JP5034510B2 - Flow velocity or flow rate measuring device and its program - Google Patents

Flow velocity or flow rate measuring device and its program Download PDF

Info

Publication number
JP5034510B2
JP5034510B2 JP2007009744A JP2007009744A JP5034510B2 JP 5034510 B2 JP5034510 B2 JP 5034510B2 JP 2007009744 A JP2007009744 A JP 2007009744A JP 2007009744 A JP2007009744 A JP 2007009744A JP 5034510 B2 JP5034510 B2 JP 5034510B2
Authority
JP
Japan
Prior art keywords
time
flow rate
vibrator
propagation
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007009744A
Other languages
Japanese (ja)
Other versions
JP2008175706A (en
Inventor
文一 芝
晃一 竹村
裕治 中林
大介 別荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007009744A priority Critical patent/JP5034510B2/en
Publication of JP2008175706A publication Critical patent/JP2008175706A/en
Application granted granted Critical
Publication of JP5034510B2 publication Critical patent/JP5034510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動子などを用い、超音波を利用して気体や液体などの流量を計測する流速または流量計測装置に関する。   The present invention relates to a flow velocity or flow rate measuring device that uses a vibrator or the like and measures a flow rate of gas or liquid using ultrasonic waves.

従来、この種の流量計測装置としては、流路に流れの方向に相対して振動子を設け、超音波の伝搬時間差から流体の速度を演算していた(例えば、特許文献1参照)。   Conventionally, as this type of flow rate measurement device, a vibrator is provided in a flow path in the flow direction, and the velocity of the fluid is calculated from the difference in ultrasonic propagation time (see, for example, Patent Document 1).

図11は、従来の超音波流量計の構成を示すブロック図である。図11において、流体管路4の途中に、超音波を発信する第1振動子5と受信する第2振動子6とが、流れ方向に配置されている。7は第1振動子5への送信回路、8は第2振動子6で受信した信号の増幅回路であり、ここで増幅された信号は比較回路9で基準信号と比較され、基準信号以上の信号が検出されたとき、回数設定回路10で設定された回数だけ繰り返し手段11はトリガ回路12を付勢し、遅延手段13で信号を遅延させた後超音波信号を繰り返し送信する。   FIG. 11 is a block diagram showing a configuration of a conventional ultrasonic flowmeter. In FIG. 11, a first vibrator 5 that transmits ultrasonic waves and a second vibrator 6 that receives ultrasonic waves are disposed in the flow direction in the middle of the fluid conduit 4. 7 is a transmission circuit to the first vibrator 5, and 8 is an amplification circuit for the signal received by the second vibrator 6. The amplified signal is compared with the reference signal by the comparison circuit 9, and is equal to or higher than the reference signal. When the signal is detected, the repeating unit 11 activates the trigger circuit 12 by the number of times set by the number setting circuit 10, and after delaying the signal by the delay unit 13, the ultrasonic signal is repeatedly transmitted.

繰り返しが始まったときに計時手段14のタイマカウンタを起動し、回数設定回路10で設定された繰り返し回数が終了したとき計時手段14のタイマカウンタを停止し、時間を計測する。次に切換手段15で第1振動子5と第2振動子6の送受信を切換えて、第2振動子6から第1振動子5すなわち下流から上流に向かって超音波信号を発信し、この発信を前述のように繰り返し、その時間を計時する。そしてその時間差から管路の大きさや流れの状態を考慮して流量演算手段16で流量値を求める。
特開平9−280917号公報
When the repetition starts, the timer counter of the time measuring means 14 is started. When the number of repetitions set by the number setting circuit 10 is completed, the timer counter of the time measuring means 14 is stopped and the time is measured. Next, transmission / reception of the first vibrator 5 and the second vibrator 6 is switched by the switching means 15, and an ultrasonic signal is transmitted from the second vibrator 6 to the first vibrator 5, that is, from downstream to upstream. Is repeated as described above, and the time is counted. From the time difference, the flow rate calculation means 16 determines the flow rate value in consideration of the size of the pipe line and the flow state.
Japanese Patent Laid-Open No. 9-280917

しかしながら従来の流量計測装置では送信側振動子と受信側振動子を切換える動作が入り、計測−切換−計測というように計測の間に切換動作が入るため時間のずれが発生している。さらに切換え動作の前と後での計測おのおの単独では片方向の情報しか測定できず、切換え動作処理をはさんで時間経過がある場合において測定した情報にずれを発生して計測誤差の要因にもなる可能性がある。   However, in the conventional flow rate measuring device, an operation for switching between the transmission-side transducer and the reception-side transducer is entered, and a time lag occurs because a switching operation is performed between measurements such as measurement-switching-measurement. In addition, each measurement before and after the switching operation can measure only one-way information, and if there is a lapse of time across the switching operation process, the measured information will be shifted, causing a measurement error. There is a possibility.

本発明は上記の課題を解決するもので、大きな時間ずれを発生することの無いよう振動子間を少なくとも2回反射した超音波信号の伝搬時間を計時する計時手段の計時値に基づいて流量を算出することを目的としている。この計時値には伝搬方向の対となる情報が含まれている。   The present invention solves the above problem, and the flow rate is controlled based on the time value of the time measuring means for measuring the propagation time of the ultrasonic signal reflected between the transducers at least twice so as not to cause a large time shift. The purpose is to calculate. This timekeeping value includes information that is a pair of propagation directions.

前記従来の課題を解決するために、本発明の流量計測装置は、被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、前記送信側振動子を駆動する送信手段と、前記受信側振動子の出力信号を電気信号に変換する受信手段と、記振動子の送受信を切換える切換手段と、送信側の前記振動子から出力された前記超音波が前記振動子間で少なくとも2回反射してから受信側の前記振動子に伝搬するまでの時間を計時する計時手段と、前記計時手段の計時値に基づいて流量を算出する流量演算手段と、前記振動子と前記送信手段と前記受信手段と前記計時手段と前記流量演算手段のうち少なくとも1つを制御する制御手段とを備える。 In order to solve the above-described conventional problems, a flow rate measuring device according to the present invention includes a pair of transducers arranged in a flow path through which a fluid to be measured flows and transmits / receives ultrasonic waves, and a transmission unit that drives the transmission-side transducer. Receiving means for converting an output signal of the receiving-side vibrator into an electrical signal, switching means for switching transmission / reception of the vibrator, and the ultrasonic wave output from the vibrator on the transmitting side is at least between the vibrators. Time measuring means for measuring the time from two reflections to propagation to the vibrator on the receiving side, flow rate calculating means for calculating a flow rate based on the time value of the time measuring means, the vibrator and the transmitting means And a control means for controlling at least one of the receiving means, the time measuring means, and the flow rate calculating means.

本発明の流量計測装置は、流路に配置され超音波を送受信する一対の振動子間を伝搬する直接波と少なくとも2回反射した超音波信号の伝搬時間を用いて流量を算出する。 The flow rate measuring device of the present invention calculates a flow rate using a direct wave propagating between a pair of transducers arranged in a flow path and transmitting and receiving ultrasonic waves and a propagation time of an ultrasonic signal reflected at least twice.

このため振動子の切換え動作の前後で測定する伝搬時間には伝搬方向の対となる情報が含まれることから、切換え動作前後の時間経過が発生しても精度良く平均的な流速を求めることができる。   For this reason, since the propagation time measured before and after the switching operation of the vibrator includes information that is a pair of propagation directions, the average flow velocity can be obtained accurately even if the time elapses before and after the switching operation occurs. it can.

第1の発明は被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、前記送信側振動子を駆動する送信手段と、前記受信側振動子の出力信号を電気信号に変換する受信手段と、記振動子の送受信を切換える切換手段と、送信側の前記振動子から出力された前記超音波が前記振動子間で少なくとも2回反射してから受信側の前記振動子に伝搬するまでの時間を計時する計時手段と、前記計時手段の計時値に基づいて流量を算出する流量演算手段と、前記振動子と前記送信手段と前記受信手段と前記計時手段と前記流量演算手段のうち少なくとも1つを制御する制御手段とを備えた流量計測装置である。 According to a first aspect of the present invention, a pair of transducers arranged in a flow path through which a fluid to be measured flows transmits / receives ultrasonic waves, transmission means for driving the transmission-side transducer, and an output signal of the reception-side transducer as an electrical signal Receiving means for converting, switching means for switching transmission / reception of the transducer, and the ultrasonic wave output from the transducer on the transmission side is reflected at least twice between the transducers and then transmitted to the transducer on the reception side Time measuring means for measuring time until propagation, flow rate calculating means for calculating a flow rate based on a time value of the time measuring means, the vibrator, the transmitting means, the receiving means, the time measuring means, and the flow rate calculating means It is a flow measurement device provided with the control means which controls at least one.

