JPS63233334A - Method and apparatus for measuring sonic velocity - Google Patents

Method and apparatus for measuring sonic velocity

Info

Publication number
JPS63233334A
JPS63233334A JP62066821A JP6682187A JPS63233334A JP S63233334 A JPS63233334 A JP S63233334A JP 62066821 A JP62066821 A JP 62066821A JP 6682187 A JP6682187 A JP 6682187A JP S63233334 A JPS63233334 A JP S63233334A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
medium
waveguide
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62066821A
Other languages
Japanese (ja)
Other versions
JPH0375808B2 (en
Inventor
Noritoshi Nakabachi
中鉢 憲賢
Ryohei Mogi
良平 茂木
Toshio Sato
敏夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP62066821A priority Critical patent/JPS63233334A/en
Publication of JPS63233334A publication Critical patent/JPS63233334A/en
Publication of JPH0375808B2 publication Critical patent/JPH0375808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To remotely measure the sonic velocity of an object to be measured always present at high temp. and the change thereof with high accuracy, by measuring the phase speed and group speed in the ultrasonic wave used either one of ultrasonic wave guides and performing operation on the basis of the measured values according to a specific formula. CONSTITUTION:A pair of ultrasonic wave guides 1, 2 formed the same are opposed to each other so as to provide a definite distance therebetween and a medium to be measured is interposed between the mutual other end parts of the wave guides 1, 2 and, thereafter, the phase speed Vp and group speed Vg in the ultrasonic wave used in either one of the wave guides 1, 2 are measured. Next, almost simultaneously with measurement, the time before ultrasonic waves are propagated through the wave guides 1, 2 from one end parts thereof to the other end parts thereof and the ultrasonic waves leaked from the wave guides 1, 2 are received at one-end parts of the other wave guides 1, 2 at first through the medium to be measured and the time before the ultrasonic waves further leaked in the medium to be measured from the other wave guides 1, 2 reciprocally propagate between one wave guides 1, 2 to be received are measured to calculate the difference DELTAt between both times and, by performing an operation on the basis of these measured values according to formula, the sonic velocity V of the medium to be measured can be specified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音速測定方法およびその装置に係り、とくに
漏洩波を利用して流動体等の音速をリモート計測し得る
ようにした音速測定方法およびその装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and device for measuring the speed of sound, and in particular to a method for measuring the speed of sound that makes it possible to remotely measure the speed of sound in a fluid, etc. using leaky waves. and regarding its equipment.

〔従来の技術〕[Conventional technology]

超音波を利用した物体の音速測定又は物体の温度測定で
は、一方の超音波センサから出力される縦波超音波を被
測定媒体を介して他方の超音波センサへ直接伝播させる
という構成を採っている。
When measuring the sound speed of an object or measuring the temperature of an object using ultrasonic waves, a configuration is adopted in which longitudinal ultrasonic waves output from one ultrasonic sensor are directly propagated to the other ultrasonic sensor via the medium to be measured. There is.

そして、この間に繰り返し授受される超音波の伝播時間
およびその変化により、音速又は温度およびこれらの変
化等を測定しようとするものが大多数を占めている。
The majority of methods attempt to measure the sound velocity or temperature and changes thereof based on the propagation time and changes thereof of the ultrasonic waves that are repeatedly transmitted and received during this period.

〔発明が解決しようとする問題点〕 高温流動体又は危険な状況下にある流動体の監視、或い
は液状危険物等に対する温度変化の監視に使用される超
音波センサは、これらの劣悪環境下でも充分耐えること
が必要とされている。
[Problems to be solved by the invention] Ultrasonic sensors used to monitor high-temperature fluids or fluids under dangerous conditions, or to monitor temperature changes in liquid hazardous materials, can be used even under these poor environments. It needs to be durable enough.

しかしながら、一般の超音波センサは、振動子と保護体
との複合体から成り、これらが接合材により一体化され
ているため、使用温度に上限(約400(t))があり
、500〜800(℃)の温度を定常的に連続測定する
ことが不可能に近い状況となっていた。また、振動子や
保護体は、化学的にも汚損され易いものが多く、特に温
度変化の激しい環境下では、劣化の進行が著しく早いと
いう不都合がある。
However, general ultrasonic sensors consist of a composite body of a vibrator and a protector, which are integrated with a bonding material, so there is an upper limit to the operating temperature (approximately 400 (t)), The situation was such that it was almost impossible to regularly and continuously measure temperatures in degrees Celsius. In addition, many vibrators and protectors are easily contaminated chemically, and there is a disadvantage that their deterioration progresses extremely quickly, especially in environments with rapid temperature changes.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来例の有する不都合を改善し、とく
に、流動体や軟質部材等の被測定物が例え有害物であり
或いは常時高温下におかれているものであっても、これ
ら被測定物の音速およびその変化を高精度にリモート測
定することができ、これによって当該被測定物の温度や
粘性およびそれらの変化等を高精度に測定することので
きる音速測定方法およびその装置を提供することを、そ
の目的とする。
The present invention improves the disadvantages of the conventional example, and in particular, even if the objects to be measured, such as fluids or soft members, are harmful or constantly exposed to high temperatures, these objects can be To provide a method and device for measuring the speed of sound, which can remotely measure the speed of sound of an object and its changes with high precision, and can thereby measure the temperature, viscosity, and changes thereof of the object to be measured with high precision. That is its purpose.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では、同一に形成された一対の超音波導
波路を一定距離をおいて相互に対向させるとともに、こ
れら超音波導波路の各他端部相互間に被測定媒体を介在
せしめ、その後、前記一方もしくは他方の超音波導波路
の使用超音波における位相速度Vqと群速度Vqとを測
定し、これらの測定に相前後して当該超音波導波路の一
端部から他端部に向けて超音波を伝播せしめるとともに
当該超音波導波路から漏洩した超音波が被測定媒体を介
して他方の超音波導波路の一端部で最初に受信されるま
での時間と、当該他方の超音波導波路から更に被測定媒
体内へ漏洩した超音波が前記一方の超音波導波路との間
を往復伝播して受信されるまでの時間との差Δtを求め
、これらの各測定値に基づいて下式、すなわち、 F+  (Vp 、Vp 、Δt、V)=0を演算する
ことにより被測定媒体の音速Vを特定する等の構成を採
り、これによって前記目的を達成しようとするものであ
る。
Therefore, in the present invention, a pair of identically formed ultrasonic waveguides are opposed to each other at a certain distance, and a medium to be measured is interposed between the other ends of these ultrasonic waveguides, and then , measure the phase velocity Vq and group velocity Vq of the ultrasonic waves used in one or the other of the ultrasonic waveguides, and, before and after these measurements, from one end of the ultrasonic waveguide to the other end. The time it takes for the ultrasound to propagate and leak from the ultrasound waveguide through the medium to be measured until it is first received at one end of the other ultrasound waveguide, and the time for the ultrasound to leak from the ultrasound waveguide. Find the difference Δt between the time it takes for the ultrasonic wave that leaked into the medium to be measured to propagate back and forth between the ultrasonic waveguide and the one ultrasonic waveguide to be received, and based on these measured values, use the following formula. That is, by calculating F+ (Vp, Vp, Δt, V)=0, the sound velocity V of the medium to be measured is specified, thereby attempting to achieve the above object.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第7図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

