JP2007017157A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2007017157A
JP2007017157A JP2005195690A JP2005195690A JP2007017157A JP 2007017157 A JP2007017157 A JP 2007017157A JP 2005195690 A JP2005195690 A JP 2005195690A JP 2005195690 A JP2005195690 A JP 2005195690A JP 2007017157 A JP2007017157 A JP 2007017157A
Authority
JP
Japan
Prior art keywords
temperature
fluid
ultrasonic
ultrasonic flowmeter
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005195690A
Other languages
Japanese (ja)
Other versions
JP5123469B2 (en
JP2007017157A5 (en
Inventor
Koji Hanamura
浩二 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2005195690A priority Critical patent/JP5123469B2/en
Publication of JP2007017157A publication Critical patent/JP2007017157A/en
Publication of JP2007017157A5 publication Critical patent/JP2007017157A5/ja
Application granted granted Critical
Publication of JP5123469B2 publication Critical patent/JP5123469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the need for switching arithmetic coefficients when the temperature of a fluid is to be computed, reduce errors in the temperature of the fluid, eliminate adverse effects of individual distance differences between oscillators, reduce errors in flow velocity and quantity of flow, and eliminate dedicated temperature sensors and electronic circuit substrates for temperature correction. <P>SOLUTION: Ultrasonic waves are transmitted and received between transducers 2 and 3 in forward and backward directions. The gas species of a fluid to be measured is determined on the basis of the sum (inverse number sum) of inverse numbers f<SB>1</SB>and f<SB>2</SB>of propagation delay times in the forward and backward directions. The temperature of the fluid is determined on the basis of the relation between temperature and sound velocity or between temperature and the sum of the inverse numbers of the propagation delay times for every gas species. Fluid velocity, quantity of flow, or the quantity of passage at the temperature of the fluid is determined, and fluid velocity, quantity of flow, or the quantity of passage at a reference temperature is converted and computed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超音波流量計の改良に関する。   The present invention relates to an improvement in an ultrasonic flow meter.

流体温度に影響されることなく基準温度における流速を求めることができ、ひいては流体の流量を正確に求めることができる超音波流速測定方法が提案されている(例えば、特許文献1参照)。   There has been proposed an ultrasonic flow velocity measurement method capable of obtaining the flow velocity at the reference temperature without being influenced by the fluid temperature, and thus capable of obtaining the fluid flow rate accurately (see, for example, Patent Document 1).

この測定方法では、超音波流速測定管を流れる計測流体の上流側と下流側にそれぞれ超音波振動子が配置され、前記各超音波振動子から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、
前記超音波の伝播時間の和に基づいて、伝播時間測定時の流体温度Tを導出するとともに、
前記超音波の伝播時間の差に基づいて、伝播時間測定時の流体温度Tにおける流速vを導出し、
前記流体温度Tと流速vを下式(1)に代入することによって、基準温度Tにおける流速vを求めている。
In this measurement method, ultrasonic transducers are arranged on the upstream side and the downstream side of the measurement fluid flowing in the ultrasonic flow velocity measurement tube, and the ultrasonic transducers generate and transmit ultrasonic waves to and from each ultrasonic transducer. Mutually receiving ultrasound,
Based on the sum of the propagation times of the ultrasonic waves, the fluid temperature T at the time of propagation time measurement is derived,
Based on the difference in propagation time of the ultrasonic wave, the flow velocity v at the fluid temperature T at the time of propagation time measurement is derived,
By substituting the fluid temperature T and the flow velocity v in the following equation (1), seeking the flow velocity v 0 at the standard temperature T 0.

=(T×v)/T ・・・ (1)
:基準温度における流速
:基準温度(絶対温度)
v :伝播時間測定時の流体温度における流速
T :伝播時間測定時の流体温度(絶対温度)
また、流路内の流体に音波を送受信する送受信手段と、流体中の音波の伝播時間を計測する流量検出手段と、流量係数を定める流量係数設定手段と、前記流量係数と前記伝播時間とに基づいて流量を算出する流量演算手段と、流体の温度を計測する温度検出手段と、この計測された温度と伝播時間とに基づいて前記流量係数設定手段の流量係数を変更する係数補正手段とを備えた流量計側装置が提案されている(例えば、特許文献2参照)。
v 0 = (T 0 × v) / T (1)
v 0 : Flow velocity at reference temperature T 0 : Reference temperature (absolute temperature)
v: Flow velocity at fluid temperature during propagation time measurement T: Fluid temperature (absolute temperature) during propagation time measurement
In addition, transmission / reception means for transmitting / receiving sound waves to / from the fluid in the flow path, flow rate detection means for measuring propagation time of sound waves in the fluid, flow coefficient setting means for determining a flow coefficient, the flow coefficient and the propagation time. A flow rate calculation means for calculating a flow rate based on the temperature detection means for measuring the temperature of the fluid, and a coefficient correction means for changing the flow coefficient of the flow rate coefficient setting means based on the measured temperature and propagation time. An equipped flow meter side device has been proposed (see, for example, Patent Document 2).

この流量計側装置では、流量係数設定手段で定める流量係数は、流体であるガスの種類毎に設定され、適用するガスの種類を選ぶガス種選択手段に基づいて、係数補正手段で変更される。
特開2000−22108号公報(2頁、図1) 特開2001−255186号公報(2頁、図1)
In this flow meter side device, the flow coefficient determined by the flow coefficient setting means is set for each type of gas that is a fluid, and is changed by the coefficient correction means based on the gas type selection means that selects the type of gas to be applied. .
JP 2000-22108 (page 2, FIG. 1) JP 2001-255186 A (page 2, FIG. 1)

前記特許文献1の超音波流速測定方法では、被測定流体であるガスの種類に応じて超音波の速度を求める必要があり、ガスの種類毎に流体温度を算出する際の算出係数を切り替えて変更する必要があり、面倒であるという問題点があった。   In the ultrasonic flow velocity measuring method of Patent Document 1, it is necessary to determine the ultrasonic velocity according to the type of gas that is the fluid to be measured, and the calculation coefficient for calculating the fluid temperature is switched for each type of gas. There was a problem that it was necessary to change and was troublesome.

また、流速変動があると、順方向と逆方向の伝播時間の測定タイミングでの流速が異なるため、導出した流体温度の誤差が大きくなるという問題点があった。   In addition, if there is a fluctuation in flow velocity, the flow velocity at the measurement timing of the propagation time in the forward direction and in the reverse direction is different, so that there is a problem that the error in the derived fluid temperature increases.

また、超音波振動子間の距離に個体差があると、導出した流体温度の誤差が大きくなるという問題点があった。   Further, if there is an individual difference in the distance between the ultrasonic transducers, there is a problem that the error of the derived fluid temperature becomes large.

さらに、また、伝播時間の和に基づいて、流体温度を導出するため、導出した流体温度の誤差が大きくなるという問題点があった。   Furthermore, since the fluid temperature is derived based on the sum of the propagation times, there is a problem that an error in the derived fluid temperature increases.

流体温度の誤差が大きくなると、当然のことながら、基準温度Tにおける流速vの誤差が大きくなってしまう。 When the error of the fluid temperature increases, naturally, the error of the flow velocity v 0 at the reference temperature T 0 increases.

前記特許文献2の流量計測装置では、流体の温度を検出する温度検出手段として専用の温度センサや、温度補正機能を有する電子回路を必要とするため、コスト高となるばかりでなく、電子回路基板の規模が大きくなり、電池の消費電流も増大するという問題点があった。   In the flow rate measuring device of Patent Document 2, since a dedicated temperature sensor and an electronic circuit having a temperature correction function are required as temperature detecting means for detecting the temperature of the fluid, not only the cost is increased, but also the electronic circuit board However, there is a problem that the current consumption of the battery increases.