そして、振動子間を少なくとも2回反射した超音波信号の伝搬時間を計時する計時手段の計時値に基づいて、流量を算出するものである。これによって、振動子の切換え動作の前後で測定する伝搬時間には伝搬方向の対となる情報が含まれることから、切換動作前後の時間経過が発生しても精度良く平均的な流速を求めることができる。   Then, the flow rate is calculated based on the time measured by the time measuring means for measuring the propagation time of the ultrasonic signal reflected between the transducers at least twice. As a result, the propagation time measured before and after the switching operation of the transducer includes information that is a pair of propagation directions, so that the average flow velocity can be obtained accurately even if the time elapses before and after the switching operation occurs. Can do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
実施の形態1に関する本発明の流速または流量計測装置と器具判別方法について説明する。
(Embodiment 1)
The flow velocity or flow rate measuring apparatus and instrument discrimination method of the present invention relating to Embodiment 1 will be described.

図1は本実施の形態の構成を示す流速または流量計測装置のブロック図である。図1おいて、本発明の超音波流量計は被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、前記第1の振動子32を駆動する送信手段34と、前記第2の振動子33の受信信号を受け受信タイミングを決定する受信手段35と、送信手段34による第1の振動子32の駆動開始から直接超音波の伝搬波が第2の振動子33に到達した後、第2の振動子33で反射し、再度第1の振動32で反射した後に第2の振動子33に到達し受信手段35を介してその伝搬時間を測定する計時手段36と、前記計時手段36の計時値に基づいて振動子間の流速を演算し、それから流量を求める流量演算手段37とを有するものである。   FIG. 1 is a block diagram of a flow velocity or flow rate measuring apparatus showing the configuration of the present embodiment. In FIG. 1, an ultrasonic flowmeter of the present invention includes a flow path 31 through which a fluid to be measured flows, a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 31. The transmitter 34 for installing and driving the first vibrator 32, the receiver 35 for receiving the reception signal of the second vibrator 33 and determining the reception timing, and the first vibrator 32 by the transmitter 34 Directly from the start of driving, the propagation wave of the ultrasonic wave reaches the second vibrator 33, is reflected by the second vibrator 33, is reflected by the first vibration 32 again, and then reaches the second vibrator 33. And a time measuring means 36 for measuring the propagation time via the receiving means 35, and a flow rate calculating means 37 for calculating the flow rate between the vibrators based on the time value of the time measuring means 36 and obtaining the flow rate therefrom. is there.

さらに、送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段38を設け、超音波の送受信を第1の振動子32と第2の振動子33の間で交互に行うようにしている。制御手段39は、前記送信手段34と前記受信手段35と前記計時手段36と前記流量演算手段37と前記切換手段38との少なくとも1つを制御する。   Further, a switching unit 38 is provided between the transmission unit 34 and the first transducer 32, and between the second transducer 33 and the reception unit 35, and transmission / reception of ultrasonic waves is performed between the first transducer 32 and the second transducer. 33 are alternately performed. The control means 39 controls at least one of the transmission means 34, the reception means 35, the timing means 36, the flow rate calculation means 37, and the switching means 38.

通常の流速または流量計測の動作を説明する。   A normal flow rate or flow rate measurement operation will be described.

制御手段39からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に、計時手段36は時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。   Upon receiving the start signal from the control means 39, the transmission means 34 pulse-drives the first vibrator 32 for a fixed time, and at the same time, the time measuring means 36 starts measuring time. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing.

この超音波の受信を決定した時点で、計時手段36の動作を停止し、その時間情報tから(式1)によって流速を求める。ここで、計時手段36から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、確度をφ、音速をc、被測定流体の流速をvとする。   When the reception of this ultrasonic wave is determined, the operation of the time measuring means 36 is stopped, and the flow velocity is obtained from the time information t according to (Equation 1). Here, the measurement time obtained from the time measuring means 36 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the accuracy is φ, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=(1/cosφ)*(L/t)−c ・・・(式1)
受信手段35は、通常コンパレータによって、基準電圧と受信信号を比較するようになっていることが多い。
v = (1 / cosφ) * (L / t) −c (Expression 1)
In many cases, the receiving means 35 is configured to compare the reference voltage and the received signal by a normal comparator.

また、第1の振動子32と第2の振動子33との送信、受信方向を切換え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式2),(式3),(式4)より速度vを求めることができる。   Further, the transmission and reception directions of the first vibrator 32 and the second vibrator 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured, (Equation 2), The speed v can be obtained from (Expression 3) and (Expression 4).

ここで、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。   Here, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.

t1=L/(c+v*cosφ)・・・・・・・・(式2)
t2=L/(c−v*cosφ)・・・・・・・・(式3)
v=(L/2*cosφ)*((1/t1)−(1/t2))・・・(式4)
この方法によれば音速の変化の影響を受けずに流速を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
t1 = L / (c + v * cosφ) (Equation 2)
t2 = L / (c−v * cos φ) (Equation 3)
v = (L / 2 * cosφ) * ((1 / t1) − (1 / t2)) (Expression 4)
According to this method, the flow velocity can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 31.

このようにして流速や流量を求めることはできるが、送信側振動子と受信側振動子とを切換える動作が入ると、計測−切換−計測というように計測の間に切換え動作が入るため、時間のずれが発生している。さらに、切換え動作の前と後での計測おのおの単独では、片方向の情報しか測定できず、切換え動作処理をはさんで時間経過がある場合において、測定した情報にずれを発生して計測誤差の要因にもなる可能性がある。   Although the flow velocity and flow rate can be obtained in this way, when an operation for switching between the transmitting-side transducer and the receiving-side transducer is entered, a switching operation is entered between the measurements, such as measurement-switching-measurement. Deviation has occurred. In addition, each measurement before and after the switching operation can measure only one-way information, and when there is a lapse of time across the switching operation processing, the measured information is shifted and measurement error is caused. It can also be a factor.

そこで振動子32,33間で少なくとも2回反射した超音波信号の伝搬時間を計時する計時手段36の計時値に基づいて、流量を算出する方法を説明する。この方法では振動子32,33の切換え動作の前後で測定する伝搬時間には伝搬方向の対となる情報が含まれることから、切換動作前後の時間経過が発生しても精度良く平均的な流速を求めることができる。   Therefore, a method for calculating the flow rate based on the time value of the time measuring means 36 for measuring the propagation time of the ultrasonic signal reflected at least twice between the transducers 32 and 33 will be described. In this method, since the propagation time measured before and after the switching operation of the vibrators 32 and 33 includes information that is a pair of propagation directions, the average flow velocity can be accurately obtained even if the passage of time before and after the switching operation occurs. Can be requested.

通常の動作は図2に示すタイミング図のようになる。すなわち、制御手段39による時刻t0における開始信号から計測を開始するとともに送信手段34を介して第1の振動子32を駆動する。そこで発生した超音波信号は流路31内を伝搬し時刻t1で第2の振動子33に到達し、受信手段35で受信点を検知すると信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。計時手段36は送信手段34による第1の振動子32の駆動開始から直接超音波の伝搬波が第2の振動子33に到達し受信手段35を介してその伝搬時間を測定する。これで上流から下流への伝搬時間を求めることができる。   Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t 0 by the control means 39 and the first vibrator 32 is driven via the transmission means 34. The ultrasonic signal generated there propagates through the flow path 31 and reaches the second transducer 33 at time t1, and when the reception means 35 detects the reception point, the signal is amplified and then received in advance. The reception of the ultrasonic wave is determined at the signal level. The time measuring means 36 measures the propagation time of the propagation wave of the ultrasonic wave directly reaching the second vibrator 33 from the start of driving of the first vibrator 32 by the transmission means 34 via the receiving means 35. Thus, the propagation time from upstream to downstream can be obtained.

