より判定の信頼性が上がることはいうまでもないが、本実施の形態の主旨は変動量の大小で脈動の有無を判定することにあるので、この主旨に反しない限りの同種の判定方法でも構わない。   In addition, rather than determining the presence or absence of pulsation by only one comparison determination, more determination is made by using the idea of coincidence many times, such as determining that there is no pulsation several times or more consecutively based on a plurality of results. Needless to say, the main point of the present embodiment is to determine the presence or absence of pulsation based on the amount of fluctuation, so the same type of determination method may be used as long as it does not violate this point. .

本実施の形態においては5回連続して脈動なしと判定が続いた場合、すなわち6回続けて時間差検出手段16の出力が安定していれば、脈動がないものとしてそれ以降の計測工程を打ち切り、流量演算手段15で流量演算を行うものとする。   In this embodiment, when it is determined that there is no pulsation for five consecutive times, that is, if the output of the time difference detection means 16 is stable for six consecutive times, the subsequent measurement process is aborted assuming that there is no pulsation. The flow rate calculation means 15 performs the flow rate calculation.

逆に5回連続して脈動なしの判定が続かない場合には、5回連続して脈動なしと判定されるまで以降の計測工程を延長して行い、予め定めた最大の計測工程分だけ計測を継続して行うものとする。   Conversely, if the determination of no pulsation does not continue for 5 consecutive times, the subsequent measurement process is extended until it is determined that there is no pulsation for 5 consecutive times, and the measurement is performed for the predetermined maximum measurement process. Shall be carried out continuously.

脈動がある場合には計測工程の実行回数が増えるので圧力変動に伴う流速変動があっても、変動分がある程度平均化されるため、より真値に近い値が得られる。   When there is pulsation, the number of executions of the measurement process increases, so even if there is a flow velocity fluctuation accompanying pressure fluctuation, the fluctuation is averaged to some extent, so that a value closer to the true value can be obtained.

したがって、脈動が継続して発生している場合でも予め定めておいた単位計測工程の実行回数の最大値で計測を打ち切ったとしても、変動分の影響が低減されている。   Therefore, even when the pulsation is continuously generated, even if the measurement is stopped at the predetermined maximum number of execution times of the unit measurement process, the influence of the fluctuation is reduced.

次に、計時手段12の構成について、図3および図4を用いて説明する。   Next, the structure of the time measuring means 12 is demonstrated using FIG. 3 and FIG.

計時手段12は、クロック信号(a)を生成する発振回路19、この発振回路19から出力されるクロック信号の供給/停止を切り換えるAND回路で構成されたゲート回路20、このゲート回路20を介して出力される基準クロック(b)をカウントするカウンタ回路21、このカウンタ回路21の計数値を適当なタイミングで読み出すラッチ回路22とで構成されている。   The clock means 12 includes an oscillation circuit 19 that generates a clock signal (a), a gate circuit 20 that is configured by an AND circuit that switches supply / stop of the clock signal output from the oscillation circuit 19, and the gate circuit 20. The counter circuit 21 counts the output reference clock (b), and the latch circuit 22 reads the count value of the counter circuit 21 at an appropriate timing.

また、(a)〜(d)は計時手段12と各構成要素の間を伝送されるデジタル信号を示
している。
Further, (a) to (d) show digital signals transmitted between the time measuring means 12 and each component.

トリガ手段8から計測開始のトリガ信号が出力されると、信号(b)が“L”となり、カウンタ回路21がクリアされる。   When a trigger signal for starting measurement is output from the trigger means 8, the signal (b) becomes “L” and the counter circuit 21 is cleared.

同時に、信号(c)が“H”となり、ゲート回路20がアクティブとなるため、発振回路19から出力されるクロック(a)がゲート回路20を介して基準クロック(d)としてカウンタ回路21に供給される。   At the same time, since the signal (c) becomes “H” and the gate circuit 20 becomes active, the clock (a) output from the oscillation circuit 19 is supplied to the counter circuit 21 as the reference clock (d) through the gate circuit 20. Is done.

カウンタ回路21は、基準クロックが供給される毎に1カウントずつインクリメントされるアップカウンタである。(e)はカウンタ回路21の計数値を示している。   The counter circuit 21 is an up counter that is incremented by one count every time the reference clock is supplied. (E) shows the count value of the counter circuit 21.