そこで、本発明は、これらの問題点を解消できる超音波流量計を提供することを目的とする。   Then, an object of this invention is to provide the ultrasonic flowmeter which can eliminate these problems.

本発明は、流れの上流側と下流側に超音波送受波器を配置して、超音波の順方向と逆方向の伝播時間の逆数差より流速、流量又は通過量を求める超音波流量計であって、順方向と逆方向の伝播時間の逆数和から流体温度を求め、別に定めた基準温度の状態に換算した流速、流量又は通過量を求めることを最も主要な特徴とする。通過量は流量に時間を乗じて算出したいわゆる積算流量である。   The present invention is an ultrasonic flowmeter in which ultrasonic transducers are arranged on the upstream side and the downstream side of a flow, and the flow velocity, flow rate, or passage amount is obtained from the reciprocal difference in propagation time between the forward direction and the reverse direction of the ultrasonic wave. The most important feature is that the fluid temperature is obtained from the reciprocal sum of the propagation times in the forward direction and the reverse direction, and the flow velocity, flow rate, or passage amount converted into the state of the separately determined reference temperature is obtained. The passing amount is a so-called integrated flow rate calculated by multiplying the flow rate by time.

そこで、前記目的を達成するために、請求項1の発明は、流れの上流側と下流側に超音波送受波器を配置し、超音波の順方向と逆方向の伝播時間の逆数差より流速、流量又は通過量を求める超音波流量計であって、順方向と逆方向の伝播時間の逆数和から流体温度を求め、別に定めた基準温度における流速、流量又は通過量を演算することを特徴とする超音波流量計である。   Therefore, in order to achieve the above object, the invention of claim 1 is characterized in that ultrasonic transducers are arranged on the upstream side and downstream side of the flow, and the flow velocity is determined by the reciprocal difference between the propagation times of the ultrasonic wave in the forward direction and in the reverse direction. An ultrasonic flow meter for obtaining a flow rate or a passing amount, wherein a fluid temperature is obtained from a reciprocal sum of forward and reverse propagation times, and a flow rate, a flow rate or a passing amount at a separately determined reference temperature is calculated. It is an ultrasonic flowmeter.

請求項2記載の発明は、請求項1記載の超音波流量計において、超音波を発信してから受信波を検知するまでの到達時間から、超音波送受波器の中を伝播する時間や、受信波の頭から第3波のゼロクロスまでの時間などの遅れ時間を差し引いて伝播時間とすることを特徴とするものである。   The invention according to claim 2 is the ultrasonic flowmeter according to claim 1, from the arrival time until the received wave is detected after transmitting the ultrasonic wave, the time for propagating in the ultrasonic transducer, The propagation time is obtained by subtracting a delay time such as the time from the beginning of the received wave to the zero cross of the third wave.

請求項3記載の発明は、請求項1又は2記載の超音波流量計において、伝播時間の逆数和から音速を演算し、予め設定した音速値と比較して流体の種類を判別するとともに、該流体の温度を求めることを特徴とするものである。   The invention according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, wherein the speed of sound is calculated from the reciprocal sum of propagation times, and the type of fluid is determined by comparing with a preset sound speed value, The temperature of the fluid is obtained.

請求項4記載の発明は、請求項3記載の超音波流量計において、予め設定した温度算出テーブルを用いて、伝播時間の逆数和から流体温度を求めることを特徴とするものである。   According to a fourth aspect of the invention, in the ultrasonic flowmeter according to the third aspect, the fluid temperature is obtained from the reciprocal sum of the propagation times using a preset temperature calculation table.

請求項5記載の発明は、請求項4記載の超音波流量計において、流体の種類を判別するガス種判定値と温度算出テーブルのデータを外部から書き換えることを特徴とするものである。   According to a fifth aspect of the present invention, in the ultrasonic flowmeter according to the fourth aspect, the gas type determination value for determining the type of fluid and the data of the temperature calculation table are rewritten from the outside.

請求項6記載の発明は、請求項5記載の超音波流量計において、超音波送受波器間の距離を補正するセンサ間距離補正係数を外部から設定することを特徴とするものである。   According to a sixth aspect of the present invention, in the ultrasonic flowmeter according to the fifth aspect, an inter-sensor distance correction coefficient for correcting the distance between the ultrasonic transducers is set from the outside.

請求項7記載の発明は、請求項6記載の超音波流量計において、測定毎に順方向と逆方向の測定順序を変え、かつ伝播時間の逆数和を平均化することを特徴とするものである。   The invention according to claim 7 is the ultrasonic flowmeter according to claim 6, wherein the measurement order in the forward direction and the reverse direction is changed for each measurement, and the reciprocal sum of the propagation times is averaged. is there.

請求項8記載の発明は、請求項7記載の超音波流量計において、測定間隔をランダムにするとともに、かつ伝播時間の逆数和を平均化するように構成したことを特徴とするものである。   The invention described in claim 8 is characterized in that, in the ultrasonic flowmeter according to claim 7, the measurement interval is made random and the reciprocal sum of the propagation times is averaged.

請求項9記載の発明は、請求項8記載の超音波流量計において、流速が零の状態から流れ出した場合には、平均化の対象データ数を減らすことを特徴とするものである。   The invention according to claim 9 is characterized in that, in the ultrasonic flowmeter according to claim 8, when the flow velocity starts from zero, the number of data to be averaged is reduced.

請求項10記載の発明は、請求項9記載の超音波流量計において、流体の流量が安定しているときだけ流体温度の算出を行なうことを特徴とするものである。   According to a tenth aspect of the present invention, in the ultrasonic flowmeter according to the ninth aspect, the fluid temperature is calculated only when the fluid flow rate is stable.

本発明の超音波流量計は、上述のように構成されていて、伝播時間の逆数和から対応する流体のガス種を識別するので、従来技術のように、被測定流体に応じて何らかの設定や切り替え操作で温度算出係数を変更するという面倒を要しない利点がある。   The ultrasonic flowmeter of the present invention is configured as described above, and identifies the gas type of the corresponding fluid from the reciprocal sum of the propagation time. There is an advantage of not requiring the trouble of changing the temperature calculation coefficient by the switching operation.

また、専用の温度センサや温度補正用の電子回路を要しないので、コストが低減できるばかりでなく、電子回路の規模が小さくてすみ、消費電力も減らせる。   In addition, since a dedicated temperature sensor and temperature correction electronic circuit are not required, not only the cost can be reduced, but also the electronic circuit can be reduced in scale and power consumption can be reduced.

請求項5の発明では、外部から書き換えることで、別の流体を測定することが可能となる。   In the invention of claim 5, it is possible to measure another fluid by rewriting from the outside.

請求項6の発明では、送受波器間距離の個体差を補正できる。
請求項7の発明では、単調な流量変化に対応して測定誤差を軽減できる。
In the invention of claim 6, individual differences in the distance between the transmitter and the receiver can be corrected.
In the invention of claim 7, the measurement error can be reduced corresponding to the monotonous flow rate change.

請求項8の発明では、周期的な流量変化に対して、測定誤差を軽減できる。
請求項9の発明では、流体(ガス)の温度が変化することを想定し、温度測定の応答性を向上させることが可能である。
In the invention of claim 8, the measurement error can be reduced with respect to the periodic flow rate change.
According to the ninth aspect of the present invention, it is possible to improve the temperature measurement responsiveness on the assumption that the temperature of the fluid (gas) changes.