第1図において、音速測定装置は、一定距離りを隔てて
配設された一対の板状(帯状でも可)の超音波導波路(
以下、単に「導波路」という)1゜2と、この各導波路
1.2の一端部に装備された超音波送受波器3.4とを
備えている。
In Fig. 1, the sound velocity measuring device consists of a pair of plate-shaped (or band-shaped) ultrasonic waveguides (
1.2 (hereinafter simply referred to as "waveguide"), and an ultrasonic transducer 3.4 installed at one end of each waveguide 1.2.

導波路1,2は、本実施例ではステンレス製で同一長さ
のものが使用されている。この導波路1゜2の他端部は
、図に示すように被測定媒体5内に配設されるようにな
っている。
In this embodiment, the waveguides 1 and 2 are made of stainless steel and have the same length. The other end of this waveguide 1.degree. 2 is disposed within a medium to be measured 5, as shown in the figure.

超音波送受波器3.4は、本実施例では一方の超音波送
受波器3が送波器として使用され、他方の超音波送受波
器4が受渡器として使用されている。この送波器3及び
受波器4の各々は、導波路1.2の一端部の側面に装着
されている。そして、送波器3から導波路1に対して超
音波(′#1波)が斜入射されるようになっている。受
波器4は送波器3の送信作用とほぼ同一条件で導波路2
から超音波を受信し得るようになっている。
In this embodiment, one of the ultrasonic transducers 3.4 is used as a transmitter, and the other ultrasonic transducer 4 is used as a transfer device. Each of the wave transmitter 3 and the wave receiver 4 is attached to the side surface of one end of the waveguide 1.2. Then, an ultrasonic wave ('#1 wave) is obliquely incident on the waveguide 1 from the transmitter 3. The receiver 4 transmits the waveguide 2 under almost the same conditions as the transmitter 3.
It is now possible to receive ultrasound waves from

IA、2A、IB、2Bは各々超音波反射手段としての
導波路1.2の端面を示す。
IA, 2A, IB, and 2B each indicate the end face of the waveguide 1.2 as an ultrasonic wave reflecting means.

ここで、導波路1,2内を伝播する波動及び被測定媒体
5内の伝播状況について説明する。
Here, the waves propagating in the waveguides 1 and 2 and the propagation situation in the medium to be measured 5 will be explained.

導波路が液体又は固体に接すると、導波路中を伝搬する
音波エネルギの一部は液体又は固体の被接触媒体に漏洩
する性質がある。この性質を利用し、上記被接触媒体内
に一対の導波路を配置すると、一方を伝搬していた音波
のエネルギの一部は被接触媒体を介してもう一方の導波
路に伝播する。
When a waveguide comes into contact with a liquid or solid, a portion of the acoustic wave energy propagating through the waveguide tends to leak into the liquid or solid medium to be contacted. By utilizing this property, when a pair of waveguides is placed within the contacted medium, part of the energy of the sound wave propagating in one waveguide propagates to the other waveguide via the contacted medium.

この時、被接触媒体中を伝播するのに要する時間を測定
することにより、被接触媒体の音速を算定できる。
At this time, the speed of sound in the contacted medium can be calculated by measuring the time required for the sound to propagate through the contacted medium.

送波器3から導波路1に超音波が送信されると、この波
動は被測定媒体5の方向に向けて導波路l内を伝搬する
。この場合、超音波が導波路1中を伝搬する速度の内、
位相速度をv21群速度をVqとする。導波路1が被測
定媒体5に接し、この時の被測定媒体5の音速Vが、導
波路lの位相速度vpより小さい場合、導波路1中を伝
搬する超音波エネルギの一部は被測定媒体5内に放射さ
れる。そして、この時の放射角θは次式により決まる。
When an ultrasonic wave is transmitted from the wave transmitter 3 to the waveguide 1, this wave propagates within the waveguide 1 toward the medium 5 to be measured. In this case, of the speed at which the ultrasound propagates through the waveguide 1,
Let the phase velocity be v21 and the group velocity be Vq. When the waveguide 1 is in contact with the medium 5 to be measured and the sound velocity V of the medium 5 at this time is smaller than the phase velocity vp of the waveguide 1, a part of the ultrasonic energy propagating in the waveguide 1 is transferred to the medium 5 to be measured. radiated into the medium 5. The radiation angle θ at this time is determined by the following equation.

θ−5in −’ (V/Vq )         
・・・・・・■被測定媒体5に入った超音波は、導波路
2に到達し、この導波!a2に沿って伝搬する波と、こ
こで反射して媒体5側に戻る波とがある。導波路2に沿
って進んだ波は、その先端2Aで反射して、受渡器4に
到達する。
θ-5in-' (V/Vq)
...... ■The ultrasonic wave that entered the medium 5 to be measured reaches the waveguide 2, and this waveguide! There are waves that propagate along a2 and waves that are reflected here and return to the medium 5 side. The wave that has traveled along the waveguide 2 is reflected at its tip 2A and reaches the transfer device 4.