超音波の伝搬は第2の振動子33に到達するとそこで反射し、第1の振動子32の方向へ伝搬する。これが下流から上流への超音波の伝搬になる。さらに、第1の振動子32に到達した伝搬信号は、同様にそこで反射し、第2の振動子33の方向へ伝搬する。これが、最初の直接伝搬と同じ方向になる。   When the ultrasonic wave reaches the second vibrator 33, the ultrasonic wave is reflected there and propagates in the direction of the first vibrator 32. This is the propagation of ultrasonic waves from downstream to upstream. Further, the propagation signal that has reached the first vibrator 32 is similarly reflected there and propagates in the direction of the second vibrator 33. This is the same direction as the first direct propagation.

これを図3に横軸時間、縦軸を流路幅として伝搬する過程を示す。図2のタイミング図とあわせて説明する。流れが無い場合は伝搬方向に関わらず伝搬時間は同じになる。   FIG. 3 shows the process of propagation with the horizontal axis time and the vertical axis as the channel width. This will be described together with the timing chart of FIG. When there is no flow, the propagation time is the same regardless of the propagation direction.

図3においてt0で第1の振動子(送信側振動子)32から超音波信号が送出される。流路31内を伝搬した超音波信号は時刻t1で第2の振動子(受信側振動子)33に到達する。反射した超音波信号は時刻t2で第1の振動子32に戻り、再度そこで反射して時
刻t3で第2の振動子33に到達する。受信側の第2の振動子33の出力は、受信手段35に接続されているため、時刻t1と時刻t3の信号を捕らえることができるが、時刻t2を直接求めることはできない。
In FIG. 3, an ultrasonic signal is transmitted from the first transducer (transmission-side transducer) 32 at t0. The ultrasonic signal propagated through the flow path 31 reaches the second transducer (receiving transducer) 33 at time t1. The reflected ultrasonic signal returns to the first transducer 32 at time t2, is reflected there again, and reaches the second transducer 33 at time t3. Since the output of the second vibrator 33 on the receiving side is connected to the receiving means 35, signals at time t1 and time t3 can be captured, but time t2 cannot be obtained directly.

しかし、図3より流路31の中を流れる流体速度がt0からt1までの超音波直接波と、t2からt3までの同方向の反射波とは、伝搬時間が変化するほど高速に変動していない場合は、この2つの伝搬時間同士をT1として等しいと置くことができる。   However, as shown in FIG. 3, the velocity of the ultrasonic wave flowing through the flow path 31 from t0 to t1 and the reflected wave in the same direction from t2 to t3 fluctuate faster as the propagation time changes. If not, the two propagation times can be set equal to T1.

全体の時間T3から2倍のT1分を減算すると、反対波となる下流から上流への伝搬時間T2を求めることが可能である。この動作が基本であるが、本実施の形態では直接波を利用せずに反射波だけで伝搬時間を求める。   By subtracting T1 that is twice the total time T3, it is possible to obtain the propagation time T2 from the downstream to the upstream that is the opposite wave. Although this operation is basic, in this embodiment, the propagation time is obtained only from the reflected wave without using the direct wave.

流れのある場合を図4で説明する。図4において、流体の流れ方向は、左から右に向かっている。制御手段39による時刻t0における開始信号から計測を開始するとともに、送信手段34を介して第1の振動子32を駆動する。そこで発生した超音波信号は、流路31内を伝搬し、時刻t1’で第2の振動子33に到達する。   The case where there is a flow will be described with reference to FIG. In FIG. 4, the flow direction of the fluid is from left to right. Measurement is started from the start signal at time t0 by the control means 39, and the first vibrator 32 is driven via the transmission means. The ultrasonic signal generated there propagates through the flow path 31 and reaches the second vibrator 33 at time t1 '.

この場合、超音波信号は流体の流れに沿っているため、図3の時刻t1より早く第2の振動子に到達する。ここで反射した超音波伝搬信号は、時刻t2’で第1の振動子32に到達するが、この伝搬時間は流体の流れに対向しているため、図3のt1からt2までの時間より長くかかっている。これが下流から上流への伝搬時間であるが、直接この時間を測定することは出来ない。同様に第1の振動子32で反射した超音波は、第2の振動子33の方向へ伝搬する。これが最初の直接伝搬と同じ方向になり、全体の伝搬時間T3aは受信手段35を介して計時手段37で計測する。   In this case, since the ultrasonic signal is along the flow of the fluid, it reaches the second vibrator earlier than time t1 in FIG. The ultrasonic wave propagation signal reflected here reaches the first vibrator 32 at time t2 ′, but this propagation time is opposed to the flow of the fluid, so that it is longer than the time from t1 to t2 in FIG. It depends. This is the propagation time from downstream to upstream, but this time cannot be measured directly. Similarly, the ultrasonic wave reflected by the first vibrator 32 propagates in the direction of the second vibrator 33. This is in the same direction as the first direct propagation, and the total propagation time T3a is measured by the time measuring means 37 via the receiving means 35.

計時手段36で求めたT3aは次のような関係になっている。   T3a obtained by the time measuring means 36 has the following relationship.

2*T1a+T2a=T3a・・・・・・・・(式5)
さらに、切換手段38を用いて送信側振動子を第2の振動子33、受信側振動子を第1の振動子32とする。動作を図5に示す。送信側が下流に設置されているため伝搬時間T1bは図4のT1aより長くなる。同様に反射波の時間T2bはT2aより短くなる。T2bを直接求めることはできないが計時手段36で求めたT3bは次のような関係になっている。
2 * T1a + T2a = T3a (Equation 5)
Further, using the switching unit 38, the transmission-side vibrator is the second vibrator 33 and the reception-side vibrator is the first vibrator 32. The operation is shown in FIG. Since the transmission side is installed downstream, the propagation time T1b is longer than T1a in FIG. Similarly, the time T2b of the reflected wave is shorter than T2a. Although T2b cannot be obtained directly, T3b obtained by the timing means 36 has the following relationship.

2*T2b+T1b=T3b・・・・・・・・(式6)
切換手段38の動作前後の平均流速を求める際、急激な流速変化が無いと仮定すると次の式が成り立つ。
2 * T2b + T1b = T3b (Equation 6)
When obtaining the average flow velocity before and after the operation of the switching means 38, assuming that there is no sudden flow velocity change, the following equation is established.

T1a=T1b=T1・・・・・・・・・・・(式7)
T2a=T2b=T2・・・・・・・・・・・(式8)
(式7)、(式8)を(式5)、(式6)に代入すると次のようになる。
T1a = T1b = T1 (Equation 7)
T2a = T2b = T2 (Equation 8)
Substituting (Expression 7) and (Expression 8) into (Expression 5) and (Expression 6) yields the following.

2*T1+T2=T3a・・・・・・・・・・(式5’)
2*T2+T1=T3b・・・・・・・・・・(式6’)
(式5’)と(式6’)を辺同士加えて整理すると次のようになる。
2 * T1 + T2 = T3a (Equation 5 ')
2 * T2 + T1 = T3b (Equation 6 ')
When (Equation 5 ′) and (Equation 6 ′) are added and rearranged, the result is as follows.

T1+T2=(T3a+T3b)/3・・・・(式7)
(式5’)−(式7)よりT1を求めることができる。
T1 + T2 = (T3a + T3b) / 3 (Expression 7)
T1 can be obtained from (Expression 5 ′) − (Expression 7).

T1=(2*T3a−T3b)/3・・・・・(式8)
また、(式5’)−(式7)よりT2を求めることができる。
T1 = (2 * T3a-T3b) / 3 (Expression 8)
Moreover, T2 can be calculated | required from (Formula 5 ')-(Formula 7).

T2=(2*T3b−T3a)/3・・・・・(式9)
T1をt1、T2をt2として(式4)に代入することで、流速vを求めることができる。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
T2 = (2 * T3b-T3a) / 3 (Equation 9)
By substituting T1 for t1 and T2 for t2 into (Equation 4), the flow velocity v can be obtained. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 31.