請求項10の発明では、流量が安定しているときだけ流体温度の算出を行い、流量変化時の温度誤測定を防ぐことが出来る。   In the invention of claim 10, the fluid temperature is calculated only when the flow rate is stable, and temperature mismeasurement when the flow rate changes can be prevented.

次に、本発明を実施するための最良の形態を図の実施例に基づいて説明する。   Next, the best mode for carrying out the present invention will be described based on the embodiments shown in the drawings.

図1において、流路1内を流れる被計測流体であるガスに、流体の上流側と下流側に配置した超音波送受波器2と3により超音波の送受信を行い、矢印Aに示す流れの順方向と、矢印Aと逆の逆方向との超音波の伝播時間を計測する。   In FIG. 1, ultrasonic waves are transmitted and received by the ultrasonic transducers 2 and 3 disposed on the upstream side and the downstream side of the fluid to be measured flowing in the flow path 1, and the flow indicated by the arrow A The propagation time of ultrasonic waves in the forward direction and in the opposite direction to the arrow A is measured.

順方向と逆方向の切り替えは、送受波器2と3の送信側(発信側)と受信側の役割を発受信切替部4で切替えて行なう。発信部5からの駆動信号により、順方向測定時には送受波器2から矢印Aの方向に超音波を発信し、送受波器3が超音波を受信し、受信信号を出力する。この受信信号を増幅部6で増幅する。比較部7は、増幅された受信信号波形のn番目(例えば1番目)の波高値とn+2番目の波高値との比率が規定値を超えたことを検知し、この規定値を満たしたn+2番目(例えば3番目)の波のゼロクロス点を検知する。この3番目のゼロクロス点を以下第3波のゼロクロス点と呼ぶ。   Switching between the forward direction and the reverse direction is performed by switching the roles of the transmission side (transmission side) and reception side of the transducers 2 and 3 by the transmission / reception switching unit 4. The ultrasonic wave is transmitted from the transducer 2 in the direction of the arrow A by the drive signal from the transmitter 5 in the forward direction measurement, and the transducer 3 receives the ultrasonic wave and outputs the received signal. The received signal is amplified by the amplifying unit 6. The comparison unit 7 detects that the ratio of the n-th (for example, first) peak value and the (n + 2) -th peak value of the amplified received signal waveform exceeds a specified value, and the n + 2th satisfying this specified value The zero cross point of the (for example, third) wave is detected. This third zero cross point is hereinafter referred to as a third wave zero cross point.

時間測定部8は、送信側の送受波器2の発信時点から受信信号の第3波のゼロクロス点までの到達時間を測定し、この到達時間から後述する遅れ時間を差し引いた伝播時間を伝播時間算出部9で算出する。(なお、シングアラウンド方式の場合(シングアラウンド測定の場合)は、時間測定部8はシングアラウンド回数目の受信波の第3波のゼロクロス点までの時間を測定する。)   The time measuring unit 8 measures the arrival time from the transmission time of the transmitter / receiver 2 on the transmission side to the zero cross point of the third wave of the received signal, and the propagation time obtained by subtracting a delay time described later from this arrival time is the propagation time. Calculation is performed by the calculation unit 9. (Note that, in the case of the sing-around method (in the case of sing-around measurement), the time measuring unit 8 measures the time to the zero-cross point of the third wave of the received wave at the number of times of sing-around.)

伝播時間は順方向と逆方向の伝播時間があり、流量演算部10では、両伝播時間の逆数差から流量を算出する。また、温度演算部11では伝播時間の逆数和から温度を算出する。そして、温度補正流量演算部12では、流量と、温度と、基準温度から基準温度状態における流量を算出する。   The propagation time includes a forward propagation time and a reverse propagation time, and the flow rate calculation unit 10 calculates the flow rate from the reciprocal difference between the two propagation times. Further, the temperature calculation unit 11 calculates the temperature from the reciprocal sum of the propagation times. Then, the temperature correction flow rate calculation unit 12 calculates the flow rate in the reference temperature state from the flow rate, the temperature, and the reference temperature.

到達時間と伝播時間を図2(a)(b)に基づいて以下に説明する。同図(a)に遅れ時間a、b、c、d、eと伝播時間及び到達時間の関係を、また、同図(b)に増幅後の受信波形を示す。   The arrival time and propagation time will be described below with reference to FIGS. FIG. 4A shows the relationship between the delay times a, b, c, d and e, the propagation time and the arrival time, and FIG. 5B shows the received waveform after amplification.

遅れ時間aは、発信から送受波器2のPZT素子までの切替回路4a内での遅れに相当する。   The delay time a corresponds to a delay in the switching circuit 4a from the transmission to the PZT element of the transducer 2.

遅れ時間bは、送受波器2内の遅れに、また、遅れ時間cは、送受波器3内の遅れに相当する。そして、一般的にb=cの関係が成立する。   The delay time b corresponds to the delay in the transducer 2, and the delay time c corresponds to the delay in the transducer 3. In general, the relationship b = c is established.

遅れ時間dは、切替回路4bと前記増幅部6の受信回路6a内での遅れに相当する。
また、遅れ時間eは、前記比較部7の受信波検知7aでの遅れに相当し、図2(b)の受信波形の検知したいポイントとしての受信波の先頭から検知可能なポイントとしての第3波のゼロクロス点までの遅れ時間eに相当する。
The delay time d corresponds to a delay in the receiving circuit 6a of the switching circuit 4b and the amplifying unit 6.
The delay time e corresponds to the delay in the reception wave detection 7a of the comparison unit 7, and is a third point that can be detected from the beginning of the reception wave as a point to be detected in the reception waveform in FIG. This corresponds to the delay time e until the zero cross point of the wave.

全遅れ時間は、a+b+c+d+eであるから、到達時間と伝播時間の関係は、次式であらわされる。
伝播時間 = 到達時間 ―(a+b+c+d+e)
伝播時間 = 到達時間 ― 全遅れ時間
Since the total delay time is a + b + c + d + e, the relationship between the arrival time and the propagation time is expressed by the following equation.
Propagation time = arrival time-(a + b + c + d + e)
Propagation time = arrival time-total delay time

なお、順方向測定時と逆方向測定時では、二つの送受波器の特性差や切替回路の特性差のために測定値に差が生じる。   It should be noted that there is a difference between the measured values due to the difference in the characteristics of the two transducers and the difference in the characteristics of the switching circuit between the forward measurement and the reverse measurement.

これらの特性差を吸収して測定誤差を小さくするため、安定した温度下で、流量ゼロ時の到達時間を複数回測定し、この複数回の測定値の平均到達時間差を求める。
平均到達時間差 = 順方向の平均到達時間 ― 逆方向の平均到達時間
In order to reduce the measurement error by absorbing these characteristic differences, the arrival time at zero flow rate is measured a plurality of times at a stable temperature, and the average arrival time difference between the measurement values of the plurality of times is obtained.
Average arrival time difference = Forward average arrival time-Reverse average arrival time

こうして算出した平均到達時間差を、順方向の到達時間から差し引いて順方向伝播時間を算出する。即ち、測定毎に算出する。
順方向伝播時間 = 順方向到達時間 − 全遅れ時間 − 平均到達時間差
逆方向伝播時間 = 逆方向到達時間 − 全遅れ時間
ところで、測定した到達時間は、順方向到達時間tと逆方向到達時間tになる。また、全遅れ時間は、順方向測定時と逆方向測定時ごとの全遅れ時間に前記順方向と逆方向での特性差による時間差(即ち前記平均到達時間差)を考慮した値となる。
The forward propagation time is calculated by subtracting the average arrival time difference thus calculated from the forward arrival time. That is, it is calculated for each measurement.
Forward propagation time = forward travel time - All delay time - average arrival time difference backward propagation time = reverse arrival time - All delay Incidentally, the arrival time was measured, forward arrival time t 1 and reverse arrival time t 2 The total delay time is a value that takes into account the time difference due to the characteristic difference between the forward direction and the reverse direction (that is, the average arrival time difference) in the total delay time for each of the forward direction measurement and the reverse direction measurement.