今、2つの導波路1.2の長さが等しい場合、導波路間
の間隔をDとすると、被測定媒体中経路がN行程の各受
信波の到達時間は、 tN−((2L−NDtanθ)/Vq)+(ND/V
cos θ〕+τ1+τ! ”” ””■ここで、τ1
.τ8は送受信の際の固定遅延量である。
Now, when the lengths of the two waveguides 1.2 are equal, and the interval between the waveguides is D, the arrival time of each received wave whose path in the medium to be measured is N steps is tN-((2L-NDtanθ )/Vq)+(ND/V
cos θ〕+τ1+τ! ”” ””■Here, τ1
.. τ8 is a fixed delay amount during transmission and reception.

次に、N−1,3の場合についてその差を求めると、 Δt=2D ((1/Vcos θ)−(tan θ/
Vl ) )・・・・・・■この式■及び前述した式■
より、被測定媒体5の音速■を求める式として次式を得
る。
Next, when calculating the difference in the case of N-1 and 3, Δt=2D ((1/Vcos θ)-(tan θ/
Vl) )・・・・・・■This formula■ and the above-mentioned formula■
From this, the following equation is obtained as an equation for determining the sound velocity (■) of the medium 5 to be measured.

F l (Vp 、Vp 、Δt、V)= (4D” 
+Vq冨Δtz)v4−(8D” Vl、Vq+Vq”
 Vq”Δt”)V”+4D” Vq” Vq” 一部               ・・・・・・■従
って、Δtを測定すれば、これと既知のD及び別に測定
するVq、Vqにより0式から被測定媒体5の音速Vが
求まる。
F l (Vp, Vp, Δt, V) = (4D”
+VqTengthΔtz)v4-(8D" Vl, Vq+Vq"
Vq"Δt") V"+4D"Vq"Vq" Part ・・・・・・■ Therefore, if Δt is measured, the measured medium 5 can be calculated from equation 0 using this and the known D and Vq and Vq measured separately. Find the speed of sound V.

ここで、前記導波路1を伝播する超音波の位相速度Vq
と群速度Vqを求める場合の動作原理について説明する
Here, the phase velocity Vq of the ultrasonic wave propagating in the waveguide 1 is
The operating principle when determining the group velocity Vq and the group velocity Vq will be explained.

まず、第4図に、超音波送受波器3のクサビ部材3Aと
超音波振動子3Bとを示す。このクサビ部材3Aは、断
面が台形状をなし、その一方の斜面3aに超音波振動子
3Bが固着されている。また、他方の斜面3cは、超音
波振動子3Bがら発信された超音波が入射面3bで反射
してクサビ部材3A内を伝播する場合の当該伝播経路に
直交する面を構成するようになっている。このため、ク
サビ部材3A内を伝播する内部反射波は、その一部が超
音波振動子3Bに戻るようになっている。
First, FIG. 4 shows the wedge member 3A and the ultrasonic transducer 3B of the ultrasonic transducer 3. This wedge member 3A has a trapezoidal cross section, and an ultrasonic transducer 3B is fixed to one slope 3a. Further, the other slope 3c constitutes a surface perpendicular to the propagation path when the ultrasonic waves emitted from the ultrasonic transducer 3B are reflected by the incident surface 3b and propagated within the wedge member 3A. There is. Therefore, a portion of the internally reflected waves propagating within the wedge member 3A returns to the ultrasonic transducer 3B.

A’l+j’1′は、その場合の伝播経路及び距離を示
す。
A'l+j'1' indicates the propagation path and distance in that case.

従って、この時のクサビ部材3A内の超音波の全伝播時
間T0を測定することにより、クサビ部材3A内の音速
C2は次式によって算出し得る。
Therefore, by measuring the total propagation time T0 of the ultrasonic waves within the wedge member 3A at this time, the sound speed C2 within the wedge member 3A can be calculated by the following equation.

cp −2(z+ −1−J、 ’ ) /’re  
  ・・・・・・■また、クサビ部材3Aの音速C9と
導波路lを伝播する超音波の位相速度■、との間には、
次式の関係がある。
cp −2(z+ −1−J, ' ) /'re
・・・・・・■ Also, between the sound velocity C9 of the wedge member 3A and the phase velocity ■ of the ultrasonic wave propagating through the waveguide l,
There is a relationship as shown below.

Vp   −Co   /sin   θ 五    
                    ・・・・・
・■但し、θ五 :入射角(第4図参照) さらに、第1図に示す如く、導波路1の長さをLとし、
超音波振動子3Bから発信された超音波が導波路1を伝
播してその先端で反射して超音波振動子3Bに到達する
場合の伝播時間をTとすると、導波路1を伝搬する超音
波の群速度Vqは、次式で表される。
Vp −Co /sin θ five
・・・・・・
・■ However, θ5: angle of incidence (see Figure 4) Furthermore, as shown in Figure 1, the length of the waveguide 1 is L,
Let T be the propagation time when the ultrasonic wave emitted from the ultrasonic transducer 3B propagates through the waveguide 1, is reflected at its tip, and reaches the ultrasonic transducer 3B, then the ultrasonic wave propagating through the waveguide 1 The group velocity Vq of is expressed by the following equation.

Vq=2L/T            ・・・・・・
■となる。ここで、Lは固定値であることから、結局、
弐〇における全伝播時間Tを計時し当該式■を演算する
ことにより、必要とする導波路1の群速度を掻く容易に
算定することができる。
Vq=2L/T...
■It becomes. Here, since L is a fixed value, after all,
The required group velocity of the waveguide 1 can be easily calculated by measuring the total propagation time T at 20 and calculating the equation (2).

この群速度及び位相速度の演算は、後述する信号処理部
20の第1演算部13Bでとり行われる。
This calculation of the group velocity and phase velocity is performed by a first calculation section 13B of the signal processing section 20, which will be described later.

ここで、信号処理系について更に詳述すると、受信回路
部12で受信される信号は、信号選択手段13Aを介し
て計時手段13へ送られ、ここで伝播時間の°計時が行
われたのち信号処理部20にて所定の信号処理がなされ
る。この信号処理部20は、第1図に示すように第1の
メモリ14と。
Here, to explain the signal processing system in more detail, the signal received by the receiving circuit section 12 is sent to the clocking means 13 via the signal selection means 13A, where the propagation time is clocked. Predetermined signal processing is performed in the processing section 20. This signal processing section 20 has a first memory 14 as shown in FIG.