そして、所定のシングアラウンド回数が終了すると、繰り返し手段9から制御信号が出力され、信号(c)が“L”となりゲート回路20がインアクティブとなり、以降、カウンタ回路21への基準クロック(d)の供給が停止される。   When the predetermined number of times of sing-around is completed, a control signal is output from the repeating means 9, the signal (c) becomes "L", the gate circuit 20 becomes inactive, and thereafter the reference clock (d) to the counter circuit 21 Is stopped.

それと同時に信号(f)が“H”となるので、このタイミングで、カウンタ回路21の計数値がラッチ回路22に出力される。   At the same time, since the signal (f) becomes “H”, the count value of the counter circuit 21 is output to the latch circuit 22 at this timing.

ラッチ回路22で読み込んだ値は信号(g)として、時間差検出手段16や、第1加算手段13、第2加算手段14へ出力される。   The value read by the latch circuit 22 is output as a signal (g) to the time difference detection means 16, the first addition means 13, and the second addition means 14.

図4は簡単のため、ゲート信号(c)が“H”となる期間をクロックの3周期+αという短い期間に定めた場合の各信号の動作を示したものであり、この場合であれば、計時手段12の計測値は3ということになる。   For the sake of simplicity, FIG. 4 shows the operation of each signal when the period in which the gate signal (c) is “H” is set to a short period of 3 clock cycles + α. The measured value of the time measuring means 12 is 3.

図5は、計時手段12の動作を更に詳細に示すものであり、横軸が経過時間、縦軸が(a)〜(c)の信号の電圧レベルを示している。信号(a)は、送信手段4から出力される超音波駆動信号であり、周波数500kHz程度の矩形の交流信号が出力される。   FIG. 5 shows the operation of the time measuring means 12 in more detail, with the horizontal axis indicating the elapsed time and the vertical axis indicating the voltage levels of the signals (a) to (c). The signal (a) is an ultrasonic drive signal output from the transmission unit 4, and a rectangular AC signal having a frequency of about 500 kHz is output.

(b)は受信手段5で信号処理される超音波受信波形である。受信手段5では閾値電圧Vrefを超えた後に、最初に0Vに達する点(ゼロクロス点)を以って、受信完了とみなす波形整形回路(図示せず)をなしており、受信完了を検知すると再度、送信手段4から超音波駆動信号が出力される。 (B) is an ultrasonic wave reception waveform signal-processed by the receiving means 5. The reception means 5 forms a waveform shaping circuit (not shown) that is regarded as reception completion after the point (zero cross point) that first reaches 0 V after exceeding the threshold voltage Vref , and when reception completion is detected. Again, an ultrasonic drive signal is output from the transmission means 4.

図5は途中の繰り返し部分を省略し、最後のシングアラウンドの受信完了点を示したものである。図5でシングアラウンドの開始時間をτと終了時間をτとすると、所要時間正確な値は
=τ−τ (式7)
で表せるが、図5で示したように、計時手段12はτの手前のクロックの立ち上がりタイミングτsまでの時間を計数するので、この場合の計測値は
=τ−τ (式8)
と表せる。
FIG. 5 shows the point of completion of reception of the last sing-around, omitting the repeated part in the middle. In FIG. 5, assuming that the start time of sing-around is τ 0 and the end time is τ 1 , the exact time required value is T x = τ 1 −τ 0 (Equation 7)
As shown in FIG. 5, the time measuring means 12 counts the time until the rising timing τs of the clock before τ 1 , and the measured value in this case is expressed as T y = τ s −τ 0 (formula 8)
It can be expressed.

この時、τとτの差は基準クロック1周期以内であるので、計測誤差は1クロック以内であることはいうまでもない。簡単のため、超音波受信波形の周期と基準クロックの周期は同程度で示しているが、実際の計測においては基準クロックの方を超音波受信波形の周期に比べて充分小さくとって、1クロック分の誤差は問題のない範囲に設定することは可能である。 At this time, since the difference between τ 1 and τ s is within one cycle of the reference clock, it goes without saying that the measurement error is within one clock. For simplicity, the period of the ultrasonic reception waveform and the period of the reference clock are shown to be approximately the same. However, in actual measurement, the reference clock is sufficiently smaller than the period of the ultrasonic reception waveform, and one clock is used. It is possible to set the minute error to a range where there is no problem.