順方向の全遅れ時間と平均到達時間差の和をτ、逆方向の全遅れ時間をτとすると、
順方向伝播時間 = t−τ ・・・ (1)
逆方向伝播時間 = t−τ ・・・ (2)
となる。
If the sum of the forward total delay time and the average arrival time difference is τ 1 , and the reverse total delay time is τ 2 ,
Forward propagation time = t 1 −τ 1 (1)
Reverse propagation time = t 2 −τ 2 (2)
It becomes.

順方向伝播時間の逆数をf、逆方向伝播時間の逆数をfと表記すると、
=1/(t−τ) ・・・ (3)
=1/(t−τ) ・・・ (4)
順方向と逆方向の各伝播時間の逆数fとfは、流体の流速をV、流体中の超音波の音速をC、送受波器2と3の距離(間隔)をLとすると、
=(C+V)/L ・・・ (5)
=(C−V)/L ・・・ (6)
であるから、伝播時間の逆数差f−fは、(5)(6)式から、
−f=2V/L ・・・ (7)
となる。従って、次の(8)式で測定温度での流速Vを求めることが出来る。
When the reciprocal of the forward propagation time is expressed as f 1 and the reciprocal of the reverse propagation time is expressed as f 2 ,
f 1 = 1 / (t 1 −τ 1 ) (3)
f 2 = 1 / (t 2 −τ 2 ) (4)
The reciprocals f 1 and f 2 of the forward and reverse propagation times are expressed as follows: V is the flow velocity of the fluid, C is the sound velocity of the ultrasonic waves in the fluid, and L is the distance (interval) between the transducers 2 and 3.
f 1 = (C + V) / L (5)
f 2 = (C−V) / L (6)
Therefore, the reciprocal difference f 1 −f 2 of the propagation time is obtained from the equations (5) and (6):
f 1 −f 2 = 2V / L (7)
It becomes. Therefore, the flow velocity V at the measurement temperature can be obtained by the following equation (8).

V=(f−f)×L/2 ・・・ (8)
この流速Vは測定温度T[℃]における流速である。この流速Vに流路断面積を乗じて測定温度T[℃]における流量を算出する。さらに、流量に時間を乗じて通過量いわゆる積算流量を算出する。伝播時間t−τ、t−τから流速Vを算出し、更に流量や通過量を演算するのは図1の流量演算部10で実行する。
V = (f 1 −f 2 ) × L / 2 (8)
This flow velocity V is a flow velocity at the measurement temperature T [° C.]. The flow rate at the measurement temperature T [° C.] is calculated by multiplying the flow velocity V by the cross-sectional area of the flow path. Further, the flow rate is multiplied by time to calculate a passing amount, that is, an integrated flow rate. The flow rate V is calculated from the propagation times t 1 −τ 1 and t 2 −τ 2, and the flow rate and passage amount are further calculated by the flow rate calculation unit 10 of FIG.

温度演算部11は、順方向と逆方向の伝播時間の逆数fとfの和f+fから流体温度を求める。 The temperature calculation unit 11 obtains the fluid temperature from the sum f 1 + f 2 of the reciprocals f 1 and f 2 of the forward and reverse propagation times.

具体的には、ガス種に対応した逆数和と温度との関係を示すデータとし、例えば空気(AIR)の伝播時間の逆数和f+f[Hz]と温度[℃]の関係を示す図3のデータを温度演算部に記憶しておいて、f+fに対応する温度[℃]を図3のデータから読み取って流体温度T[℃]とする。 Specifically, it is data indicating the relationship between the reciprocal sum corresponding to the gas type and the temperature, for example, a diagram illustrating the relationship between the reciprocal sum f 1 + f 2 [Hz] of air (AIR) propagation time and the temperature [° C.]. 3 is stored in the temperature calculation unit, and the temperature [° C.] corresponding to f 1 + f 2 is read from the data of FIG. 3 to be the fluid temperature T [° C.].

流量演算部10で求めた流量Vと、温度演算部で求めた流体温度T[℃]を基にして、シャルルの法則に則り、基準温度T[℃]における流量Vを温度補正流量算出部12で演算する。
=(273+T)・V/(273+T)・・・(9)
Based on the flow rate V obtained by the flow rate calculation unit 10 and the fluid temperature T [° C.] obtained by the temperature calculation unit, the flow rate V 0 at the reference temperature T 0 [° C.] is calculated as a temperature-corrected flow rate according to Charles' law. Calculation is performed by the unit 12.
V 0 = (273 + T 0 ) · V / (273 + T) (9)

なお、伝播時間算出部9で算出した順方向と逆方向の各伝播時間の逆数fとfの和f+fは、
+f=2C/L ・・・ (10)
となり、音速Cと相関関係があるので前記図3のデータから、流体温度を読み取ることが出来るものである。
The sum f 1 + f 2 of the reciprocals f 1 and f 2 of the forward and reverse propagation times calculated by the propagation time calculation unit 9 is:
f 1 + f 2 = 2C / L (10)
Thus, since there is a correlation with the sound speed C, the fluid temperature can be read from the data shown in FIG.

次に、伝播時間t−τ、t−τの逆数和に基づいて流体の温度を算出する実施例2の温度演算部の手順を図4のブロック図で説明する。この実施例は請求項2の発明に対応する。 Next, the procedure of the temperature calculation unit of the second embodiment that calculates the temperature of the fluid based on the reciprocal sum of the propagation times t 11 and t 22 will be described with reference to the block diagram of FIG. This embodiment corresponds to the invention of claim 2.

順方向と逆方向の伝播時間t−τとt−τの逆数fとfは前記(5)(6)式で表わされるので、伝播時間t−τとt−τの逆数和は
+f=2C/L ・・・ (10)
となり、間隔Lは固定の既知の値であるため、逆数和f+fが音速Cに相関する値となる。
Since the reciprocals f 1 and f 2 of the forward and reverse propagation times t 11 and t 22 are expressed by the equations (5) and (6), the propagation times t 11 and t 2 The reciprocal sum of -τ 2 is
f 1 + f 2 = 2C / L (10)
Since the interval L is a fixed known value, the reciprocal sum f 1 + f 2 is a value correlated with the sound speed C.