時間差算定手段15と、記憶手段としての第2のメモリ
16と、第2演算部17とを有し、更に前記計時手段1
3と第2のメモリ16との間に第1演算部13Bを備え
た構成となっている。この信号処理部20では、導波路
1 (又は2)の位相速度V21群速度Vq及び被測定
媒体の音速■が演算される。この信号処理部20におけ
る演算結果は、表示手段18で表示されるようになって
いる。
It has a time difference calculation means 15, a second memory 16 as a storage means, and a second calculation section 17, and further includes a time difference calculation means 15.
The configuration includes a first arithmetic unit 13B between the second memory 16 and the second memory 16. This signal processing section 20 calculates the phase velocity V21 of the waveguide 1 (or 2), the group velocity Vq, and the sound velocity (2) of the medium to be measured. The calculation results in the signal processing section 20 are displayed on the display means 18.

信号処理部20及び前述した計時手段13等の各電気系
は、それぞれ主制御部30によって駆動制御されるよう
になっている。
Each electrical system, such as the signal processing section 20 and the above-mentioned time measuring means 13, is driven and controlled by a main control section 30, respectively.

この主制御部30は回路全体の動作のタイミングを一致
させるための全体的な駆動制御信号を出力するほか、測
定時の導波路1又は2における超音波位相速度を求める
第1の制御機能と、同じく導波路1又は2の超音波群速
度を求める第2の制御機能と、被測定媒体の音速を求め
る第3の制御機能とを有している。主制御部30のこれ
らの制御機能は、本実施例では測定条件設定部30Aを
用いてオペレータの外部指令によって切換えられるよう
になっている。
This main control unit 30 outputs an overall drive control signal for synchronizing the operation timing of the entire circuit, and also has a first control function to obtain the ultrasonic phase velocity in the waveguide 1 or 2 during measurement. Similarly, it has a second control function for determining the ultrasonic group velocity of the waveguide 1 or 2, and a third control function for determining the sound velocity of the medium to be measured. In this embodiment, these control functions of the main control section 30 can be switched by an external command from an operator using a measurement condition setting section 30A.

次に、上記実施例の全体的な動作について説明する。Next, the overall operation of the above embodiment will be explained.

まず最初に、被測定媒体に対して導波路1,2及び超音
波送受波器3,4を第1図の如く配設する。続いて、装
置全体を稼働させると、受信側では第2図又は第3図に
示す受信波形が得られる。
First, waveguides 1 and 2 and ultrasonic transducers 3 and 4 are arranged in the medium to be measured as shown in FIG. Subsequently, when the entire apparatus is operated, a received waveform shown in FIG. 2 or 3 is obtained on the receiving side.

この内、第2図のものは、超音波送受波器4を電気的に
切り離して一方の超音波送受波器3だけで送信動作と受
信動作とを行わせた場合に得られる波形、すなわち導波
路2を反射部材として使用した場合に得られる波形を示
す。ここで、TRは送信波を又REば受信波を示す。受
信波REのうち、W、は超音波送受波器3内の反射面3
Cで反射されてきた受渡を、Wtは超音波送受波器3内
の反射面3Cで2回反射されてきた受渡を示す。
Among these, the waveform shown in Fig. 2 is the waveform obtained when the ultrasonic transducer 4 is electrically separated and only one ultrasonic transducer 3 performs the transmitting operation and the receiving operation. A waveform obtained when wave path 2 is used as a reflecting member is shown. Here, TR indicates a transmitted wave, and RE indicates a received wave. Among the received waves RE, W is the reflection surface 3 in the ultrasonic transducer 3
Wt indicates the transfer that has been reflected at C, and Wt indicates the transfer that has been reflected twice at the reflection surface 3C in the ultrasonic transducer 3.

また、N−2は被測定媒体中経路を2行程通ってきた受
渡を、N=4は同様に4行程通ってきた受波を各々示す
。*印は、N=2の波が受波されてから導波路1を1往
復するのに要する時間分だけ遅れてきた受波を示す。
Further, N-2 indicates a delivery wave that has passed through the path in the medium to be measured for two strokes, and N=4 indicates a received wave that has similarly passed through a four-stroke path. The mark * indicates the reception of the wave delayed by the time required for one round trip through the waveguide 1 after the wave of N=2 was received.

また、第3図のものは、超音波送受波器3を送波器とし
超音波送受波器4を受渡器とした場合に得られる波形を
示す。ここで、N=1は被測定媒体中経路を1行程だけ
通ってきた受波を、N=3は同様に3行程通ってきた受
波を各々示す。また、*印はN−1の波が受波されてか
ら導波路2を1往復するのに要する時間分だけ遅れたき
た受波を示す。
3 shows a waveform obtained when the ultrasonic transducer 3 is used as a transmitter and the ultrasonic transducer 4 is used as a transfer device. Here, N=1 indicates a received wave that has passed through the medium path for only one journey, and N=3 indicates a received wave that has similarly passed through three routes. Further, the mark * indicates a received wave delayed by the time required for making one round trip through the waveguide 2 after the N-1 wave is received.

N=1の受信波については、次の二つの伝播経路が存在
する。第1の伝播経路は、導波路1を他端に向って伝播
中に漏洩した超音波が導波路2へ伝播し、当該導波路2
の他端で反射して超音波送受波器4に到達する場合がそ
れである。
For N=1 received waves, there are the following two propagation paths. In the first propagation path, the leaked ultrasonic wave propagates toward the other end of the waveguide 1 and propagates to the waveguide 2.
This is the case when it is reflected at the other end and reaches the ultrasonic transducer 4.

第2の伝播経路は、導波路1の他端にて反射した超音波
が超音波送受波器3の方向へ戻る途中に被測定媒体中に
漏洩して導波路2へ伝播し超音波送受波器4に到達する
場合がそれである。
The second propagation path is such that the ultrasonic wave reflected at the other end of the waveguide 1 leaks into the medium to be measured on the way back to the ultrasonic transducer 3 and propagates to the waveguide 2, causing the ultrasonic wave to be transmitted and received. This is the case when it reaches vessel 4.

いづれの場合も伝播時間は同一である。The propagation time is the same in both cases.