また、基準クロックの周期をTscとすれば、T
=N×Tsc (式9)
で表せる。
If the period of the reference clock is T sc , T y is T y = N × T sc (Equation 9)
It can be expressed as

ここで、Nはカウンタ回路21の計数値である。   Here, N is a count value of the counter circuit 21.

したがって、時間差検出手段16における演算はカウンタ回路21の計数値の差を求める減算回路のみで構成できる。   Therefore, the calculation in the time difference detecting means 16 can be constituted only by a subtracting circuit that obtains the difference between the count values of the counter circuit 21.

そればかりか、変動検出手段17における変動量の算出や、脈動検知手段18の閾値判定までを単純な減算回路だけで構成できる。   Not only that, the calculation of the fluctuation amount in the fluctuation detection means 17 and the threshold value determination of the pulsation detection means 18 can be configured with only a simple subtraction circuit.

このように、計時手段12の構成を基準クロックとこれに同期してカウントされるカウンタ回路のみの単純な構成にすれば、時間差検出手段16における時間差演算および変動検出手段17における変動量の算出や、脈動検知手段18の閾値判定までを単純な減算回路だけで構成できる。   As described above, if the configuration of the time measuring means 12 is made simple with only the reference clock and the counter circuit that is counted in synchronization with this, the time difference calculation in the time difference detection means 16 and the fluctuation amount in the fluctuation detection means 17 are calculated. Up to the threshold determination of the pulsation detecting means 18 can be configured with only a simple subtraction circuit.

したがって、標準偏差のなどの手順の煩雑な演算はもとより乗除算をも行わずに脈動の判定が可能となり、毎回の単位計測工程が終わる度に短時間で結果を出すことが可能であり、応答遅れなく、脈動判定が可能である。   Therefore, it is possible to determine pulsation without performing multiplication and division as well as complicated calculation of procedures such as standard deviation, and it is possible to obtain a result in a short time after each unit measurement process is completed. Pulsation can be determined without delay.

一方、計測誤差を小さくするには、カウンタ回路21の基準クロック周波数を上げれば良いが、周波数を上げ過ぎることは省電力の観点からは得策ではないので、周波数の異なるふたつのカウンタを使って、計時手段12を構成する方法が従来から取られているが、この場合であっても、脈動判定は、減算回路のみの簡便な構成で実現可能である。   On the other hand, in order to reduce the measurement error, the reference clock frequency of the counter circuit 21 may be increased. However, it is not a good idea from the viewpoint of power saving to increase the frequency too much, so two counters with different frequencies are used. Although a method of configuring the time measuring means 12 has been conventionally used, even in this case, the pulsation determination can be realized with a simple configuration using only a subtracting circuit.

これについて、図6を使って説明する。図6においては、図5で用いたクロックを低速クロックとおき、このクロックを基準クロックとした低速カウンタ回路(図示せず)とこれよりも更に遥かに高い周波数(例えば数100倍)の高速クロックを基準クロックとした高速カウンタ回路(図示せず)のふたつで計時手段が構成させるものとする。   This will be described with reference to FIG. In FIG. 6, the clock used in FIG. 5 is a low-speed clock, a low-speed counter circuit (not shown) using this clock as a reference clock, and a high-speed clock of a much higher frequency (for example, several hundred times). It is assumed that the time measuring means is composed of two high-speed counter circuits (not shown) having the reference clock as a reference clock.

ここで、低速クロック側の動作は先の図5と同じであるため説明を省略し、高速クロック側の動作について説明する。   Here, since the operation on the low-speed clock side is the same as that of FIG. 5, the description is omitted, and the operation on the high-speed clock side will be described.