ところで、伝播時間の逆数の単位は[Hz]となる。従って、順方向と逆方向の伝播時間の逆数和を縦軸にとり、温度[℃]を横軸にとって両者の関係を示すと図5のように、流体(ガス)が13Aの場合とAIR(空気)の場合とLPGの場合との3本の線B、C、Dとなり、この関係を使って、逆数和f+fの値に基づいて、B、C、Dのどの線の範囲に逆数和があるかによって、ガス種が13A、AIR又はLPGのどれであるか判定できる。こうすることで、図5は、図4におけるガス種1判定値11cとガス種2判定値11dとガス種3判定値11eに相当し、これらの判定値に基づいて、図4のガス種判定部11bが機能する。つまり、図5で、縦軸の逆数和はf+fであるから、例えば逆数和演算部11aで算出した逆数和が8000[Hz]であれば、図5に基づいて、ガス種判定部11bが、流体のガス種をガス種1の13Aと判定する。 By the way, the unit of the reciprocal of the propagation time is [Hz]. Therefore, when the reciprocal sum of the propagation times in the forward direction and the reverse direction is taken on the vertical axis and the temperature [° C.] is taken on the horizontal axis, the relationship between the two is shown in FIG. ) And LPG, the three lines B, C, and D are used, and by using this relationship, the reciprocal number in the range of any line of B, C, and D based on the value of the reciprocal sum f 1 + f 2 Depending on whether there is a sum, it can be determined whether the gas type is 13A, AIR or LPG. 5 corresponds to the gas type 1 determination value 11c, the gas type 2 determination value 11d, and the gas type 3 determination value 11e in FIG. 4, and based on these determination values, the gas type determination of FIG. The part 11b functions. That is, in FIG. 5, since the reciprocal sum of the vertical axis is f 1 + f 2 , for example, if the reciprocal sum calculated by the reciprocal sum calculation unit 11 a is 8000 [Hz], the gas type determination unit based on FIG. 5. 11b determines that the gas type of the fluid is 13A of gas type 1.

ガス種を判定するのに、図5の代りに、図6のような音速と温度の関係を用いることもできる。この場合は、前記(10)式を変形して
C=(f+f)L/2 ・・・ (11)
から、逆数和f+fに基づいて音速Cを求め、この音速Cが、図6の13A、AIR又はLPGのどの範囲にあるかによって、ガス種が13AかAIRかLPGかを判定する。
In order to determine the gas type, the relationship between the speed of sound and temperature as shown in FIG. 6 can be used instead of FIG. In this case, the equation (10) is modified
C = (f 1 + f 2 ) L / 2 (11)
Then, the sound speed C is obtained based on the reciprocal sum f 1 + f 2, and it is determined whether the gas type is 13A, AIR or LPG depending on which range of sound speed C is 13A, AIR or LPG in FIG.

なお、都市ガスの13A、空気(AIR)、LPG(LPガス)では、音速Cや、逆数和は、図6や図5に示すように、流量計の使用温度範囲の−20℃〜60℃においては、線(曲線)が互いに重なることがないため、ガス種が何れであるか確実に判定できる。   Note that for city gas 13A, air (AIR), and LPG (LP gas), the speed of sound C and the reciprocal sum, as shown in FIGS. In, since the lines (curves) do not overlap each other, it is possible to reliably determine which gas type is.

その他のガス種であるとか、使用温度範囲が広いなど音速のカーブ(曲線)が図7のように互いに重なることがある場合は、重なる領域を脱したときに予め設定した音速Cのデータと比較することによりガス種を識別(判定)し、ガス種情報を切り替えて、誤判定を防ぐようにする。   When the sound velocity curves (curves) such as other gas types or a wide operating temperature range may overlap each other as shown in FIG. 7, it is compared with the sound velocity C data set in advance when the overlapping region is removed. By doing so, the gas type is identified (determined), and the gas type information is switched to prevent erroneous determination.

次に請求項4に示す構成に相当する実施例3について説明する。例えば図8のように、温度が0℃、20℃、40℃における3点の逆数和データ(温度ポイントデータ、tp0、tp20、tp40)と、4つの温度算出係数データkm20、k0、kp20、kp40を温度算出テーブルに記憶しており、以下の式により温度を算出する。なお、全体のブロック図は図1、要部は図9に示す。   Next, a third embodiment corresponding to the configuration shown in claim 4 will be described. For example, as shown in FIG. 8, three-point reciprocal sum data (temperature point data, tp0, tp20, tp40) and four temperature calculation coefficient data km20, k0, kp20, kp40 at temperatures of 0 ° C., 20 ° C., and 40 ° C. Is stored in the temperature calculation table, and the temperature is calculated by the following equation. The overall block diagram is shown in FIG. 1, and the main part is shown in FIG.

逆数和がtp20〜tp40の範囲内の場合について説明する。
T=(f+f−tp20)×kp20+20[℃]
但し、T[℃] :流体温度
:順方向伝播時間の逆数
:逆方向伝播時間の逆数
tp20[Hz] :20℃、空気(AIR)における逆数和
kp20[℃/Hz]:温度算出係数
なお、上記温度算出テーブルを[表1]と[表2]に示す。[表1]は温度ポイントデータで単位は[Hz]、[表2]は温度算出係数データで図7の折線の傾配に当り、単位は[℃/Hz]である。
A case where the reciprocal sum is in the range of tp20 to tp40 will be described.
T = (f 1 + f 2 −tp20) × kp20 + 20 [° C.]
Where T [° C]: Fluid temperature
f 1 : reciprocal of forward propagation time
f 2 : reciprocal of backward propagation time
tp20 [Hz]: Reciprocal sum in air (AIR) at 20 ° C.
kp20 [° C./Hz]: Temperature calculation coefficient The temperature calculation tables are shown in [Table 1] and [Table 2]. [Table 1] is the temperature point data, the unit is [Hz], and [Table 2] is the temperature calculation coefficient data, and the unit is [° C./Hz] for the inclination of the broken line in FIG.

Figure 2007017157
Figure 2007017157

Figure 2007017157
この実施例3では、符号11hで示す温度算出テーブル1は、前記[表1]のガス種がAIRの欄のデータと、[表2]のガス種がAIRのデータを電子回路のメモリに記憶したテーブルで構成される。また、符号11iの温度算出テーブル2は同様に[表1]の13A欄のデータと[表2]の13A欄のデータとで、又、符合11jの温度算出テーブルは同様に[表1]のLPGの欄と[表2]のLPGの欄のデータとで構成される。そして、11h、11i、11jの各温度算出テーブル1、2、3のデータをテーブル選択部11gで選択して、演算部11fで温度T[℃]を算出する。
Figure 2007017157
In Example 3, the temperature calculation table 1 indicated by reference numeral 11h stores the data in the column of “AIR” in [Table 1] and the data in “AIR” of [Table 2] in the memory of the electronic circuit. It consists of a table. Similarly, the temperature calculation table 2 of reference numeral 11i is the data in the column 13A of [Table 1] and the data of the column 13A of [Table 2], and the temperature calculation table of the reference numeral 11j is also similar to that in [Table 1]. It consists of the LPG column and the data in the LPG column of [Table 2]. And the data of each temperature calculation table 1, 2, 3 of 11h, 11i, and 11j are selected by the table selection part 11g, and temperature T [degreeC] is calculated by the calculating part 11f.

次に請求項5に示す構成に相当する実施例4について説明する。なお、全体のブロック図は図1に、要部は図10に示す。この実施例4では、設定器13でガス種判定値11c〜11eと、温度算出テーブル1〜3(符号11h〜11j)の内容を外部から書き換えることができ、書き換える前とは違うガス種の測定を行なうようにすることができるものである。   Next, a fourth embodiment corresponding to the structure shown in claim 5 will be described. The overall block diagram is shown in FIG. 1, and the main part is shown in FIG. In the fourth embodiment, the gas type determination values 11c to 11e and the contents of the temperature calculation tables 1 to 3 (reference numerals 11h to 11j) can be rewritten from the outside by the setting device 13, and the measurement of the gas type is different from that before rewriting. Can be made to do.