なお、本実施の形態の説明では反射波は2回反射を基にしているが、これに限定されるものではなく、4回、6回の反射波を用いても同様の関係は導くことができる。   In the description of the present embodiment, the reflected wave is based on two-time reflection. However, the present invention is not limited to this, and the same relationship can be derived even when four or six times of reflected waves are used. it can.

このように、切換手段39を動作する前後で振動子32,33間で少なくとも2回反射した超音波信号の伝搬時間を計時する計時手段の計時値に基づいて流量を算出する。切換手段38の前に上流から下流方向への伝搬時間のみを求め、切換手段38の動作後に下流から上流方向への伝搬時間を求めるのでは切換前後で測定しているものに偏りが発生する。   As described above, the flow rate is calculated based on the time value of the time measuring means for measuring the propagation time of the ultrasonic signal reflected at least twice between the transducers 32 and 33 before and after the switching means 39 is operated. If only the propagation time from the upstream to the downstream direction is obtained before the switching means 38, and the propagation time from the downstream to the upstream direction is obtained after the operation of the switching means 38, a deviation occurs in what is measured before and after the switching.

それに対して、T3a,T3bの時間情報にはおのおの伝搬方向の対となる情報が含まれている。このためT3a,T3bよりT1,T2を求めることは切換手段38の動作前後の対となる伝搬方向の到達時間をおのおの含んでいるため、情報に欠損が無く正確な流速を求めることが可能になる。   On the other hand, the time information of T3a and T3b includes information that becomes a pair in each propagation direction. For this reason, obtaining T1 and T2 from T3a and T3b includes arrival times in the propagation direction as a pair before and after the operation of the switching means 38, so that it is possible to obtain an accurate flow velocity without any loss of information. .

これによって、振動子の切換え動作の前後で測定する伝搬時間には伝搬方向の対となる情報が含まれることから、切換動作前後の時間経過が発生しても精度良く平均的な流速を求めることができる。   As a result, the propagation time measured before and after the switching operation of the transducer includes information that is a pair of propagation directions, so that the average flow velocity can be obtained accurately even if the time elapses before and after the switching operation occurs. Can do.

また、伝搬到達時間を求める際に受信波のどこをもって到達とするのかは、例えば図6で示すように、ある基準電圧Vrefを越えた波形のゼロクロス点taを利用することが多い。またta一点を用いるのでは無くta,tb,tc,tdの4点の平均を用いるようにすることも可能である。第1の振動子32から第2の振動子33に直接伝搬してくる超音波波形は、図7(a)のように振幅がA1である場合、2回反射して第2の振動子33へ到達する信号は減衰するので、図7(b)のように振幅がA0と小さくなっている。この場合、受信手段35で受信点taを求めることができなくなる可能性がある。図8を用いてこれを回避する方法を説明する。   In addition, when determining the propagation arrival time, the zero cross point ta of a waveform exceeding a certain reference voltage Vref is often used as the arrival position of the received wave, for example, as shown in FIG. It is also possible to use an average of four points ta, tb, tc, and td instead of using one point ta. The ultrasonic waveform directly propagating from the first transducer 32 to the second transducer 33 is reflected twice when the amplitude is A1 as shown in FIG. Since the signal arriving at is attenuated, the amplitude is as small as A0 as shown in FIG. 7B. In this case, there is a possibility that the receiving point ta cannot be obtained by the receiving means 35. A method for avoiding this will be described with reference to FIG.

制御手段39は、計時手段36で直接伝搬波を受信したことを検知すると、利得変更手段42を介して受信手段35の前段にある増幅手段43の利得を大きくする。例えば図7(b)の反射波の振幅A0が、A1にまで大きくなるようにする。そうすることで本来なら減衰して捕捉することが難しい反射を増幅して受信点として計時手段36で反射波による伝搬時間計測を可能にする。制御手段39は、計時手段36もしくは流量演算手段37の信号により反射波が到達したことを検知すると次の直接波を受信するために利得を最初の状態にもどしておくよう利得変更手段42を介して増幅手段43の状態を調整する。   When the control means 39 detects that the time propagation means 36 has directly received the propagation wave, the control means 39 increases the gain of the amplification means 43 in the preceding stage of the reception means 35 via the gain change means 42. For example, the amplitude A0 of the reflected wave in FIG. 7B is increased to A1. By doing so, the reflection that is otherwise attenuated and difficult to capture is amplified, and the time measuring means 36 can measure the propagation time by the reflected wave as a reception point. When the control means 39 detects the arrival of the reflected wave by the signal from the time measuring means 36 or the flow rate calculating means 37, the gain is returned to the initial state in order to receive the next direct wave through the gain changing means 42. Thus, the state of the amplifying means 43 is adjusted.

このように、利得変更手段を有することにより、反射で振幅の小さくなった伝搬信号を正しく捕らえることが可能になる。   Thus, by having the gain changing means, it becomes possible to correctly capture the propagation signal whose amplitude is reduced by reflection.

制御手段39は、切換手段38の動作により送受信方向が反転しているため、各送信方向について増幅手段43の利得を持つことでさらに調整をすることができ反射により振幅が小さくなった信号を精度よく捕捉することが可能になる。   Since the transmission / reception direction is reversed by the operation of the switching means 38, the control means 39 can make further adjustment by having the gain of the amplification means 43 in each transmission direction, and can accurately adjust the signal whose amplitude is reduced by reflection. It becomes possible to capture well.

また、反射波の伝搬到達時間を求める際に、反射波の振幅を増幅手段43で大きくして
も直接波の波形とまったく同じになることは期待できない。このため同じ振幅A1にしても、基準電圧Vrefを調整する必要がでてくる。
Further, when the propagation arrival time of the reflected wave is obtained, it cannot be expected that the amplitude of the reflected wave is increased by the amplification means 43 to be exactly the same as the waveform of the direct wave. Therefore, it is necessary to adjust the reference voltage Vref even with the same amplitude A1.

制御手段39は、計時手段36で直接伝搬波を受信したことを検知すると、利得変更手段42を介して受信手段35の前段にある増幅手段43の利得を大きくするとともに、参照電圧変更手段44を介して、受信手段35の増幅手段43後段にある比較手段45の比較電圧を調整する。この調整は、本来反射波が到達する時間を予測し制御手段39が自動的に求める場合や、予め実験などで求めた値を記憶しておきその値を入れ替えながら調整する場合が可能である。   When the control means 39 detects that the propagation wave has been received directly by the time measuring means 36, the control means 39 increases the gain of the amplification means 43 in the preceding stage of the reception means 35 via the gain change means 42 and sets the reference voltage change means 44. Accordingly, the comparison voltage of the comparison means 45 located after the amplification means 43 of the reception means 35 is adjusted. This adjustment can be performed when the control unit 39 automatically obtains the time when the reflected wave originally arrives, or when the value obtained through an experiment or the like is stored in advance and adjusted while the value is exchanged.

そうすることで、本来なら減衰して捕捉することが難しい反射を増幅するとともに、参照電圧を調節することで波形形状が変化しても受信点として計時手段36で反射波による伝搬時間計測を可能にする。制御手段39は、計時手段36もしくは流量演算手段37の信号により、反射波が到達したことを検知すると、次の直接波を受信するために、参照電圧を最初の状態にもどしておくよう、参照電圧変更手段44を介して比較手段45の状態を調整する。   As a result, the reflection that is normally attenuated and difficult to capture is amplified, and even if the waveform shape changes by adjusting the reference voltage, the time measuring means 36 can measure the propagation time using the reflected wave as a reception point. To. When the control means 39 detects that the reflected wave has arrived based on the signal from the time measuring means 36 or the flow rate calculating means 37, the reference means returns the reference voltage to the initial state in order to receive the next direct wave. The state of the comparison means 45 is adjusted via the voltage changing means 44.

このように、反射波を受信するために受信手段35の参照電圧を変化する参照電圧変更手段44を有することにより、反射で振幅の小さくなった伝搬信号の受信点を正しく捕捉することが可能になる。   As described above, by including the reference voltage changing unit 44 that changes the reference voltage of the receiving unit 35 in order to receive the reflected wave, it is possible to correctly capture the reception point of the propagation signal whose amplitude is reduced by reflection. Become.