高速クロックは、受信点τから動作を開始し、τの次の低速クロックの立ち上がりタイミングであるτまで動作し、高速カウンタ回路は、τからτまでの時間を計数する。この時、求められた値がTとすると次のような演算式でシングアラウンドの所要時間Ty2を求めることができる。 The high-speed clock starts operation from the reception point τ 1 and operates until τ 2 which is the rising timing of the next low-speed clock after τ 1 , and the high-speed counter circuit counts the time from τ 1 to τ 2 . At this time, assuming that the obtained value is T z , the required time T y2 of the sing-around can be obtained by the following arithmetic expression.

y2=(τ−τ)−T=(τ+Tsc−τ)−T (式10)
ただし、Tscは低速クロックの周期である。ここで、(式8)を用いると
y2=T+Tsc−T (式11)
と表せる。更に、低速カウンタ回路の計数値をN、高速カウンタ回路の計数値をM、高速クロックの周期をTfcとすれば(式11)は更に次のように変形できる。
T y2 = (τ 2 −τ 0 ) −T z = (τ s + T sc −τ 0 ) −T z (Expression 10)
However, T sc is the period of the low-speed clock. Here, when (Equation 8) is used, T y2 = T y + T sc −T z (Equation 11)
It can be expressed. Further, if the count value of the low-speed counter circuit is N, the count value of the high-speed counter circuit is M, and the cycle of the high-speed clock is T fc (Equation 11) can be further modified as follows.

y2=(N+1)×Tsc−M×Tfc (式12)
今度の場合の計測誤差は高速カウンタの周期Tfcの1クロック分となり図5に比べて格段に時間精度が高まる。しかも、消費電流の大きな高速クロックの動作時間が極めて短いので、いたずらに消費電力を増やすこともない。
T y2 = (N + 1) × T sc −M × T fc (Formula 12)
The measurement error in this case is one clock of the cycle Tfc of the high-speed counter, and the time accuracy is significantly improved as compared with FIG. Moreover, since the operation time of the high-speed clock with large current consumption is extremely short, the power consumption is not increased unnecessarily.

ここで、ふたつのカウンタ回路で求めたそれぞれについて、時間差検出手段16で順方向の計測値と逆方向の計測値の時間差を求め、更に、変動量検出手段17で時間差の変動量を求めるならば、例えば次のような判定で脈動の有無を判定できる。   Here, for each of the two counter circuits, the time difference detection means 16 obtains the time difference between the forward measurement value and the reverse measurement value, and the fluctuation amount detection means 17 obtains the fluctuation amount of the time difference. For example, the presence or absence of pulsation can be determined by the following determination.

Δsn=0のかつ |Δfn|≦5の時 脈動なし
|Δsn|≧1の時 脈動あり
ただし、ここでΔsn、Δfnはそれぞれ変動量検出手段17で求められた低速カウンタ回路側の変動値、高速カウンタ回路側の変動値を示している。
When Δ sn = 0 and | Δ fn | ≦ 5, there is no pulsation. When ΔΔ sn | ≧ 1, there is pulsation. However, here, Δ sn and Δ fn are the low-speed counter circuit side obtained by the fluctuation amount detection means 17. And the fluctuation value on the high-speed counter circuit side are shown.

つまり、脈動がなければ、低速カウンタ回路側の変動値は0であり、高速カウンタ回路側で求めた値のみが僅かに変化するだけであるという考えに基づく。   That is, if there is no pulsation, the fluctuation value on the low-speed counter circuit side is 0, and only the value obtained on the high-speed counter circuit side changes slightly.

したがって、計時手段12を周波数の異なるふたつのカウンタ回路で構成した場合であったとしても、減算回路だけで、脈動の有無が判定できることに変わりはない。   Therefore, even if the time measuring means 12 is composed of two counter circuits having different frequencies, it is still possible to determine the presence or absence of pulsation using only the subtracting circuit.

ここでは、周波数が異なるふたつのカウンタ回路を用いて計時手段12を構成する例について示したが、更に時間精度を上げるため周波数の異なる3つ以上のカウンタ回路を組合せて、計時手段12を構成した場合であっても同様の効果があることは言うまでもない。   Here, an example in which the time measuring means 12 is configured using two counter circuits having different frequencies has been shown, but the time measuring means 12 is configured by combining three or more counter circuits having different frequencies in order to further improve time accuracy. It goes without saying that even if it is a case, the same effect can be obtained.

本発明の流体の流れ計測装置は、脈動の有無を瞬時に判定し、脈動有無に応じた計測方法に瞬時に切り替え可能な応答性の高い計測装置を提供できるので、ガスメータのみならず気体用流量計や液体用流量計にも適用可能である。   The fluid flow measuring device of the present invention can provide a highly responsive measuring device that can instantaneously determine the presence or absence of pulsation and instantly switch to a measurement method according to the presence or absence of pulsation. It can also be applied to meters and liquid flow meters.