一般に被測定流体のガス種によって、音速が異なるため、実施例4のガス種判定値や温度算出テーブルは、測定流体の種類毎に定める必要がある。これらの値を外部から設定器13によって設定可能とすることで、ガス種の誤判定、温度測定誤差の発生を容易に回避することができる。こうして、想定外の異なるガス種でも上記不具合を容易に避けられる。   In general, the speed of sound varies depending on the gas type of the fluid to be measured, so the gas type determination value and the temperature calculation table of Example 4 need to be determined for each type of measurement fluid. By making these values externally settable by the setting device 13, it is possible to easily avoid the erroneous determination of the gas type and the occurrence of temperature measurement errors. In this way, the above-mentioned problem can be easily avoided even with unexpected different gas types.

次に請求項6の構成に相当する実施例5について説明する。なお、この実施例の全体ブロック図は図1と同じで、その要部のブロック図を図11に示す。   Next, a fifth embodiment corresponding to the structure of claim 6 will be described. The overall block diagram of this embodiment is the same as that in FIG.

この実施例5では、更に送受波器2と3、即ちセンサ距離補正部11kの補正係数を外部の設定器13Aで設定可能にしたものである。   In the fifth embodiment, the transducers 2 and 3, that is, the correction coefficient of the sensor distance correction unit 11k can be set by an external setting device 13A.

例えば、送受波器間の距離、即ちセンサ間距離Lが100mmの場合、距離Lが個体間誤差で0.2mmずれた場合の測定誤差は空気約20℃においては、以下のように1℃の誤差となる。   For example, when the distance between the transducers, that is, the distance L between sensors is 100 mm, the measurement error when the distance L is shifted by 0.2 mm due to the individual error is about 1 ° C. It becomes an error.

空気20℃付近における逆数和の傾きは、音速カーブの図5からおよそ12Hz/℃である。   The slope of the reciprocal sum in the vicinity of 20 ° C. of air is about 12 Hz / ° C. from the sound velocity curve shown in FIG.

前述の(9)式より、L=100mmとL=100.2mmの逆数和は、空気23℃の音速345m/sとすると、次のようになる。   From the above equation (9), the reciprocal sum of L = 100 mm and L = 100.2 mm is as follows when the sound velocity at air 23 ° C. is 345 m / s.

L=100mmの場合
+f=2C/L=2×345/0.1=6900[Hz]
L=100.2mmの場合
+f=2C/L=2×345/0.1002=6886[Hz]
で両者の差は、14[Hz]となり、約1℃の誤差に相当する。
従ってL=100.2mmの流量計に対しては、100.2/100のセンサ間距離補正係数をf+fの6886[Hz]に乗じることで、センサ間距離の個体差を補正して、正しい値のf+f=6900を求められるようになる。
In the case of L = 100 mm f 1 + f 2 = 2C / L = 2 × 345 / 0.1 = 6900 [Hz]
When L = 100.2 mm f 1 + f 2 = 2C / L = 2 × 345 / 0.1002 = 6886 [Hz]
The difference between them is 14 [Hz], which corresponds to an error of about 1 ° C.
Therefore, for a flowmeter of L = 100.2 mm, the individual difference of the inter-sensor distance is corrected by multiplying the inter-sensor distance correction coefficient of 100.2 / 100 by 6 1 [Hz] of f 1 + f 2. Therefore, the correct value f 1 + f 2 = 6900 can be obtained.

センサ間距離補正係数の設定手順を以下に示す。
(1)温度一定の環境条件で、流量ゼロの状態の伝播時間を複数回測定し、順方向と
逆方向それぞれの平均伝播時間を算出する。
(2)順方向、逆方向それぞれの平均伝播時間の逆数をとり、順逆それぞれの逆数の平均値をとる。
(3)順逆各逆数の平均値の和を算出する。
(4)伝播時間を測定する時の流体温度における理論逆数和と、測定した各逆数和の平均値とから、センサ間距離補正係数を算出する。(センサ間距離補正係数=理論逆数和÷(各逆数の平均値の和))。なお、理論逆数和とは、伝搬時間測定時の流体温度における音速及びセンサ間距離の狙い値(設定値)から算出した伝搬時間の逆数和をいう。
(5)算出したセンサ間距離補正係数を流量計に設定し、記憶する。
The procedure for setting the inter-sensor distance correction coefficient is shown below.
(1) Under a constant temperature environment condition, the propagation time in the state of zero flow rate is measured a plurality of times, and the average propagation time in each of the forward direction and the reverse direction is calculated.
(2) The reciprocal of the average propagation time in the forward direction and the reverse direction is taken, and the average value of the reciprocal numbers in the forward and reverse directions is taken.
(3) Calculate the sum of the average values of the reciprocals of forward and reverse.
(4) The inter-sensor distance correction coefficient is calculated from the theoretical reciprocal sum at the fluid temperature when measuring the propagation time and the average value of the measured reciprocal sums. (Sensor distance correction coefficient = theoretical reciprocal sum ÷ (sum of average values of reciprocals)). The theoretical reciprocal sum means the reciprocal sum of the propagation time calculated from the target value (set value) of the sound velocity at the fluid temperature at the time of propagation time measurement and the distance between the sensors.
(5) The calculated inter-sensor distance correction coefficient is set in the flow meter and stored.

この実施例6は請求項7の構成に相当する。流量変動があると、図12に示すように、順方向の測定と逆方向の測定とで捉える流速が異なる値のVとVになる。即ち、n回目の順方向測定でV、逆方向測定でVとなる。n+1回目には、順方向測定値と逆方向測定値がV’とV’になる。従って、n回目の測定では、
=(C+V)/L ・・・ (5’)
=(C−V)/L ・・・ (6’)
+f=(2C+V−V)/L ・・・ (7’)
そこで、本実施例6では、伝播時間測定の順序を測定毎に変え、かつ、逆数和を平均化することで、測定誤差を低減することができる。式(7’)のV−Vが図13のn回目とn+1回目の測定の平均でほぼ零になるので測定誤差が低減する。
The sixth embodiment corresponds to the structure of the seventh aspect. When the flow rate fluctuates, as shown in FIG. 12, the flow rates captured by the forward measurement and the reverse measurement become different values of V 1 and V 2 . That is, it becomes V 1 in the n-th forward measurement and V 2 in the backward measurement. At the (n + 1) th time, the forward direction measurement value and the reverse direction measurement value become V 1 ′ and V 2 ′. Therefore, in the nth measurement,
f 1 = (C + V 1 ) / L (5 ′)
f 2 = (C−V 2 ) / L (6 ′)
f 1 + f 2 = (2C + V 1 −V 2 ) / L (7 ′)
Therefore, in the sixth embodiment, the measurement error can be reduced by changing the order of the propagation time measurement for each measurement and averaging the reciprocal sum. Since V 1 −V 2 in the equation (7 ′) is substantially zero as an average of the n-th and n + 1-th measurements in FIG. 13, the measurement error is reduced.

本実施例6の全体のブロック図を図14(a)に、その温度演算部の詳細を図14(b)に示す。同図(a)に示す測定順序制御部14と同図(b)に示す平均化部11mが他の実施例に比較して追加されている。測定順序測定部14は順方向と逆方向の測定順序を切り替える。   FIG. 14A shows an overall block diagram of the sixth embodiment, and FIG. 14B shows details of the temperature calculation unit. A measurement order control unit 14 shown in FIG. 10A and an averaging unit 11m shown in FIG. 10B are added as compared with the other embodiments. The measurement order measurement unit 14 switches the measurement order between the forward direction and the reverse direction.