次に、主制御部30の第1の制御機能を稼働させ、回路
全体を測定時における導波路1 (又は2)部分の位相
速度Vqの測定状態(位相速度測定モード)に設定する
。回路全体がこの位相速度測定モードに設定されると、
他方の超音波送受波器4が送受信切換部10から電気的
に切離され、一方の超音波送受波器3だけで送信動作と
受信動作を行い得るように設定される(この場合、送受
波器3の代りに送受波器4を用いてもよい)。第5図は
この場合の送受信信号の伝送状態を示すもので、発信回
路部11から送信された送信信号TRは、超音波送受波
器3及び受信回路部12へ同時に送られ、また超音波送
受波器3からの内部反射波REも受信回路部12へ送ら
れる。この各信号TR及びREは、信号選択手段13A
を通過して計時手段13へ送られ、ここで前述した時間
T0(但し、7’0x j 、 −i t)が計時され
、その時間データが第1演算部13Bへ送られる。第1
演算部13Bでは、測定時間T0に基づいて弐〇及び弐
〇の演算が行われ、その結果が第2のメモリ16に記憶
されるとともに表示手段18に表示されるようになって
いる。
Next, the first control function of the main control unit 30 is activated, and the entire circuit is set to a measurement state (phase velocity measurement mode) of the phase velocity Vq of the waveguide 1 (or 2) portion at the time of measurement. Once the entire circuit is set to this phase velocity measurement mode,
The other ultrasonic transducer 4 is electrically disconnected from the transmission/reception switching unit 10, and the setting is such that only one ultrasonic transducer 3 can perform transmission and reception operations (in this case, the A transducer 4 may be used instead of the transducer 3). FIG. 5 shows the transmission state of the transmitting and receiving signals in this case. The transmitting signal TR transmitted from the transmitting circuit section 11 is simultaneously sent to the ultrasonic transducer 3 and the receiving circuit section 12. The internally reflected wave RE from the wave transmitter 3 is also sent to the receiving circuit section 12. These signals TR and RE are selected by the signal selection means 13A.
The data is sent to the timer 13, where the above-mentioned time T0 (7'0x j , -it) is measured, and the time data is sent to the first calculation unit 13B. 1st
In the calculation section 13B, calculations of 2 and 2 are performed based on the measurement time T0, and the results are stored in the second memory 16 and displayed on the display means 18.

次にオペレータによって主制御部30の第2の制御機能
が稼働されると、回路全体が導波路1の群速度測定モー
ドに設定される。
Next, when the operator activates the second control function of the main control section 30, the entire circuit is set to the group velocity measurement mode of the waveguide 1.

この場合、本実施例では一方の超音波送受波器3が送信
動作をなし他方の超音波送受波器4が受信動作をなす。
In this case, in this embodiment, one ultrasonic transducer 3 performs a transmitting operation, and the other ultrasonic transducer 4 performs a receiving operation.

すなわち、送信信号TRと受信信号REとは第6図の如
く伝送される。この各信号TR,REは、信号選択手段
13Aを通過(信号選択手段がN−1と*印の信号を選
択)して計時手段13Aへ送られ、ここで前述した時間
T(但し、T=t3)がN−1と*印の受信信号の到達
時間差として計時され、その時間データが第1演算部1
3Bへ送られる。第1演算部13Bでは、測定時間Tに
基づいて式■の演算が行われ、これにより求められた群
速度Vqが位相速度vpの時と同様に記憶され、同様に
表示手段18に表示されるようになっている。
That is, the transmission signal TR and reception signal RE are transmitted as shown in FIG. These signals TR and RE pass through the signal selection means 13A (the signal selection means selects N-1 and the signal marked with *) and are sent to the timekeeping means 13A, where they are sent to the timer means 13A, where they are sent for the time T (where T= t3) is measured as the arrival time difference between N-1 and the received signal marked with *, and the time data is sent to the first calculation unit 1.
Sent to 3B. In the first calculation section 13B, the calculation of equation (2) is performed based on the measurement time T, and the group velocity Vq obtained thereby is stored in the same manner as the phase velocity vp, and similarly displayed on the display means 18. It looks like this.

続いて、オペレータによる入力指令によって主制御部3
0の第3の制御機能が稼働されると、回路全体が被測定
媒体の音速測定モードに設定される。この被測定媒体の
音速測定モードにおいては、信号選択手段13Aの働き
により第3図におけるN=1とN−3の受信波を通過せ
しめその伝搬時間が計時手段13で具体的に計測される
Next, the main control unit 3 is activated by input commands from the operator.
When the third control function No. 0 is activated, the entire circuit is set to the sound speed measurement mode of the medium to be measured. In this sound velocity measurement mode of the medium to be measured, the signal selection means 13A allows the received waves of N=1 and N-3 in FIG.

計時手段13では、二つの入力信号の伝播時間を計時し
た後その時間データを第1のメモリ14へ順次送り込む
。この第1のメモリ14は、N=3の時間データを入力
するとN−1の時間データとともにこれを時間差算定手
段15へ出力する。
The clock means 13 clocks the propagation time of the two input signals and then sequentially sends the time data to the first memory 14. When the first memory 14 receives N=3 time data, it outputs it to the time difference calculation means 15 together with N-1 time data.

この時間差算定手段15では、直ちに時間差Δt(但し
、Δ1−14)を算定し第2のメモリ16へ記憶させる
ようになっている。
This time difference calculation means 15 immediately calculates the time difference Δt (here, Δ1-14) and stores it in the second memory 16.

第2のメモリ16では、このΔtが入力されると、これ
らとともに予め記憶されている導波路1の超音波の位相
速度Vq及び群速度Vqとを第2演算部17へ出力する
。この第2演算部17では、これらの入力情報に基づい
て式■を演算し、その結果得られる被測定媒体の音速■
をリアルタイムで表示手段18へ出力し表示する。
When this Δt is input, the second memory 16 outputs the phase velocity Vq and group velocity Vq of the ultrasonic wave of the waveguide 1, which are stored in advance together with them, to the second calculation unit 17. This second calculation unit 17 calculates the formula (■) based on these input information, and the sound velocity of the medium to be measured (■) obtained as a result is
is output to the display means 18 and displayed in real time.

次に、上記実施例における具体的な実験結果を第8図な
いし第11図に基づいて説明する。
Next, specific experimental results in the above embodiment will be explained based on FIGS. 8 to 11.