制御手段39は、切換手段38の動作により送受信方向が反転しているため、各送信方向について比較手段45の参照電圧を持つことでさらに調整をすることができ、反射により振幅が小さくなった信号を精度よく捕捉することが可能になる。   Since the transmission / reception direction is reversed by the operation of the switching means 38, the control means 39 can make further adjustments by having the reference voltage of the comparison means 45 for each transmission direction, and the signal whose amplitude is reduced by reflection. Can be accurately captured.

また、図3のT1とT3からT2を求める方法は、反射波時刻t2からt3の伝搬時間が時刻t0からt1を等しいとしている。しかし受信手段35の利得を変化したり、反射波の波形そのものが変形したりすると、この前提を補正する必要がでてくる。そこで演算から求めたT2がT1に近くなった場合(流速がほぼ0になった場合)に、流量演算手段37が制御手段39に信号を出し、制御手段は流速がほぼ無くなった場合に流量演算手段37で用いる式4の係数L/2*cosφに補正を行うことにより、誤差を小さくする演算が可能なように調整する。この調整は、自動で行ったり予め求めた値を記憶しておいたり、その値を入れ替えながら調整することで実現できる。   Further, in the method of obtaining T2 from T1 and T3 in FIG. 3, the propagation times from the reflected wave times t2 to t3 are made equal to the times t0 to t1. However, if the gain of the receiving means 35 is changed or the waveform of the reflected wave itself is deformed, it is necessary to correct this assumption. Therefore, when T2 obtained from the calculation is close to T1 (when the flow velocity becomes almost zero), the flow rate calculation means 37 outputs a signal to the control means 39, and the control means calculates the flow rate when the flow velocity is almost lost. By correcting the coefficient L / 2 * cosφ of the equation 4 used in the means 37, adjustment is performed so that an operation for reducing the error can be performed. This adjustment can be realized by automatically performing, storing a previously obtained value, or adjusting the value while exchanging the value.

また、外部から流路31を閉止して、強制的に流速をゼロにし調整することも可能である。その場合は、流量ゼロであることを制御手段に通信手段などで入力するとより、精度を高めることが可能になる。この場合、切換手段38を動作して送受信方向を反転し、各送信方向について流量演算手段37で用いる(式4)の係数を補正することができる。   It is also possible to adjust the flow velocity to zero by closing the flow channel 31 from the outside. In that case, it is possible to increase the accuracy by inputting the fact that the flow rate is zero to the control means by the communication means or the like. In this case, the switching means 38 is operated to reverse the transmission / reception direction, and the coefficient of (Equation 4) used in the flow rate calculation means 37 can be corrected for each transmission direction.

このように、流量演算手段37の出力または外部信号により、流量が無い時に計時手段36の出力信号を用いて流量演算手段37の演算係数の補正を行う演算補正手段を有することで、反射波による誤差を流量の無い時に調整することが可能になる。   As described above, by including the calculation correction unit that corrects the calculation coefficient of the flow rate calculation unit 37 using the output signal of the timing unit 36 when there is no flow rate by the output of the flow rate calculation unit 37 or an external signal, The error can be adjusted when there is no flow rate.

また、図4と図5のようにして求めるT3aとT3bの差が小さくなってくると、流速がほぼ0になっている。この場合は、流速を求める際にわざわざ切換手段38を用いて送信方向を切換えてまで伝搬時間を測定するのは動作時間が長くなり、省電力の観点からも無駄が多い。そこで、計測時間を短くする方法を説明する。T3aとT3bが予め定めた値以下になると流速が遅くなりほとんど流量が無いため切換手段38を固定して上流側の振動子を送信側にする。動作を図3を用いて説明する。   Further, when the difference between T3a and T3b obtained as shown in FIGS. 4 and 5 becomes smaller, the flow velocity becomes almost zero. In this case, when the flow rate is obtained, the operation time is long until the transmission direction is switched using the switching means 38, and the operation time becomes long, and this is wasteful from the viewpoint of power saving. Therefore, a method for shortening the measurement time will be described. When T3a and T3b are equal to or less than a predetermined value, the flow velocity becomes slow and there is almost no flow rate, so the switching means 38 is fixed and the upstream vibrator is set to the transmission side. The operation will be described with reference to FIG.

制御手段39による時刻t0における開始信号から計測を開始するとともに、送信手段34を介して上流側の第1の振動子32を駆動する。そこで発生した超音波信号は、流路31内を伝搬し、時刻t1で下流側の第2の振動子33に到達し、受信手段35で受信点を検知すると信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。計時手段36は、送信手段34による第1の振動子32の駆動開始から、直接超音波の伝搬波が第2の振動子33に到達し受信手段35を介してその伝搬時間を測定する。これで上流から下流への伝搬時間を求めることができる。   Measurement is started from the start signal at time t0 by the control means 39, and the upstream first vibrator 32 is driven via the transmission means 34. The ultrasonic signal generated there propagates through the flow path 31, reaches the second transducer 33 on the downstream side at time t1, and when the reception point is detected by the receiving means 35, the signal is amplified and then predetermined. The reception of the ultrasonic wave is determined at the signal level of the received reception timing. The time measuring means 36 measures the propagation time of the propagation wave of the ultrasonic wave directly reaching the second vibrator 33 from the start of driving of the first vibrator 32 by the transmission means 34 via the receiving means 35. Thus, the propagation time from upstream to downstream can be obtained.

超音波の伝搬は下流側の第2の振動子33に到達すると、そこで反射し上流側の第1の振動子32の方向へ伝搬する。これが、下流から上流への超音波の伝搬になる。上流側の第1の振動子32に到達した伝搬信号は、同様にそこで反射し、下流側の第2の振動子33方向で伝搬する。これが最初の直接の超音波伝搬と同じ方向になる。図3において、t0で第1の振動子(送信側振動子)32から超音波信号が送出される。流路内を伝搬した超音波信号は時刻t1で第2の振動子(受信側振動子)33に到達する。反射した超音波信号は時刻t2で第1の振動子32に戻り、再度そこで反射して時刻t3で第2の振動子33に到達する。   When the ultrasonic wave reaches the second vibrator 33 on the downstream side, it is reflected and propagates in the direction of the first vibrator 32 on the upstream side. This is the propagation of ultrasonic waves from downstream to upstream. The propagation signal that has reached the upstream first vibrator 32 is similarly reflected there and propagates in the direction of the second vibrator 33 on the downstream side. This is the same direction as the first direct ultrasound propagation. In FIG. 3, an ultrasonic signal is transmitted from the first transducer (transmission-side transducer) 32 at t0. The ultrasonic signal propagated in the flow path reaches the second transducer (reception-side transducer) 33 at time t1. The reflected ultrasonic signal returns to the first transducer 32 at time t2, is reflected there again, and reaches the second transducer 33 at time t3.

受信側の第2の振動子33の出力は、受信手段35に接続されているため、時刻t1と時刻t3の信号を捕らえることができるが、時刻t2を直接求めることはできない。しかし、図3より流路31の中を流れる流体速度が、t0からt1までの超音波直接波とt2からt3までの同方向の反射波とが、伝搬時間が変化するほど高速に変動していない場合は、この2つの伝搬時間同士をT1として等しいと置くことができる。全体の時間T3から2倍のT1分を減算すると、反対波となる下流から上流への伝搬時間T2を求めることが可能である。計時手段36で直接波の伝搬時間T1と反射波を含んだ伝搬時間T3とを計測する。計時手段36で求めたT1とT3とを流量演算手段37に送ることで(式10)からT2を求めることができる。   Since the output of the second vibrator 33 on the receiving side is connected to the receiving means 35, signals at time t1 and time t3 can be captured, but time t2 cannot be obtained directly. However, as shown in FIG. 3, the velocity of the fluid flowing in the flow path 31 fluctuates faster as the propagation time changes between the ultrasonic direct wave from t0 to t1 and the reflected wave in the same direction from t2 to t3. If not, the two propagation times can be set equal to T1. By subtracting T1 that is twice the total time T3, it is possible to obtain the propagation time T2 from the downstream to the upstream that is the opposite wave. The time measuring means 36 measures the propagation time T1 of the direct wave and the propagation time T3 including the reflected wave. By sending T1 and T3 obtained by the time measuring means 36 to the flow rate calculating means 37, T2 can be obtained from (Equation 10).