この実施例7は請求項8の構成に相当する。周期的に変動する流量変化の場合には、測定間隔をランダムにすることで、前記式(7’)のV−Vが平均的にみて略零になるので、測定誤差を小さくできる。 The seventh embodiment corresponds to the configuration of the eighth aspect. In the case of a flow rate change that fluctuates periodically, by making the measurement interval random, V 1 -V 2 in the above equation (7 ′) becomes substantially zero on average, so that the measurement error can be reduced.

図15は測定間隔をランダム化したときの説明図で、流速Vが周期的に正弦波状に変動している場合に測定間隔をランダムにすることで、測定誤差の平均値をほぼ零に近づけることを示す。   FIG. 15 is an explanatory diagram when the measurement interval is randomized. When the flow velocity V periodically fluctuates in a sine wave shape, the measurement interval is randomized so that the average value of the measurement error is brought close to zero. Indicates.

なお、流れが止まっていて流速が零の状態から流れ出した場合には平均化の対象データ数を減らすことによって、温度測定の応答性を上げることができる(請求項9)。   When the flow is stopped and the flow velocity starts from zero, the temperature measurement response can be improved by reducing the number of data to be averaged.

図16のブロック図は実施例7と8の全体を示すブロック図で、流量変化判定部16を設け、流体が零の状態から流れ出した場合には平均化部11mで扱う平均化の対象データ数を減らす。また、測定間隔制御部17を設けて、実施例7で述べた測定間隔のランダム化等の制御を行なうものである。   The block diagram of FIG. 16 is a block diagram showing the entirety of the seventh and eighth embodiments. When the flow rate change determination unit 16 is provided and the fluid flows out from a zero state, the number of data to be averaged handled by the averaging unit 11m Reduce. Further, the measurement interval control unit 17 is provided to perform control such as randomization of the measurement interval described in the seventh embodiment.

図17のブロック図は実施例9の図で、流量変動判定部18を設けて、流量変動の有無を判定し、流量変動があるときは、温度の誤測定を防ぐため、流量が安定するまで温度算出をしないようにした(請求項10)。   The block diagram of FIG. 17 is a diagram of the ninth embodiment, and a flow rate variation determination unit 18 is provided to determine the presence or absence of flow rate variation. When there is a flow rate variation, in order to prevent erroneous temperature measurement, the flow rate is stabilized. The temperature was not calculated (claim 10).

本発明の実施例1のブロック図。1 is a block diagram of Embodiment 1 of the present invention. 本発明の実施例2における到達時間と伝播時間を設定する図で、(a)は両時間の対応関係を示す図、(b)は受信波形を示す図。It is a figure which sets the arrival time and propagation time in Example 2 of this invention, (a) is a figure which shows the correspondence of both time, (b) is a figure which shows a received waveform. 本発明の実施例における逆数和と流体温度の関係を示す図。The figure which shows the relationship between the reciprocal sum and fluid temperature in the Example of this invention. 図1のブロック図の温度演算部11の詳細を示すブロック図。The block diagram which shows the detail of the temperature calculating part 11 of the block diagram of FIG. 本発明の実施例における流体温度と逆数和の関係を示す図。The figure which shows the relationship between the fluid temperature and the reciprocal sum in the Example of this invention. 本発明の実施例における流体温度と音速の関係を示す図。The figure which shows the relationship between the fluid temperature and sound speed in the Example of this invention. 本発明の実施例における流体温度と音速の関係を示す図。The figure which shows the relationship between the fluid temperature and sound speed in the Example of this invention. 本発明の実施例における逆数和と流体温度の関係を示す図。The figure which shows the relationship between the reciprocal sum and fluid temperature in the Example of this invention. 本発明における温度演算部のブロック図。The block diagram of the temperature calculating part in this invention. 本発明における温度演算部のブロック図。The block diagram of the temperature calculating part in this invention. 本発明における温度演算部のブロック図。The block diagram of the temperature calculating part in this invention. 本発明における測定毎の流速変化を説明する図。The figure explaining the flow-velocity change for every measurement in this invention. 本発明における測定毎の流速変化を説明する図。The figure explaining the flow-velocity change for every measurement in this invention. 本発明の実施例の全体のブロック図(a)と、温度演算部のブロック図(b)。The block diagram (a) of the whole Example of this invention, and the block diagram (b) of a temperature calculating part. 流速が正弦波状に変動するときの測定タイミングを説明する図。The figure explaining the measurement timing when a flow velocity fluctuates to a sine wave shape. 本発明の実施例のブロック図。The block diagram of the Example of this invention. 本発明の実施例のブロック図。The block diagram of the Example of this invention.

符号の説明Explanation of symbols

1 流路
2、3 送受波器(センサ)
T 流体温度
基準温度
V、V 流速
8 時間測定部
9 伝播時間算出部
10 流量演算部
11 温度演算部
12 温度補正流量演算部
順方向到達時間
逆方向到達時間
順方向伝搬時間の逆数
逆方向伝搬時間の逆数
+f 逆数和
11 温度演算部
11a 逆数和演算部
11b ガス種判定部
11f 演算部
11g テーブル選択部
11h、11i、11j 温度算出テーブル
13、13A 設定器
11k センサ間距離補正部
14 測定順序制御部
11m 平均化部
17 測定間隔制御部
16 流量変化判定部
18 流量変動判定部
1 channel 2, 3 transducer (sensor)
T fluid temperature T 0 reference temperature V, V 0 flow velocity 8 time measurement unit 9 propagation time calculation unit 10 flow rate calculation unit 11 temperature calculation unit 12 temperature correction flow rate calculation unit t 1 forward arrival time t 2 reverse arrival time f 1 forward Reciprocal of direction propagation time f 2 reciprocal of reverse propagation time f 1 + f 2 reciprocal sum 11 temperature calculating unit 11a reciprocal sum calculating unit 11b gas type determining unit 11f calculating unit 11g table selecting unit 11h, 11i, 11j temperature calculating table 13, 13A Setter 11k Sensor-to-sensor distance correction unit 14 Measurement sequence control unit 11m Averaging unit 17 Measurement interval control unit 16 Flow rate change determination unit 18 Flow rate fluctuation determination unit

Claims (10)

流れの上流側と下流側に超音波送受波器を配置し、超音波の順方向と逆方向の伝播時間の逆数差より流速、流量又は通過量を求める超音波流量計であって、順方向と逆方向の伝播時間の逆数和から流体温度を求め、別に定めた基準温度における流速、流量又は通過量を演算することを特徴とする超音波流量計。   An ultrasonic flowmeter in which ultrasonic transducers are arranged on the upstream and downstream sides of the flow, and the flow rate, flow rate, or passage amount is obtained from the reciprocal difference between the propagation times of the ultrasonic forward and reverse directions. An ultrasonic flowmeter characterized by calculating a fluid temperature from a reciprocal sum of propagation times in the opposite direction and calculating a flow velocity, a flow rate, or a passing amount at a separately determined reference temperature. 超音波を発信してから受信波を検知するまでの到達時間から、超音波送受波器の中を伝播する時間や、受信波の頭から第3波のゼロクロスまでの時間などの遅れ時間を差し引いて伝播時間とすることを特徴とする請求項1記載の超音波流量計。   Subtract delay times such as the time to propagate through the ultrasonic transducer and the time from the head of the received wave to the zero cross of the third wave from the arrival time from when the ultrasonic wave is transmitted until the received wave is detected. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is a propagation time. 伝播時間の逆数和から音速を演算し、予め設定した音速値と比較して流体の種類を判別するとともに、該流体の温度を求めることを特徴とする請求項1又は2記載の超音波流量計。   The ultrasonic flowmeter according to claim 1 or 2, wherein a sound velocity is calculated from a reciprocal sum of propagation times, a type of fluid is determined by comparison with a preset sound velocity value, and a temperature of the fluid is obtained. . 予め設定した温度算出テーブルを用いて、伝播時間の逆数和から流体温度を求めることを特徴とする請求項3記載の超音波流量計。   4. The ultrasonic flowmeter according to claim 3, wherein a fluid temperature is obtained from a reciprocal sum of propagation times using a preset temperature calculation table. 流体の種類を判別するガス種判定値と温度算出テーブルのデータを外部から書き換えることを特徴とする請求項4記載の超音波流量計。   The ultrasonic flowmeter according to claim 4, wherein the gas type determination value for determining the type of fluid and the data of the temperature calculation table are rewritten from the outside. 超音波送受波器間の距離を補正するセンサ間距離補正係数を外部から設定することを特徴とする請求項5記載の超音波流量計。   6. The ultrasonic flowmeter according to claim 5, wherein a distance correction coefficient between sensors for correcting the distance between the ultrasonic transducers is set from the outside. 測定毎に順方向と逆方向の測定順序を変え、かつ伝播時間の逆数和を平均化することを特徴とする請求項6記載の超音波流量計。   7. The ultrasonic flowmeter according to claim 6, wherein the measurement order in the forward direction and the reverse direction is changed for each measurement, and the reciprocal sum of the propagation times is averaged. 測定間隔をランダムにするとともに、かつ伝播時間の逆数和を平均化するように構成したことを特徴とする請求項7記載の超音波流量計。   The ultrasonic flowmeter according to claim 7, wherein the measurement interval is made random and the reciprocal sum of propagation times is averaged. 流速が零の状態から流れ出した場合には、平均化の対象データ数を減らすことを特徴とする請求項8記載の超音波流量計。   9. The ultrasonic flowmeter according to claim 8, wherein the number of data to be averaged is reduced when the flow velocity starts from a zero state. 流体の流量が安定しているときだけ流体温度の算出を行なうことを特徴とする請求項9記載の超音波流量計。   10. The ultrasonic flowmeter according to claim 9, wherein the fluid temperature is calculated only when the fluid flow rate is stable.
JP2005195690A 2005-07-05 2005-07-05 Ultrasonic flow meter Active JP5123469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195690A JP5123469B2 (en) 2005-07-05 2005-07-05 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195690A JP5123469B2 (en) 2005-07-05 2005-07-05 Ultrasonic flow meter

Publications (3)

Publication Number Publication Date
JP2007017157A true JP2007017157A (en) 2007-01-25
JP2007017157A5 JP2007017157A5 (en) 2008-08-14
JP5123469B2 JP5123469B2 (en) 2013-01-23

Family

ID=37754460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195690A Active JP5123469B2 (en) 2005-07-05 2005-07-05 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5123469B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256075A (en) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd Flowmeter and method of measuring flow rate
WO2011055532A1 (en) * 2009-11-06 2011-05-12 パナソニック株式会社 Ultrasonic flowmeter
KR101324574B1 (en) * 2012-07-05 2013-11-01 한국표준과학연구원 Clamp-on type ultrasonic flowmeter and the measuring method of correction data
JP2014232039A (en) * 2013-05-29 2014-12-11 パナソニック株式会社 Ultrasonic flow rate measurement device
JP2015169433A (en) * 2014-03-04 2015-09-28 大阪瓦斯株式会社 Ultrasonic sound velocity measurement apparatus and ultrasonic sound velocity measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3114388B1 (en) * 2020-09-22 2022-11-11 Integra Metering Sas Method for measuring the flow rate of a fluid in a pipe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155276A (en) * 1974-11-11 1976-05-14 Oki Electric Ind Co Ltd Choonpa nyoru ryusokutosokuteihoshiki
JPS60150422U (en) * 1984-03-19 1985-10-05 横河電機株式会社 ultrasonic flow meter
JPS63131027A (en) * 1986-11-19 1988-06-03 Tokyo Keiki Co Ltd Ultrasonic gas flowmeter
JPH0688738A (en) * 1992-09-08 1994-03-29 Oval Corp Ultrasonic wave flowmeter
JPH08304135A (en) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JPH09133561A (en) * 1995-11-07 1997-05-20 Kaijo Corp Ultrasonic flowmeter
JP2000292233A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JP2000337938A (en) * 1999-06-01 2000-12-08 Aichi Tokei Denki Co Ltd Gas meter
JP2001194196A (en) * 2000-01-13 2001-07-19 Osaka Gas Co Ltd Ultrasonic flow meter
JP2002333356A (en) * 2001-05-09 2002-11-22 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2004085421A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155276A (en) * 1974-11-11 1976-05-14 Oki Electric Ind Co Ltd Choonpa nyoru ryusokutosokuteihoshiki
JPS60150422U (en) * 1984-03-19 1985-10-05 横河電機株式会社 ultrasonic flow meter
JPS63131027A (en) * 1986-11-19 1988-06-03 Tokyo Keiki Co Ltd Ultrasonic gas flowmeter
JPH0688738A (en) * 1992-09-08 1994-03-29 Oval Corp Ultrasonic wave flowmeter
JPH08304135A (en) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JPH09133561A (en) * 1995-11-07 1997-05-20 Kaijo Corp Ultrasonic flowmeter
JP2000292233A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JP2000337938A (en) * 1999-06-01 2000-12-08 Aichi Tokei Denki Co Ltd Gas meter
JP2001194196A (en) * 2000-01-13 2001-07-19 Osaka Gas Co Ltd Ultrasonic flow meter
JP2002333356A (en) * 2001-05-09 2002-11-22 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2004085421A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256075A (en) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd Flowmeter and method of measuring flow rate
WO2011055532A1 (en) * 2009-11-06 2011-05-12 パナソニック株式会社 Ultrasonic flowmeter
KR101324574B1 (en) * 2012-07-05 2013-11-01 한국표준과학연구원 Clamp-on type ultrasonic flowmeter and the measuring method of correction data
JP2014232039A (en) * 2013-05-29 2014-12-11 パナソニック株式会社 Ultrasonic flow rate measurement device
JP2015169433A (en) * 2014-03-04 2015-09-28 大阪瓦斯株式会社 Ultrasonic sound velocity measurement apparatus and ultrasonic sound velocity measurement method

Also Published As

Publication number Publication date
JP5123469B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP2011158470A (en) Ultrasonic flowmeter
JP5123469B2 (en) Ultrasonic flow meter
WO2011074248A1 (en) Flow rate measuring device
EP2224219B1 (en) Ultrasonic flow measurement device
JP2007187506A (en) Ultrasonic flowmeter
US9304022B2 (en) Flow rate measuring device
JP5141613B2 (en) Ultrasonic flow meter
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP4760115B2 (en) Fluid flow measuring device
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP2004271207A (en) Ultrasonic propagation time measuring device and fluid sensor equipped therewith
JP2018136276A (en) Ultrasonic flowmeter
JP3624743B2 (en) Ultrasonic flow meter
JP5292798B2 (en) Flow measuring device
JP7320776B2 (en) ultrasonic flow meter
JP7246021B2 (en) ultrasonic flow meter
JP6064160B2 (en) Flow measuring device
JP5990770B2 (en) Ultrasonic measuring device
JP5228462B2 (en) Fluid flow measuring device
JP2005300244A (en) Ultrasonic flow meter
JP2007240220A (en) Ultrasonic fluid measuring apparatus
JP6767628B2 (en) Flow measuring device
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2007064988A (en) Flowmeter
JP5229349B2 (en) Fluid flow measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250