1 流体流路
2 第1振動子
3 第2振動子
7 計測制御手段
12 計時手段
15 演算手段
16 時間差検出手段
17 変動量検出手段
18 脈動検出手段
21 カウンタ回路
DESCRIPTION OF SYMBOLS 1 Fluid flow path 2 1st vibrator 3 2nd vibrator 7 Measurement control means 12 Time measuring means 15 Calculation means 16 Time difference detection means 17 Fluctuation amount detection means 18 Pulsation detection means 21 Counter circuit

Claims (8)

流体流路に設けられ、超音波信号を発信、受信する第1振動子および第2振動子と、
前記振動子間における超音波信号の伝搬時間を計測する計時手段と、
前記両振動子の送受信方向を切り替えながら前記計時手段により順、逆双方向の超音波信号の伝搬時間を計測する単位計測工程を定められた間隔で複数回連続して実行し、前記実行回数分の伝搬時間を基に流速および/または流量を演算する演算手段と、
前記1単位計測工程毎の順逆両方向の伝搬時間差を求める時間差検出手段と、
前記時間差検出手段で求めた相前後する二つの単位計測工程における伝搬時間差の変動量を求める変動量検出手段と、
前記変動量検出手段で求めた変動量から流体流路内の圧力脈動の有無を判定する脈動検知手段と、
前記脈動検知手段の判定結果を元に前記単位計測工程の実行回数を制御する計測制御手段と、
を備えた流体の流れ計測装置。
A first vibrator and a second vibrator which are provided in the fluid flow path and transmit and receive ultrasonic signals;
Time measuring means for measuring the propagation time of the ultrasonic signal between the vibrators;
A unit measurement step for measuring the propagation time of forward and reverse ultrasonic signals by the time measuring means while switching the transmission / reception directions of the two vibrators is continuously executed a plurality of times at a predetermined interval, Computing means for computing the flow velocity and / or flow rate based on the propagation time of
A time difference detecting means for obtaining a difference in propagation time in both forward and reverse directions for each unit measurement step;
Fluctuation amount detection means for obtaining a fluctuation amount of the propagation time difference in the two unit measurement steps preceding and following obtained by the time difference detection means,
Pulsation detection means for determining the presence or absence of pressure pulsation in the fluid flow path from the fluctuation amount obtained by the fluctuation amount detection means;
A measurement control means for controlling the number of times of execution of the unit measurement process based on the determination result of the pulse detecting means,
A fluid flow measuring device comprising:
脈動検知手段は、変動量検出手段の出力と予め定めた閾値とを比較し、閾値より大の場合に脈動あり、閾値より小の場合には脈動なしと判定する請求項1記載の流体の流れ計測装置。 2. The fluid flow according to claim 1, wherein the pulsation detecting means compares the output of the fluctuation amount detecting means with a predetermined threshold value, and determines that there is pulsation when it is larger than the threshold value and that there is no pulsation when smaller than the threshold value. Measuring device. 脈動検知手段が脈動なしと判定した場合に、計測制御手段は、単位計測工程の実行回数を低減するように制御する請求項2記載の流体の流れ計測装置。 3. The fluid flow measuring device according to claim 2, wherein when the pulsation detecting unit determines that there is no pulsation, the measurement control unit performs control so as to reduce the number of executions of the unit measuring step. 脈動検知手段が脈動なしと判定した場合に、計測制御手段は、単位計測工程の実行回数を予め定めた最小値で打ち切る請求項2記載の流体の流れ計測装置。 3. The fluid flow measuring device according to claim 2, wherein when the pulsation detecting means determines that there is no pulsation, the measurement control means terminates the number of executions of the unit measuring step with a predetermined minimum value. 脈動検知手段が脈動ありと判定した場合に、計測制御手段は、単位計測工程の実行回数を増加するように制御する請求項2記載の流体の流れ計測装置。 3. The fluid flow measuring device according to claim 2, wherein when the pulsation detecting means determines that there is pulsation, the measurement control means controls to increase the number of executions of the unit measuring step. 脈動検知手段が脈動ありと判定した場合に、計測制御手段は、単位計測工程の実行回数を予め定めた最大値とする請求項2記載の流体の流れ計測装置。 3. The fluid flow measuring device according to claim 2, wherein, when the pulsation detecting means determines that there is pulsation, the measurement control means sets the number of executions of the unit measurement step to a predetermined maximum value. 計時手段は、基準クロックと前記クロックに基づいて計数を行うカウンタ回路とで構成され、時間差検出手段は、前記カウンタ回路の計数値を用いた減算回路により構成し、単位計測工程から脈動判定までの過程における乗除算を不要とした請求項1〜6いずれか1項記載の流体の流れ計測装置。 The time measuring means is composed of a reference clock and a counter circuit that counts based on the clock, and the time difference detecting means is composed of a subtracting circuit using the count value of the counter circuit, from the unit measuring step to the pulsation determination. The fluid flow measuring device according to any one of claims 1 to 6, wherein multiplication / division in the process is unnecessary. 計時手段は、周波数の異なる少なくとも2つ以上の基準クロックとカウンタ回路とで構成され、時間差検出手段は各カウンタ回路毎の計数差を算出し、脈動検知手段は、時間差検出手段で求められた全てのカウンタ回路の計数差の組み合わせから脈動の有無を判定する請求項7記載の流体の流れ計測装置。
The time measuring means is composed of at least two reference clocks having different frequencies and a counter circuit, the time difference detecting means calculates a count difference for each counter circuit, and the pulsation detecting means is all obtained by the time difference detecting means. The fluid flow measuring device according to claim 7, wherein the presence or absence of pulsation is determined from a combination of count differences of the counter circuit.
JP2009094811A 2009-04-09 2009-04-09 Fluid flow measuring device Active JP5467332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094811A JP5467332B2 (en) 2009-04-09 2009-04-09 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094811A JP5467332B2 (en) 2009-04-09 2009-04-09 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2010243432A JP2010243432A (en) 2010-10-28
JP5467332B2 true JP5467332B2 (en) 2014-04-09