T2=T3−2*T1 ・・・・・・・・(式10)
T1をt1、T2をt2として(式4)へ代入することで、流速vを求めることができる。流速vが求まると、それに流路31の断面積を乗ずることにより流量を導くことができる。
T2 = T3-2 * T1 (Equation 10)
By substituting T1 for t1 and T2 for t2 into (Equation 4), the flow velocity v can be obtained. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 31.

なお、本実施の形態の説明では反射波は2回反射を基にしているが、これに限定されるものではなく、4回、6回の反射波を用いても同様の関係は導くことができる。   In the description of the present embodiment, the reflected wave is based on two-time reflection. However, the present invention is not limited to this, and the same relationship can be derived even when four or six times of reflected waves are used. it can.

このように、直接振動子32,33間を伝搬した時間と振動子32,33間を少なくとも2回反射した超音波信号の伝搬時間とを用いて流量を算出することにより、振動子32,33を切換手段38で切換えて送受信動作を行う必要が無く、相対する伝搬時間を求めることができ、これにより流速を求めることが可能になる。切換手段38を固定する場合、流量が少しでもある場合は、下流から送信するより、上流から送信する方が反射までふくめたT3の時間が短くてすむ。   As described above, the flow rate is calculated using the time directly propagated between the transducers 32 and 33 and the propagation time of the ultrasonic signal reflected between the transducers 32 and 33 at least twice, so that the transducers 32 and 33 are calculated. It is not necessary to perform transmission / reception operations by switching the switching means 38, and the relative propagation time can be obtained, whereby the flow velocity can be obtained. When the switching means 38 is fixed, if the flow rate is even a little, the time of T3 including the reflection is shorter when transmitting from the upstream than when transmitting from the downstream.

このため流量が無い時に、計時手段の出力で、伝搬時間が短い方である上流側を優先して送信側振動子を固定する送信方向指定手段を有することにより、伝搬時間計測の動作時間を短くして省電力動作が可能になる。   For this reason, when there is no flow rate, the operation time of the propagation time measurement is shortened by having the transmission direction designating means that gives priority to the upstream side that has the shorter propagation time at the output of the time measuring means and fixes the transmitting side transducer. Thus, power saving operation is possible.

また、上記に示したように切換手段38を動作させずに、流量が少ない時は送信側振動子を固定し、受信側振動子で直接波と反射波を用いることにより、流速を求めることは可能である。しかし、より精度の高い計測を行うには切換手段38を切換ることにより双方向からの送信による時間計測を求めた方が良い。図9を用いて説明する。   Further, as described above, the flow rate can be obtained by fixing the transmitting-side vibrator when the flow rate is small without using the switching unit 38 and using the direct wave and the reflected wave on the receiving-side vibrator. Is possible. However, in order to perform more accurate measurement, it is better to obtain time measurement by bidirectional transmission by switching the switching means 38. This will be described with reference to FIG.

そこで、制御手段39の内部にある主制御手段39aは、計時手段36からの信号により伝搬時間の情報を得ている。その伝搬時間の精度を良くしたい場合は、精度要求手段46を介して切換手段38を動作するようにする。切換手段38を動作する場合は、その情報を流量演算手段37に送り、T3a,T3bを用いて流速、流量を求めるようにする。通常は省電力を考慮すると、精度要求手段46は切換手段38を固定して、例えば上流側を送信側振動子にして直接波と反射波より(式10)を用いて計測するようにできる。   Therefore, the main control means 39 a inside the control means 39 obtains the propagation time information from the signal from the time measuring means 36. When it is desired to improve the accuracy of the propagation time, the switching unit 38 is operated via the accuracy request unit 46. When the switching means 38 is operated, the information is sent to the flow rate calculation means 37, and the flow velocity and flow rate are obtained using T3a and T3b. Normally, considering power saving, the accuracy request means 46 can fix the switching means 38 and measure, for example, using the direct wave and the reflected wave by using (Expression 10) with the upstream side as the transmission side vibrator.

このように、精度を要求される場合は切換手段38を動作し、伝搬時間を計測する精度要求手段46を有することにより、計測精度を良くするとともに省電力動作が可能になる。   As described above, when the accuracy is required, the switching unit 38 is operated and the accuracy request unit 46 for measuring the propagation time is provided, so that the measurement accuracy can be improved and the power saving operation can be performed.

また、切換手段38の後段にある受信手段35は、その配置により第1の振動子32と第2の振動子33からの信号伝搬距離(経路)が等しくなかったり、経年変化などによって受信特性に変化が生じたりする可能性がある。伝搬時間を精度良く測定しようとしている際に受信手段35の感度違いや経路違いなどで時間遅延が発生すると、例えば流速が無い場合でも時間差があることにより流れがあるように演算してしまうことがある。   Also, the receiving means 35 at the subsequent stage of the switching means 38 has a reception characteristic due to the disposition of the signal propagation distance (path) from the first vibrator 32 and the second vibrator 33 is not equal or due to aging. Changes may occur. If a time delay occurs due to a difference in sensitivity or path of the receiving means 35 when measuring the propagation time with high accuracy, for example, even if there is no flow velocity, there may be a calculation such that there is a flow due to the time difference. is there.

そこで、図10に示すように、受信切換手段47を設け、受信手段35も少なくとも2つ以上備えるようにする。そして、例えば第2の振動子33が受信側振動子の場合に、受信切換手段47が第1の受信手段35aを受信手段35として選択して振動子信号を送り、受信を検知するとその信号を計時手段36に送る。   Therefore, as shown in FIG. 10, reception switching means 47 is provided, and at least two reception means 35 are provided. For example, when the second vibrator 33 is a receiving-side vibrator, the reception switching means 47 selects the first receiving means 35a as the receiving means 35 and sends a vibrator signal. It is sent to the time measuring means 36.

次に、送信手段34から送信波が出て、再度第2の振動子33が受信側振動子の場合、受信切換手段47が第2の受信手段35bを選択し同様に受信点を検知する。受信手段35を切換るのは、制御手段39が単なる交互切換や2回連続した後に1回だけ切換るなどの受信系の特性をなるべく平準化するように調整する。送信側振動子を第2の振動子33にした場合も同様に、制御手段39が受信切換手段47を制御して、特定の受信手段35に信号が偏らないように経路を調整する。   Next, when a transmission wave is output from the transmission unit 34 and the second transducer 33 is a reception-side transducer again, the reception switching unit 47 selects the second reception unit 35b and similarly detects the reception point. The switching of the receiving means 35 is performed so that the characteristics of the receiving system are leveled as much as possible, such as simple switching by the control means 39 or switching once after two consecutive times. Similarly, when the transmission-side transducer is the second transducer 33, the control unit 39 controls the reception switching unit 47 to adjust the path so that the signal is not biased toward the specific reception unit 35.

このように少なくとも2つの受信手段35を切換えて振動子に固定した受信手段35を接続しないように動作する受信切換手段47を有することで、受信手段35への配線経路遅延などがある場合でも送受信を切換えた際に受信手段35も偏らないように切換え、遅延誤差を平準化することが可能になる。平準化することで、経路差による遅延時間などから生じる流速のオフセット等を小さくすることが可能になる。   By having the reception switching means 47 that operates so as not to connect the reception means 35 fixed to the vibrator by switching at least two reception means 35 in this way, even when there is a wiring path delay to the reception means 35, etc. It is possible to level the delay error by switching so that the receiving means 35 is not biased. By leveling, it becomes possible to reduce the offset of the flow velocity caused by the delay time due to the path difference.

(実施の形態2)
実施の形態2に関する本発明の流速または流量計測装置について説明する。実施の形態1と異なるところは、制御手段39に計測時間調整手段48を設けていることである。図1、図3、図4、図5および図11を用いて動作を説明する。
(Embodiment 2)
The flow velocity or flow rate measuring apparatus of the present invention relating to the second embodiment will be described. The difference from the first embodiment is that the control means 39 is provided with a measurement time adjusting means 48. The operation will be described with reference to FIGS. 1, 3, 4, 5 and 11.