第8図に示す実験モデルにおいて、導波路1及び2とし
ては、それぞれ板厚0.95  (m)の鋼板を使用し
、超音波送受波器として周波数1 (MH,)の可変角
探触子33.34を使った。可変角探触子のクサビをア
クリル樹脂で形成し、入射角は31.5度に固定し、S
0モードの板波が被導波となるようにした。被測定媒体
として水道水(21〔℃〕)を用いた。従って、この場
合、被導波の群速度Vq及び位相速度■、は、被測定媒
体5内でもほぼS0モードに等しいと考えて良い(1,
^。
In the experimental model shown in Fig. 8, steel plates with a thickness of 0.95 (m) are used as waveguides 1 and 2, and a variable angle probe with a frequency of 1 (MH, ) is used as an ultrasonic transducer. I used 33.34. The wedge of the variable angle probe is made of acrylic resin, the incident angle is fixed at 31.5 degrees, and the S
The 0 mode plate wave is guided. Tap water (21 [°C]) was used as the medium to be measured. Therefore, in this case, the group velocity Vq and phase velocity ■ of the guided wave can be considered to be approximately equal to the S0 mode even within the measured medium 5 (1,
^.

Viktrov、 rRayleigh and La
l1b Waves J P、117)。
Viktrov, rRayleigh and La
l1b Waves J P, 117).

印加した電気パルスは、200(V□〕の正弦2波であ
る。観測された受信波形の1例を第9図に示す。図中、
Tは送波器の波形を示し、Rは受波器の受信波形を示す
。N=1.3はそれぞれ水中経路が1行程及び3行程と
なる波を示す、水印はN−1の波がさらに導波路2を1
往復した波の受信波形を示す。本例では、Δt =75
.1 (#8)であった、*印の波とN−1の波の到達
時間差から当該使用超音波における導波路2の群速度が
実験的に求まり、v、=5200 (、/、) とfす
る。
The applied electric pulse was a two-sine wave of 200 (V□). An example of the observed received waveform is shown in Figure 9. In the figure,
T indicates the waveform of the transmitter, and R indicates the received waveform of the receiver. N = 1.3 indicates a wave whose underwater path is 1 stroke and 3 strokes, respectively. The water mark indicates a wave of N-1 further passes through waveguide 2 by 1 stroke.
This shows the received waveform of the wave that went back and forth. In this example, Δt = 75
.. 1 (#8), the group velocity of the waveguide 2 in the ultrasonic wave used is experimentally determined from the arrival time difference between the wave marked * and the wave N-1, and is given as v,=5200 (,/,). f.

また、アクリルの音速2720(、/、)と可変角探触
子の設定入射角31.5℃とから位相速度が計算でき、
Vj =5300 (、/、)であった。
In addition, the phase velocity can be calculated from the acoustic velocity of the acrylic, 2720 (,/,), and the set incident angle of the variable angle probe, 31.5°C.
Vj =5300 (,/,).

一方、0式の関係を、導波路1及び2との間隔りを変え
て実測により確認した結果を第1o図に示す。これより
、Δt / D −1,26(n/ m)を得ることが
できた。先に求めたVq、Vqにより0式から水の音速
Vが算出できる。その結果を第11図に示す。温度は3
点をとって測定した。結果は、一般に公表されている値
と非常に良く一敗している。
On the other hand, the relationship of equation 0 was confirmed by actual measurements while changing the spacing between waveguides 1 and 2, and the results are shown in FIG. 1o. From this, it was possible to obtain Δt/D −1,26 (n/m). The sound velocity V of water can be calculated from Equation 0 using Vq and Vq obtained previously. The results are shown in FIG. The temperature is 3
The points were taken and measured. The results are in very good agreement with publicly available values.

このように、この実施例によると、導波路1及び2の長
さに無関係に被測定媒体5の音速Vを有効に求めること
ができ、受信波の内のN−1とN=3の受信時間差を検
出するとともに、これに前後して導波路1の位相速度v
2と群速度Vqとを同時に測定することができ、従って
超音波送受波器3,4を被測定媒体内に没入させること
なく直ちに当該被測定媒体5の音速■を求めることがで
き、導波路1及び2の長短には無関係であることから、
例えば高温流体又は危険性の高い流体に対し遠方からの
リモート計測が可能となり、従って超音波送受波器3と
して通常のものを使用しても、充分耐久性を確保するこ
とができるという利点がある。また、被測定媒体5に対
する導波路1及び2の挿入寸法を大きく設定すると受信
感度が大きくなるが測定精度には直接の関係がないこと
から、導波路1及び2の長さ及び被測定媒体5内への投
入寸法も特に厳密さを要求されず、従って取扱いがいた
って容易となるというリモート測定として優れた性質を
備えた超音波センサ装置を得ることができる。
In this way, according to this embodiment, the sound velocity V of the medium to be measured can be effectively determined regardless of the lengths of the waveguides 1 and 2, and the In addition to detecting the time difference, the phase velocity v of the waveguide 1 is detected before and after this.
2 and the group velocity Vq can be measured at the same time. Therefore, the sound velocity (2) of the medium to be measured 5 can be immediately determined without immersing the ultrasonic transducers 3 and 4 into the medium to be measured. Since the length of 1 and 2 is unrelated,
For example, it is possible to remotely measure high-temperature fluids or highly dangerous fluids, and therefore, even if a normal ultrasonic transducer 3 is used, sufficient durability can be ensured. . Furthermore, if the insertion dimensions of the waveguides 1 and 2 into the medium to be measured 5 are set large, the receiving sensitivity will increase, but this has no direct relation to the measurement accuracy. The dimensions of the ultrasonic sensor device to be inserted into the ultrasonic sensor device are not required to be particularly precise, and therefore, it is possible to obtain an ultrasonic sensor device with excellent properties as a remote measurement device, which is extremely easy to handle.

また、被測定媒体5への挿入寸法がそのまま超音波送受
波器3で受信する超音波レベルの大小に直接関係するこ
とから、被測定媒体5の液面水位等も同時に検知するこ
とができるいう利点もある。
Furthermore, since the insertion dimensions into the medium 5 to be measured are directly related to the level of the ultrasonic waves received by the ultrasonic transducer 3, the liquid level of the medium 5 to be measured can be detected at the same time. There are also advantages.

更に、上記実施例において導波路を板状部材により形成
した場合を例示したが、他の部材1例えば丸棒部材、適
当な針金部材、パイプ状部材などで導波路を形成したも
のであってもよい。
Further, in the above embodiments, the waveguide is formed by a plate-shaped member, but the waveguide may be formed by other members 1, such as a round bar member, a suitable wire member, a pipe-shaped member, etc. good.