Family

ID=43096590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094811A Active JP5467332B2 (en) 2009-04-09 2009-04-09 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP5467332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127663A (en) * 2010-12-13 2012-07-05 Panasonic Corp Flow rate measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689973B2 (en) * 1996-05-16 2005-08-31 松下電器産業株式会社 Flow measuring device
JP3339407B2 (en) * 1998-03-31 2002-10-28 矢崎総業株式会社 Flow measurement method, flow measurement device, and electronic gas meter
JP2001012981A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Flowmeter
JP3427839B1 (en) * 2001-11-22 2003-07-22 松下電器産業株式会社 Flow measurement device
JP4424959B2 (en) * 2002-10-04 2010-03-03 大阪瓦斯株式会社 Ultrasonic flow meter
CN102272560B (en) * 2009-01-06 2013-08-07 松下电器产业株式会社 Flow rate measurement device

Also Published As

Publication number Publication date
JP2010243432A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5524972B2 (en) Flow measuring device
JP5753970B2 (en) Flow measuring device
KR100487690B1 (en) Flowmeter
JP5402620B2 (en) Flow measuring device
JP4788235B2 (en) Fluid flow measuring device
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
KR100440759B1 (en) Flow rate measuring device
WO2012081195A1 (en) Flow volume measuring device
JP4835068B2 (en) Fluid flow measuring device
JP5467332B2 (en) Fluid flow measuring device
JP4973035B2 (en) Ultrasonic flow meter
JP2006214793A (en) Device for measuring flow rate
JP2008014800A (en) Flow measuring instrument
JP4157313B2 (en) Flowmeter
JP5548951B2 (en) Flow measuring device
JP4858220B2 (en) Ultrasonic current meter
JP2004286762A (en) Flow rate measuring device
JP2006214794A (en) Device for measuring flow rate
JP2007322442A (en) Flow measuring device
JP2008180565A (en) Flow measuring device of fluid
JP2003130697A (en) Ultrasonic method of measuring flow rate and ultrasonic flowmeter using the same
JP2000105142A (en) Flow rate measuring apparatus
JP2003156373A (en) Flow rate change detector for ultrasonic flowmeter, and ultrasonic flowmeter
JP2004028705A (en) Ultrasonic flowmeter
JP2008175542A (en) Flow velocity or flow rate measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R151 Written notification of patent or utility model registration

Ref document number: 5467332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151