流れが無い場合の伝搬時間測定は、図3に示すように、T3が切換手段38を切換え、送信および受信側の振動子を反対にしても同じである。流れがある場合には、図4、図5のように、T3aとT3bが異なる時間になる。流速が小さくなってくると、T3aとT3bの値は段々と近づいてくる。そこで、計時手段36もしくは流量演算手段37からの信号で制御手段39が信号差(時間差)が予め定めた値より小さい場合はほとんど流速が無いと判断する。そしてこのような場合は頻繁に計測しても大きな変化のあることは少ないため計測時間調整手段48を介して送信手段34に送信する時間間隔を長くするように調整する。   The propagation time measurement when there is no flow is the same even if T3 switches the switching means 38 and the transmission and reception side transducers are reversed as shown in FIG. When there is a flow, T3a and T3b have different times as shown in FIGS. As the flow velocity decreases, the values of T3a and T3b are gradually approaching. Therefore, when the signal difference (time difference) is smaller than a predetermined value based on the signal from the time measuring means 36 or the flow rate calculating means 37, the control means 39 determines that there is almost no flow velocity. In such a case, even if it is frequently measured, there is little change, so that the time interval for transmission to the transmission unit 34 via the measurement time adjustment unit 48 is adjusted to be long.

例えば通常は1秒毎に制御手段39が送信手段34に対して駆動信号を出し流速計測をしていたものがT3aとT3bの差がある一定値より小さくなると5秒毎の計測に変化する。また5秒毎の計測でも差が大きくならないことが継続する場合はさらに計測時間間隔を広くすることを可能にしておく。   For example, when the control means 39 outputs a drive signal to the transmission means 34 every 1 second and the flow velocity is measured, the measurement changes every 5 seconds when the difference between T3a and T3b becomes smaller than a certain value. In addition, if the difference does not increase even in the measurement every 5 seconds, it is possible to further widen the measurement time interval.

このように制御手段39で計時手段36の信号差が予め定めた値より小さい場合に計測時間間隔を調節する計測時間調整手段48を有することで流量が少ない場合に測定間隔を長くして計測動作回数を少なくし省電力動作を可能にする。   As described above, when the control means 39 has the measurement time adjusting means 48 for adjusting the measurement time interval when the signal difference of the time measuring means 36 is smaller than a predetermined value, the measurement operation is performed by increasing the measurement interval when the flow rate is small. Reduce the number of times to enable power-saving operation.

また、反対に反射波を含む伝搬時間T3aとT3bの差が、急に大きくなるような場合がある。これは、流路31の下流側で急激な流体の使用が発生した場合である。このような場合は、通常の伝搬時間計測の間隔で動作していると、流速が頻繁に変化しているのを計測できない場合がある。そして、その流速変化の差を検出できない場合は積算流量を計測しているような場合には、大きな積算誤差となる。   Conversely, the difference between the propagation times T3a and T3b including the reflected wave may suddenly increase. This is a case where sudden use of fluid occurs on the downstream side of the flow path 31. In such a case, when operating at normal propagation time measurement intervals, it may not be possible to measure that the flow velocity frequently changes. When the difference in flow velocity change cannot be detected, a large integrated error occurs when the integrated flow rate is measured.

そこで、計時手段36もしくは流量演算手段37からの信号で、制御手段39は、信号差(時間差)が予め定めた値より大きい場合、流速が大きくその変化度合いが激しくなる可能性も大きい判断する。そしてこのような場合は、計測間隔を短くして頻繁に計測し、大きな変化を正しく検出する必要がある。制御手段39は、第2の計測時間調整手段49を介して、送信手段34に送信する時間間隔を短くするように調整する。例えば通常は1秒毎に、制御手段39が送信手段34に対して駆動信号を出し流速計測をしていたものが、T3aとT3bとの差がある一定値より大きくなると、第2の計測時間調整手段49を介して0.5秒毎の計測に変化する。   Therefore, when the signal difference (time difference) is larger than a predetermined value based on a signal from the time measuring means 36 or the flow rate calculating means 37, the control means 39 determines that the flow velocity is large and the change degree is likely to be severe. In such a case, it is necessary to measure frequently by shortening the measurement interval to correctly detect a large change. The control means 39 adjusts the time interval for transmission to the transmission means 34 via the second measurement time adjustment means 49 so as to shorten it. For example, normally, when the control means 39 outputs a drive signal to the transmission means 34 and measures the flow velocity every second, if the difference between T3a and T3b exceeds a certain value, the second measurement time It changes to measurement every 0.5 seconds via the adjusting means 49.

このように、制御手段39で計時手段36の信号差が予め定めた値より大きい場合に、計測時間間隔を調節する第2の計測時間調整手段49を有することで、流量が多い場合に測定間隔を短くして計測回数を多くし、流速変化を正確に測定することが可能になる。   As described above, when the signal difference of the time measuring means 36 is larger than a predetermined value by the control means 39, the second measurement time adjusting means 49 for adjusting the measurement time interval is provided. It is possible to increase the number of times of measurement by shortening and to accurately measure changes in flow velocity.

(実施の形態3)
実施の形態3に関する本発明の流速または流量計測装置について説明する。実施の形態1と異なるところは、振動子32,33や送信手段34、受信手段35、第1の計時手段36、流量演算手段37と切換手段38のうちの少なくとも1つを制御する制御手段39の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体50を用いていることである。
(Embodiment 3)
A flow velocity or flow rate measuring apparatus of the present invention relating to Embodiment 3 will be described. The difference from the first embodiment is that the control means 39 controls at least one of the vibrators 32 and 33, the transmission means 34, the reception means 35, the first time measurement means 36, the flow rate calculation means 37 and the switching means 38. That is, a storage medium 50 having a program for causing a computer to function in order to ensure the operation is used.

図4において、実施の形態1で示した制御手段39の動作を行うには、予め実験等により(式4)の補正係数を求めておいたり、経年変化、温度変化、システムの安定度に関して動作タイミングなどの相関を求めたりして、ソフトをプログラムとして記憶媒体50に格納しておく。通常、マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと、利用が便利である。   In FIG. 4, in order to perform the operation of the control means 39 shown in the first embodiment, the correction coefficient of (Equation 4) is obtained in advance through experiments or the like, or the operation is performed with respect to aging, temperature change, and system stability. Correlation such as timing is obtained, and software is stored in the storage medium 50 as a program. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.

切換手段38の動作により送受信の方向が変化するため、条件設定などの個数が増加してくるが、これをコンピュータによる動作で調整すると容易に実現可能である。このように、制御手段39の動作をプログラムで行うことができるようになると、流量演算の補正係数の条件設定、変更や計測間隔の調整などが容易にでき、また経年変化などにも柔軟に対応できるため、よりフレキシブルに流速または流量計測の精度向上を行うことができる。なお、本実施の形態において、制御手段39以外の動作もマイコン等によりプログラムで行ってもよい。   Since the direction of transmission / reception changes depending on the operation of the switching means 38, the number of condition settings and the like increases, but this can be easily realized by adjusting this by an operation by a computer. As described above, when the operation of the control means 39 can be performed by a program, it is possible to easily set, change and adjust the measurement interval of the correction coefficient for the flow rate calculation, and flexibly cope with aging. Therefore, the accuracy of flow velocity or flow rate measurement can be improved more flexibly. In the present embodiment, operations other than the control means 39 may be performed by a program using a microcomputer or the like.

これにより制御手段39として、コンピュータを機能させるためのプログラムを有する
構成としたもので、測定方法の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測の精度向上を行うことができる。
As a result, the control means 39 is configured to have a program for causing the computer to function, and it is possible to easily set and change the operation of the measurement method, and to flexibly cope with aging, etc. Accuracy can be improved.

また、図12に示すように、受信手段35で直接波、反射波を受信した後、繰返し手段41を介して、送信手段34で再度第1の振動子を駆動し、送受信を繰り返すことも可能である。そして、予め定めた回数繰返した後、求めた直接波伝搬時間と反射波伝搬時間との平均を求めることでより、精度の良い流速演算を行うことが可能である。   In addition, as shown in FIG. 12, after receiving the direct wave and the reflected wave by the receiving means 35, it is also possible to repeat the transmission and reception by driving the first vibrator again by the transmitting means 34 via the repeating means 41. It is. Then, after repeating a predetermined number of times, it is possible to perform a more accurate flow velocity calculation by obtaining an average of the obtained direct wave propagation time and reflected wave propagation time.