なお、上記実施例においては、導波路1の群速度Vqの
測定に際し、第3図で測定されるt、を使用する場合を
例示したが、第2図で測定されるt、を使用してもよい
、また、Δtの測定に際して、上記実施例では第3図の
場合について例示したが、第12図の如き構成のもとに
第2図の受信信号を得たのち、これに基づいて得られる
t4(但し、14=Δt)を用いてもよい。また、上記
実施例においては、とくに導波路1の超音波の位相速度
vpと群速度■、とをΔtの測定に先だって求める場合
を例示したが、これらは逆の順序であってもよい。
In addition, in the above embodiment, when measuring the group velocity Vq of the waveguide 1, the case where t measured in FIG. In addition, when measuring Δt, the case shown in FIG. 3 was illustrated in the above embodiment, but after obtaining the received signal shown in FIG. 2 under the configuration shown in FIG. t4 (however, 14=Δt) may be used. Further, in the above embodiment, the case where the phase velocity vp and the group velocity (2) of the ultrasonic wave in the waveguide 1 are determined prior to the measurement of Δt was exemplified, but these may be performed in the reverse order.

更に、上記実施例では、オペレータの入力指令によって
第1.第2および第3の制御機能が稼働する場合を例示
したが、これらの制御機能は、逐次、自動的に稼働する
ものであってもよい。また、液体の音速測定が高精度に
可能であることから、例えば水のように温度と音速の関
係が詳細に知られている場合は、これに対応する液体の
温度変化も高精度に測定することができる。
Furthermore, in the above embodiment, the first . Although the case where the second and third control functions operate is illustrated, these control functions may operate automatically one after another. In addition, since it is possible to measure the sound velocity of a liquid with high precision, if the relationship between temperature and sound velocity is known in detail, such as in water, the corresponding temperature change in the liquid can also be measured with high precision. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成され機能するので、これによ
ると、導波路の長短には無関係に被測定媒体の音速を高
精度に測定することができ、こ耗がため、被測定媒体が
例えば高温流体又は危険性の高い流体であっても、遠方
からリモート計測が充分に可能となり、導波路の位相速
度及び群速度が不明であってもこれらを同時に測定する
ことがAき、従って演算に必要な変数のすべてをリアル
タイムで測定したのち音速の演算を行うことから温度補
正を全く不要とした高精度の音速測定を行うことができ
るという従来にない優れた音速測定方法およびその装置
を提供することができる。
Since the present invention is configured and functions as described above, it is possible to measure the sound speed of a medium to be measured with high accuracy regardless of the length of the waveguide, and the speed of sound in the medium to be measured can be measured with high accuracy, for example. Even with high-temperature fluids or highly dangerous fluids, remote measurement is fully possible from a distance, and even if the phase velocity and group velocity of the waveguide are unknown, they can be measured simultaneously, making calculations easier. To provide an unprecedented and excellent method for measuring the speed of sound and its device, capable of performing high-precision sound speed measurements that do not require any temperature correction by calculating the speed of sound after measuring all necessary variables in real time. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体的構成図、第2図
ないし第3図は各々第1図における送信波形および受信
波形の一例を示す説明図、第4図は第1図で使用される
超音波送受波器を示す一部省略した断面図、第5図ない
し第7図は各々第1図の動作説明図、第8図ないし第1
1図は各々−実験例を示す説明図、第12図は他の実施
例を示す全体的構成図である。 1.2・・・・・・超音波導波路、IA、2A、IB。 2B・・・・・・超音波反射手段、3,4・・・・・・
超音波送受波器、10・・・・・・送受信切換部、1■
・・・・・・発信回路部、12・・・・・・受信回路部
、13・・・・・・計時手段、13A・・・・・・信号
選択手段、15・・・・・・時間差算定手段、16・・
・・・・記憶手段としての第2のメモリ、17・・・・
・・音速演算手段としての第2演算部。 特許出願人  中 鉢 憲 賢(ばか1名)第1図 第2図 ― 第4図 第5図 第6図 第7図 第1O図
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams showing an example of the transmitted waveform and received waveform in FIG. 1, respectively, and FIG. 4 is the same as that shown in FIG. 1. A partially omitted sectional view showing the ultrasonic transducer used, FIGS. 5 to 7 are operation explanatory diagrams of FIG. 1, and FIGS. 8 to 1.
FIG. 1 is an explanatory diagram showing experimental examples, and FIG. 12 is an overall configuration diagram showing another example. 1.2... Ultrasonic waveguide, IA, 2A, IB. 2B... Ultrasonic reflecting means, 3, 4...
Ultrasonic transducer, 10... Transmission/reception switching unit, 1■
..... Transmission circuit section, 12 ..... Receiving circuit section, 13 ..... Time measurement means, 13A ..... Signal selection means, 15 ..... Time difference Calculation means, 16...
...Second memory as storage means, 17...
...Second calculation unit as sound velocity calculation means. Patent applicant: Ken Ken Nakabachi (one idiot) Figure 1 Figure 2 - Figure 4 Figure 5 Figure 6 Figure 7 Figure 1O

【μS】[μS]

第11図 Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)、同一に形成された一対の超音波導波路を一定距
離をおいて相互に対向させるとともに、これら超音波導
波路の各他端部相互間に被測定媒体を介在せしめ、その
後、前記一方もしくは他方の超音波導波路の使用超音波
における位相速度V_pと群速度V_qとを測定し、こ
れらの測定に相前後して当該超音波導波路の一端部から
他端部に向けて超音波を伝播せしめるとともに、該超音
波導波路から漏洩した超音波が被測定媒体を介して他方
の超音波導波路の一端部で最初に受信されるまでの時間
と、当該他方の超音波導波路から更に被測定媒体内へ漏
洩した超音波が前記一方の超音波導波路との間を往復伝
播して受信されるまでの時間との差Δtを求め、これら
の各測定値に基づいて下式、すなわち、 F_1(V_p、V_q、Δt、V)=0 を演算し前記被測定媒体の音速Vを特定することを特徴
とした音速測定方法。
(1) A pair of identically formed ultrasonic waveguides are opposed to each other at a certain distance, and a medium to be measured is interposed between the other ends of these ultrasonic waveguides, and then the The phase velocity V_p and group velocity V_q of the ultrasonic wave used in one or the other ultrasonic waveguide are measured, and before and after these measurements, the ultrasonic wave is applied from one end of the ultrasonic waveguide to the other end. At the same time, the time required for the ultrasonic wave leaked from the ultrasonic waveguide to be first received at one end of the other ultrasonic waveguide via the medium to be measured, and the time from which the ultrasonic wave leaked from the other ultrasonic waveguide Furthermore, the difference Δt between the time it takes for the ultrasonic wave leaked into the medium to be measured to propagate back and forth between the one ultrasonic waveguide and the time it is received is calculated, and based on these measured values, the following formula is used. That is, a sound speed measuring method characterized in that the sound speed V of the medium to be measured is determined by calculating F_1(V_p, V_q, Δt, V)=0.
(2)、一端部に超音波送受波器を装備するとともに被
測定媒体内に配設される他端部に超音波反射手段を備え
た一対の超音波導波路と、前記各超音波送受波器の各々
に発信回路部と受信回路部とを必要に応じて交互に切換
接続する送受信切換部とを有し、 前記受信回路部に、前記各導波路の一方から他方へ漏洩
する超音波が被測定媒体内を伝播して他方の超音波導波
路の超音波送受波器に受信されるまでの時間と、当該他
方の超音波導波路から更に被測定媒体内へ漏洩した超音
波が前記一方の超音波導波路との間を往復伝播して受信
されるまでの時間とをそれぞれ測定する計時手段と、こ
の計時手段にて測定される二つの受信波の到達時間差を
算定する時間差算定手段と、この時間差算定手段の出力
を記憶する記憶手段とを併設し、 この記憶手段に、前記導波路の当該音速測定時における
使用超音波の位相速度及び群速度を測定し記憶せしめる
とともに、この記憶手段の出力情報に基づいて所定の演
算を行い前記被測定媒体の音速を算定する音速演算手段
を併設したことを特徴とする音速測定装置。
(2) a pair of ultrasonic waveguides each equipped with an ultrasonic transducer at one end and an ultrasonic reflecting means at the other end disposed within the medium to be measured; Each of the devices has a transmitting/receiving switching section that alternately switches and connects the transmitting circuit section and the receiving circuit section as necessary, and the ultrasonic wave leaking from one of the waveguides to the other is transmitted to the receiving circuit section. The time it takes for the ultrasonic wave to propagate in the medium to be measured and be received by the ultrasonic transducer of the other ultrasonic waveguide, and the ultrasonic wave leaked from the other ultrasonic waveguide into the medium to be measured. and a time difference calculation means for calculating the arrival time difference between the two received waves measured by the time measurement means. , a storage means for storing the output of the time difference calculation means, and the storage means measures and stores the phase velocity and group velocity of the ultrasonic wave used at the time of measuring the sound velocity of the waveguide, and the storage means 1. A sound speed measuring device characterized by further comprising a sound speed calculation means for calculating the sound speed of the medium to be measured by performing a predetermined calculation based on the output information of the sound speed measuring device.
JP62066821A 1987-03-20 1987-03-20 Method and apparatus for measuring sonic velocity Granted JPS63233334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066821A JPS63233334A (en) 1987-03-20 1987-03-20 Method and apparatus for measuring sonic velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62066821A JPS63233334A (en) 1987-03-20 1987-03-20 Method and apparatus for measuring sonic velocity

Publications (2)

Publication Number Publication Date
JPS63233334A true JPS63233334A (en) 1988-09-29
JPH0375808B2 JPH0375808B2 (en) 1991-12-03

Family

ID=13326897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066821A Granted JPS63233334A (en) 1987-03-20 1987-03-20 Method and apparatus for measuring sonic velocity

Country Status (1)

Country Link
JP (1) JPS63233334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942264A2 (en) * 1998-03-12 1999-09-15 DaimlerChrysler Aerospace AG Arrangement for the fluid level measurement
JP2008175706A (en) * 2007-01-19 2008-07-31 Matsushita Electric Ind Co Ltd Measuring instrument for flow velocity or flow rate and its program
JP2008175542A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring instrument
JP2008175543A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942264A2 (en) * 1998-03-12 1999-09-15 DaimlerChrysler Aerospace AG Arrangement for the fluid level measurement
EP0942264A3 (en) * 1998-03-12 2000-10-11 DaimlerChrysler Aerospace AG Arrangement for the fluid level measurement
JP2008175542A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring instrument
JP2008175543A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring instrument
JP2008175706A (en) * 2007-01-19 2008-07-31 Matsushita Electric Ind Co Ltd Measuring instrument for flow velocity or flow rate and its program

Also Published As

Publication number Publication date
JPH0375808B2 (en) 1991-12-03

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2013140029A (en) Liquid level measuring device, method and program
JPH03172708A (en) Supersonic wave-variable distance measurer between two planes and probe
JPS63233334A (en) Method and apparatus for measuring sonic velocity
JPS61219843A (en) Method and device for measuring temperature of fluid in package by using ultrasonic wave
JPH1048009A (en) Ultrasound temperature current meter
JPH0447770B2 (en)
JPS63233336A (en) Method and apparatus for measuring sonic velocity
JPH052250B2 (en)
CN104614027B (en) The measuring method of ultrasonic measuring device
Mak et al. Ultrasonic measurement of longitudinal and shear velocities of materials at elevated temperatures
JP3469405B2 (en) Temperature measurement device
JPS6353425A (en) Ultrasonic sensor apparatus
JPH0554898B2 (en)
US3540279A (en) Acoustic sensing system
JPH05172793A (en) Sound characteristic value measuring device
JPS63233333A (en) Sonic velocity measuring method
JP2008286622A (en) Ultrasonic measuring device and ultrasonic measuring method
JPH02116745A (en) Ultrasonic solution density measuring apparatus
JPH03167418A (en) Clad-thickness measuring apparatus
JPH0438415A (en) Apparatus for measuring pipe length
JPS63233324A (en) Method and apparatus for measuring flow speed of ultrasonic wave
JPH10300556A (en) Measuring apparatus for level of molten metal
JP2001133319A (en) Acoustic velocity measuring device
JP2001299708A (en) Ultrasonic vibration deviation sensor