また、図13に示すように、遅延手段42を用いると、n回反射が残響として残っている場合でもその影響の無い時間に送受信を繰り返すことが可能になる。   Moreover, as shown in FIG. 13, when the delay means 42 is used, transmission / reception can be repeated at a time when there is no influence even when n reflections remain as reverberation.

以上のように、本発明にかかる流速または流量計測装置は、切換手段を用いて送信側振動子と受信側振動子を切換え、受信手段の出力より振動子間を少なくとも2回反射した超音波信号の伝搬時間を計時する計時手段の計時値に基づいて流量を算出するものである。   As described above, the flow velocity or flow rate measuring device according to the present invention switches the transmission-side transducer and the reception-side transducer using the switching unit, and reflects the ultrasonic signal at least twice between the transducers from the output of the reception unit. The flow rate is calculated on the basis of the time value of the time measuring means for measuring the propagation time.

これによって、振動子の切換え動作の前後で測定する伝搬時間には伝搬方向の対となる情報が含まれることから、切換動作前後の時間経過が発生しても精度よく流速、流量演算結果を求めることができ、気体の流量計として家庭用・工業用ガスメータや、液体の流量計として水道メータ等の用途に適用できる。   As a result, the propagation time measured before and after the switching operation of the vibrator includes information that is a pair of propagation directions, so that the flow rate and flow rate calculation results can be obtained accurately even if the passage of time before and after the switching operation occurs. It can be applied to household and industrial gas meters as gas flow meters and water meters as liquid flow meters.

本発明の流速または流量計測装置の全体ブロック図Overall block diagram of the flow velocity or flow rate measuring device of the present invention (a)同計測装置における計測制御手段の動作を示すタイミング図(b)同計測装置における送信波の動作を示すタイミング図(c)同計測装置における受信波および反射波の動作を示すタイミング図(A) Timing diagram showing the operation of the measurement control means in the measuring device (b) Timing diagram showing the operation of the transmitted wave in the measuring device (c) Timing diagram showing the operation of the received wave and the reflected wave in the measuring device 同計測装置における伝搬動作を示すタイミング図Timing chart showing propagation operation in the same measuring device 同計測装置における伝搬動作を示すタイミング図Timing chart showing propagation operation in the same measuring device 同計測装置における伝搬動作を示すタイミング図Timing chart showing propagation operation in the same measuring device 同計測装置における受信波を示すタイミング図Timing chart showing received waves in the same measuring device (a)同計測装置における受信波を示すタイミング図(b)同計測装置における反射波を示すタイミング図(A) Timing diagram showing a received wave in the measuring device (b) Timing diagram showing a reflected wave in the measuring device 同計測装置における制御手段周辺を示すブロック図Block diagram showing the periphery of the control means in the same measuring device 同計測装置における制御手段周辺を示すブロック図Block diagram showing the periphery of the control means in the same measuring device 本発明の流速または流量計測装置他の動作を示す全体ブロック図Overall block diagram showing other operations of the flow velocity or flow rate measuring device of the present invention 同計測装置における制御手段周辺を示すブロック図Block diagram showing the periphery of the control means in the same measuring device 本発明の他の動作を示す計測装置の全体ブロック図Overall block diagram of a measuring apparatus showing another operation of the present invention 本発明の他の動作を示す計測装置の全体ブロック図Overall block diagram of a measuring apparatus showing another operation of the present invention 従来の流量計測装置の全体ブロック図Overall block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 計時手段
37 流量演算手段
38 切換手段
39 制御手段
42 利得変更手段
43 増幅手段
44 参照電圧変更手段
45 比較手段
46 精度要求手段
47 受信切換手段
48 計測時間調整手段
49 第2の計測時間調整手段
50 記憶媒体
31 Flow path 32 First vibrator 33 Second vibrator 34 Transmitting means 35 Receiving means 36 Timing means 37 Flow rate calculating means 38 Switching means 39 Control means 42 Gain changing means 43 Amplifying means 44 Reference voltage changing means 45 Comparison means 46 Accuracy request means 47 Reception switching means 48 Measurement time adjustment means 49 Second measurement time adjustment means 50 Storage medium

Claims (1)

被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、
前記送信側振動子を駆動する送信手段と、
前記受信側振動子の出力信号を電気信号に変換する受信手段と、
記振動子の送受信を切換える切換手段と、
送信側の前記振動子から出力された前記超音波が前記振動子間で少なくとも2回反射してから受信側の前記振動子に伝搬するまでの時間を計時する計時手段と、
前記計時手段の計時値に基づいて流量を算出する流量演算手段と、
前記振動子と前記送信手段と前記受信手段と前記計時手段と前記流量演算手段のうち少なくとも1つを制御する制御手段とを備えた流量計測装置。
A pair of transducers arranged in the flow path of the fluid to be measured and transmitting and receiving ultrasonic waves;
Transmitting means for driving the transmitting-side vibrator;
Receiving means for converting an output signal of the receiving-side vibrator into an electrical signal;
Switching means for switching between transmission and reception of the resonator,
Clocking means for timing the time from when the ultrasonic wave output from the transducer on the transmitting side is reflected at least twice between the transducers to propagate to the transducer on the receiving side ;
Flow rate calculating means for calculating a flow rate based on the time value of the time measuring means;
A flow rate measurement apparatus comprising: the vibrator, the transmission unit, the reception unit, the time measurement unit, and a control unit that controls at least one of the flow rate calculation units.
JP2007009744A 2007-01-19 2007-01-19 Flow velocity or flow rate measuring device and its program Expired - Fee Related JP5034510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009744A JP5034510B2 (en) 2007-01-19 2007-01-19 Flow velocity or flow rate measuring device and its program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009744A JP5034510B2 (en) 2007-01-19 2007-01-19 Flow velocity or flow rate measuring device and its program

Publications (2)

Publication Number Publication Date
JP2008175706A JP2008175706A (en) 2008-07-31
JP5034510B2 true JP5034510B2 (en) 2012-09-26

Family

ID=39702834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009744A Expired - Fee Related JP5034510B2 (en) 2007-01-19 2007-01-19 Flow velocity or flow rate measuring device and its program

Country Status (1)

Country Link
JP (1) JP5034510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023053437A (en) * 2021-10-01 2023-04-13 パナソニックIpマネジメント株式会社 Vibration propagation member, and vibration transducer using the same, flow meter, current meter, densitometer, and manufacturing method
JP2023053436A (en) * 2021-10-01 2023-04-13 パナソニックIpマネジメント株式会社 Vibration propagation member, vibration transducer using the same, flow meter, current meter, densitometer, and manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167918A (en) * 1982-03-29 1983-10-04 Toshiba Corp Ultrasonic wave flow speed measuring device
JPS63233334A (en) * 1987-03-20 1988-09-29 Noritoshi Nakabachi Method and apparatus for measuring sonic velocity
JP3624642B2 (en) * 1997-08-06 2005-03-02 松下電器産業株式会社 Fluid measuring device
JP4561088B2 (en) * 2003-12-10 2010-10-13 パナソニック株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2008175706A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2011083766A1 (en) Ultrasonic flowmeter
JP2014092467A (en) Flow rate measurement device
JP3562712B2 (en) Flow measurement device
WO2011055532A1 (en) Ultrasonic flowmeter
JP2007187506A (en) Ultrasonic flowmeter
JP5076524B2 (en) Flow velocity or flow rate measuring device and its program
JP4561088B2 (en) Ultrasonic flow meter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP2008190971A (en) System and program for measuring flow velocity or flow quantity
JP5141613B2 (en) Ultrasonic flow meter
JP2006343292A (en) Ultrasonic flowmeter
JP4153721B2 (en) Ultrasonic flowmeter and self-diagnosis method of ultrasonic flowmeter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP3624743B2 (en) Ultrasonic flow meter
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP5990770B2 (en) Ultrasonic measuring device
JP5092413B2 (en) Flow velocity or flow rate measuring device
JP2007322194A (en) Fluid flow measuring instrument
JP5292798B2 (en) Flow measuring device
JP7246021B2 (en) ultrasonic flow meter
JP2000329597A5 (en)
JP7320776B2 (en) ultrasonic flow meter
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP5228462B2 (en) Fluid flow measuring device
JP7203352B2 (en) ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees