JP2008286622A - Ultrasonic measuring device and ultrasonic measuring method - Google Patents

Ultrasonic measuring device and ultrasonic measuring method Download PDF

Info

Publication number
JP2008286622A
JP2008286622A JP2007131378A JP2007131378A JP2008286622A JP 2008286622 A JP2008286622 A JP 2008286622A JP 2007131378 A JP2007131378 A JP 2007131378A JP 2007131378 A JP2007131378 A JP 2007131378A JP 2008286622 A JP2008286622 A JP 2008286622A
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitter
measurement object
receivers
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007131378A
Other languages
Japanese (ja)
Inventor
Akira Sato
明良 佐藤
Seiki Yamashita
清貴 山下
Takahiro Otsuka
隆博 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2007131378A priority Critical patent/JP2008286622A/en
Publication of JP2008286622A publication Critical patent/JP2008286622A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure accurately in a short time, the speed of an ultrasonic wave propagating inside, even when a measuring object has a large size. <P>SOLUTION: This ultrasonic measuring device has an ultrasonic transmitter 10 for transmitting an ultrasonic wave into a measuring object P having a fixed thickness; and a plurality of ultrasonic receivers 20, 21, 22 arranged at fixed array intervals L, for receiving the ultrasonic wave propagating inside the measuring object P. The device also has a propagation time measuring means 3a for measuring a propagation time of the ultrasonic wave propagating inside the measuring object P based on a timing of the ultrasonic wave transmitted and received between the ultrasonic transmitter 10 and each ultrasonic receiver 20, 21, 22, and a propagation speed calculation means 32B for averaging and calculating the propagation speed of the ultrasonic wave propagating inside the measuring object P based on each propagation time and the array intervals L of each ultrasonic receiver 20, 21, 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばロケットモータのモータケース内を伝播する超音波の速度を測定するための超音波測定装置と超音波測定方法に関する。   The present invention relates to an ultrasonic measurement apparatus and an ultrasonic measurement method for measuring the speed of ultrasonic waves propagating in a motor case of a rocket motor, for example.

従来、ロケットモータのモータケース(壁)の非破壊検査を、例えば超音波を利用して行うものが知られている。
上記超音波を利用した非破壊検査は、モータケース内を伝播する超音波の速度V(m/s)を算出することによるものであるが、それは、キャリパゲージ等によって予め測定したモータケースの測定部位の厚みと、その測定部位内での超音波の伝播時間とに基づき、次式により算出している。
V=(2T×1000)/t
なお、「t」はモータケース内を伝播する超音波の伝播時間(s)、「T」はモータケースの測定部位の厚み(mm)である。
Conventionally, what performs a nondestructive inspection of the motor case (wall) of a rocket motor using an ultrasonic wave is known, for example.
The nondestructive inspection using ultrasonic waves is based on the calculation of the velocity V (m / s) of ultrasonic waves propagating in the motor case, which is a measurement of the motor case measured in advance by a caliper gauge or the like. Based on the thickness of the part and the propagation time of the ultrasonic wave in the measurement part, the following formula is used.
V = (2T × 1000) / t
“T” is the propagation time (s) of the ultrasonic wave propagating in the motor case, and “T” is the thickness (mm) of the measurement site of the motor case.

しかし、モータケースが大型化すると、市販のキャリパゲージが届かない測定部位が生じ、さらには、そのモータケースが繊維強化プラスチックで形成されているときには、温度変化によって測定部位の厚みが大きく変化するために、精確な伝播速度を測定することができないという問題がある。   However, when the motor case is enlarged, a measurement site where a commercially available caliper gauge does not reach is generated. Furthermore, when the motor case is made of fiber reinforced plastic, the thickness of the measurement site changes greatly due to temperature change. In addition, there is a problem that an accurate propagation velocity cannot be measured.

一方、上記の問題点を解決しようとして、特許文献1に開示された構成からなる超音波測定装置がある。
特許文献1に開示された超音波測定装置は、複数の超音波送受波器の間隔を少しずつ変えて測定することによって反射波エコーデータを取得し、バルク波音速をパラメータとして変化させながら、得られた反射エコーデータに反射エコーのピーク位置が同相となるようにマイグレーション処理を施し、その反射エコーのピーク値が最大となるときのバルク波音速の値を媒体のバルク波音速とするものである。
特開平9−318607号公報
On the other hand, there is an ultrasonic measurement device having a configuration disclosed in Patent Document 1 in an attempt to solve the above problems.
The ultrasonic measurement device disclosed in Patent Document 1 obtains reflected wave echo data by changing the intervals of a plurality of ultrasonic transducers little by little, and obtains while changing the bulk wave sound velocity as a parameter. The reflected echo data is subjected to a migration process so that the peak position of the reflected echo is in phase, and the bulk wave sound velocity value when the peak value of the reflected echo is maximum is used as the bulk wave sound velocity of the medium. .
JP 9-318607 A

しかしながら、特許文献1に開示された従来の超音波測定装置は、測定対象物の測定部位の厚みを予め測定する必要がないものの、反射波エコーデータを取得するために、超音波送受波器の互いの間隔を少しずつ変化させながら測定しなければならないものであり、それら超音波送受波器の間隔の確認や移動が面倒であるとともに時間を要する。
そこで本発明は、たとえ大型な測定対象物であっても、これの内部を伝播する超音波の速度を短時間で精確に測定することができる超音波測定装置を提供しようとするものである。
However, the conventional ultrasonic measurement device disclosed in Patent Document 1 does not need to measure the thickness of the measurement part of the measurement object in advance, but in order to obtain reflected wave echo data, It is necessary to perform measurement while changing the distance between each other little by little, and it is troublesome to confirm and move the distance between the ultrasonic transducers and requires time.
Therefore, the present invention is intended to provide an ultrasonic measurement apparatus capable of accurately measuring the velocity of ultrasonic waves propagating through a large measurement object in a short time.

請求項1に記載した超音波測定装置は、一定の厚みを有する測定対象物内に超音波を送波する超音波送波器と、当該測定対象物内を伝播する超音波を受波しかつ既定の配列間隔にした複数の超音波受波器とを有する構成のものであり、上記超音波送波器と各超音波受波器との間で送受波される超音波のタイミングに基づき、測定対象物内を伝播する超音波の伝播時間を計測する伝播時間計測手段と、上記各伝播時間と各超音波受波器の配列間隔に基づき、測定対象物内を伝播する超音波の伝播速度を平均化して算出する伝播速度算出手段とを有することを特徴としている。   The ultrasonic measurement apparatus according to claim 1 receives an ultrasonic wave transmitter that transmits ultrasonic waves into a measurement object having a certain thickness, and an ultrasonic wave that propagates through the measurement object; A plurality of ultrasonic receivers having a predetermined array interval, and based on the timing of ultrasonic waves transmitted and received between the ultrasonic transmitter and each ultrasonic receiver, Propagation time measuring means for measuring the propagation time of the ultrasonic wave propagating in the measurement object, and the propagation speed of the ultrasonic wave propagating in the measurement object based on the above-described propagation time and the arrangement interval of each ultrasonic wave receiver It is characterized by having a propagation velocity calculation means for calculating by averaging.

請求項2に記載した超音波測定装置は、請求項1に記載した測定対象物の厚みをなす2つの表面の一方に超音波送波器を配し、かつ、他方に複数の超音波受波器を配列したことを特徴としている。   An ultrasonic measurement apparatus according to a second aspect includes an ultrasonic transmitter disposed on one of the two surfaces forming the thickness of the measurement object according to the first aspect, and a plurality of ultrasonic receptions on the other. It is characterized by the arrangement of vessels.

請求項3に記載した超音波測定装置は、請求項1に記載した測定対象物の厚みをなす2つの表面の一方又は他方に超音波送波器と複数の超音波受波器を配列したことを特徴としている。   The ultrasonic measuring apparatus according to claim 3 is an ultrasonic transmitter and a plurality of ultrasonic receivers arranged on one or the other of the two surfaces forming the thickness of the measurement object according to claim 1. It is characterized by.

請求項4に記載した超音波測定装置は、請求項1〜3のいずれか1項に記載した複数の超音波受波器を既定の配列間隔に保持するための冶具を有していることを特徴としている。   The ultrasonic measurement apparatus according to claim 4 has a jig for holding the plurality of ultrasonic receivers according to any one of claims 1 to 3 at a predetermined arrangement interval. It is a feature.

請求項5に記載した超音波測定装置は、請求項1〜4のいずれか1項に記載した超音波送波器を所定の間隔で複数配列しているとともに、それら超音波送波器のうち、駆動する超音波送波器を択一的に順次切り替える送波器切替え手段を有することを特徴としている。   The ultrasonic measurement apparatus according to claim 5 includes a plurality of the ultrasonic transmitters according to any one of claims 1 to 4 arranged at a predetermined interval, and of the ultrasonic transmitters. , Characterized in that it has a transmitter switching means for alternatively and sequentially switching the ultrasonic transmitter to be driven.

請求項6に記載した超音波測定方法は、超音波送波器から一定の厚みを有する測定対象物内に超音波を送波し、当該測定対象物内を伝播する超音波を既定の配列間隔にした複数の超音波受波器により受波することより超音波の測定を行うものであり、上記超音波送波器と各超音波受波器との間で送受波される超音波のタイミングに基づき、測定対象物内を伝播する超音波の伝播時間を計測し、上記各伝播時間と各超音波受波器の配列間隔に基づき、測定対象物内を伝播する超音波の伝播速度を平均化して算出することを特徴としている。   The ultrasonic measurement method according to claim 6, wherein an ultrasonic wave is transmitted from an ultrasonic transmitter into a measurement object having a certain thickness, and the ultrasonic waves propagating through the measurement object are arranged at a predetermined arrangement interval. The ultrasonic wave is received by a plurality of ultrasonic receivers, and the timing of the ultrasonic waves transmitted and received between the ultrasonic transmitter and each ultrasonic receiver is measured. Based on the above, the propagation time of the ultrasonic wave propagating in the measurement object is measured, and the propagation speed of the ultrasonic wave propagating in the measurement object is averaged based on the above propagation times and the arrangement intervals of the ultrasonic receivers. It is characterized by being calculated.

請求項1に記載した発明によれば、複数の超音波受波器で受波した超音波の伝播時間を計測するとともに、それら計測した各伝播時間と各超音波受波器の配列間隔に基づき、一定の厚みを有する測定対象物内を伝播する超音波の伝播速度を平均化して算出しているので、たとえ大型な測定対象物であっても、測定対象物内を伝播する超音波の音速を短時間で精確に測定することができる。
また、製造コストの低減化を図ることができるとともに、測定対象物を例えば繊維強化プラスチックで形成している場合にも、層間剥離等の成形不良を発見することができる。
According to the first aspect of the present invention, the propagation times of the ultrasonic waves received by the plurality of ultrasonic receivers are measured, and based on the measured propagation times and the arrangement intervals of the ultrasonic receivers. Because the average propagation speed of the ultrasonic wave propagating through the measurement object having a certain thickness is calculated, the sound velocity of the ultrasonic wave propagating through the measurement object even if it is a large measurement object Can be measured accurately in a short time.
Further, the manufacturing cost can be reduced, and molding defects such as delamination can be found even when the measurement object is formed of, for example, fiber reinforced plastic.

請求項1に記載の発明で得られる上記の効果に加え、各請求項記載の発明によれば次の各効果を得ることができる。
請求項2に記載した発明によれば、厚みをなす一面に配した超音波送波器から送波された超音波は測定対象物内を伝播し、他面に配列されている複数の超音波受波器で受波されるので、測定対象物内を伝播する超音波の音速を精確に測定することができる。
In addition to the above-described effects obtained by the invention described in claim 1, the following effects can be obtained according to the invention described in each claim.
According to the second aspect of the present invention, the ultrasonic waves transmitted from the ultrasonic wave transmitter arranged on one surface forming the thickness propagate in the object to be measured and are arranged on the other surface. Since the wave is received by the wave receiver, the sound speed of the ultrasonic wave propagating through the measurement object can be accurately measured.

請求項3に記載した発明によれば、厚みをなす一面に配した超音波送波器から送波された超音波は測定対象物内を伝播し、他側面で反射された後に超音波送波器と同じ一面に配列した複数の超音波受波器で受波されるので、測定対象物の片面のみで測定対象物内を伝播する超音波の音速を精確に測定することができる。   According to the invention described in claim 3, the ultrasonic wave transmitted from the ultrasonic wave transmitter disposed on one surface forming the thickness propagates through the object to be measured and is reflected on the other side surface, and then is transmitted. Since it is received by a plurality of ultrasonic receivers arranged on the same surface as the detector, it is possible to accurately measure the speed of ultrasonic waves propagating in the measurement object only on one side of the measurement object.

請求項4に記載した発明によれば、複数の超音波受波器を冶具に保持するだけで、各超音波受波器を短時間で既定の配列間隔にすることができる。   According to the fourth aspect of the present invention, each ultrasonic receiver can be set to a predetermined arrangement interval in a short time only by holding a plurality of ultrasonic receivers on the jig.

請求項5に記載した発明によれば、複数の超音波送波器を所定の間隔で配列しているとともに、それらの超音波送波器のうち、駆動する超音波送波器を択一的に順次切り替えられるので、測定対象物の測定部位内を伝播する超音波の音速をより精確に平均化して測定することができる。   According to the fifth aspect of the present invention, a plurality of ultrasonic transmitters are arranged at a predetermined interval, and among these ultrasonic transmitters, an ultrasonic transmitter to be driven is selected. Therefore, the sound velocity of the ultrasonic wave propagating through the measurement site of the measurement object can be averaged and measured more accurately.

以下、本発明の超音波測定装置について図面を参照して説明する。図1は、第一の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図である。   Hereinafter, an ultrasonic measurement apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram showing the overall configuration of the ultrasonic measurement apparatus according to the first embodiment.

第一の実施形態に係る超音波測定装置Aは、測定対象物P内を伝播する超音波の速度を測定するものであり、単一の超音波送波器10、3つの超音波受波器20,21,22、それら超音波受波器20,21,22を接続したリレーボックス30、パルサ・レシーバ31及びコントローラ32を有して構成されている。   The ultrasonic measurement apparatus A according to the first embodiment measures the velocity of ultrasonic waves propagating in the measurement object P, and includes a single ultrasonic transmitter 10 and three ultrasonic receivers. 20, 21, 22, a relay box 30 to which the ultrasonic receivers 20, 21, 22 are connected, a pulser / receiver 31, and a controller 32.

測定対象物Pは、一定の厚みTを有する繊維強化プラスチック(FRP)等の平板状体であるが、曲成されているものであってもよい。   The measuring object P is a flat body such as a fiber reinforced plastic (FRP) having a certain thickness T, but may be bent.

超音波送波器10は、測定対象物Pの厚みをなす両表面(図示上下面)P1,P2のうち、一面P1に密着して配され、また、3つの超音波受波器20,21,22を他面P2に密着させて配列している。
超音波送波器10と超音波受波器20,21,22との相対的な位置関係は、超音波送波器10から送波された超音波を、超音波受波器20,21,22でそれぞれ受波できる程度に対向していればよい。
なお、図1においては、超音波送波器10を測定対象物Pの一面P1に、また、3つの超音波受波器20,21,22を他面P2に配しているが、それらを逆側に配してもよいことは勿論である。
The ultrasonic transmitter 10 is disposed in close contact with one surface P1 of both surfaces (upper and lower surfaces in the drawing) P1 and P2 forming the thickness of the measurement object P, and three ultrasonic receivers 20 and 21 are provided. , 22 are arranged in close contact with the other surface P2.
The relative positional relationship between the ultrasonic transmitter 10 and the ultrasonic receivers 20, 21, and 22 is that the ultrasonic waves transmitted from the ultrasonic transmitter 10 are converted into the ultrasonic receivers 20, 21, It suffices if they are opposed to each other so that they can be received at 22.
In FIG. 1, the ultrasonic wave transmitter 10 is arranged on one surface P1 of the measurement object P, and the three ultrasonic wave receivers 20, 21, 22 are arranged on the other surface P2. Of course, it may be arranged on the opposite side.

3つの超音波受波器20,21,22は、互いに既定の配列間隔Lにしている。すなわち、本実施形態においては等間隔にした例について示しているが、互いに異なる配列間隔にしてもよい。   The three ultrasonic receivers 20, 21, and 22 are set to a predetermined arrangement interval L with respect to each other. That is, in the present embodiment, an example with equal intervals is shown, but different arrangement intervals may be used.

リレーボックス30は、後述するコントローラ32から送出される制御信号に従って、超音波送波器10と超音波受波器20,21,22とをそれぞれオン/オフするリレー(図示しない)を収納したものである。   The relay box 30 houses relays (not shown) that turn on / off the ultrasonic transmitter 10 and the ultrasonic receivers 20, 21, 22 in accordance with a control signal sent from a controller 32 to be described later. It is.

パルサ・レシーバ31は、超音波送波器10に駆動信号を出力するパルサとしての機能と、超音波受波器20,21,22から入力した受信信号を処理するレシーバとしての機能を併有したものである。   The pulser / receiver 31 has both a function as a pulser that outputs a drive signal to the ultrasonic transmitter 10 and a function as a receiver that processes reception signals input from the ultrasonic receivers 20, 21, and 22. Is.

コントローラ32は、本装置A全体の制御中枢となるCPU、所要のプログラムや上記した超音波受波器20,21,22の互いの既定の配列間隔Lを記憶しているメモリ(いずれも図示しない)により構成されており、上記所要のプログラムを実行することにより次の機能を実現している。
(1)超音波送波器10と各超音波受波器20,21,22との間で送受波される超音波のタイミングに基づき、測定対象物P内を伝播する超音波の伝播時間ta,tb,tcを計測する機能(伝播時間計測手段32A)。
具体的には、送受波される超音波パルスに基づいて、測定対象物P内を伝播する超音波の伝播時間ta,tb,tcを計測している。
「ta」は、超音波受波器20で受波した超音波の伝播時間、「tb」は、超音波受波器21で受波した超音波の伝播時間、「tc」は、超音波受波器22で受波した超音波の伝播時間である。
The controller 32 is a CPU that serves as a control center for the entire apparatus A, a required program, and a memory that stores a predetermined arrangement interval L between the above-described ultrasonic receivers 20, 21, and 22 (both not shown). The following functions are realized by executing the required program.
(1) Propagation time ta of the ultrasonic wave propagating in the measurement object P based on the timing of the ultrasonic wave transmitted / received between the ultrasonic wave transmitter 10 and each of the ultrasonic wave receivers 20, 21, 22 , Tb, tc (propagation time measuring means 32A).
Specifically, the propagation times ta, tb, and tc of the ultrasonic waves that propagate through the measurement object P are measured based on the ultrasonic pulses that are transmitted and received.
“Ta” is the propagation time of the ultrasonic wave received by the ultrasonic receiver 20, “tb” is the propagation time of the ultrasonic wave received by the ultrasonic wave receiver 21, and “tc” is the ultrasonic wave reception time. This is the propagation time of the ultrasonic wave received by the waver 22.

(2)各伝播時間ta,tb,tcと、超音波受波器20,21,22の配列間隔Lに基づき、測定対象物P内を伝播する超音波の伝播速度V(m/s)を平均化して算出する機能(伝播速度算出手段32B)。
超音波の伝播速度V(m/s)は、次式によって平均化して算出することができる。

Figure 2008286622
(2) Based on each propagation time ta, tb, tc and the arrangement interval L of the ultrasonic receivers 20, 21, 22, the propagation velocity V (m / s) of the ultrasonic wave propagating in the measurement object P A function of calculating by averaging (propagation speed calculating means 32B).
The ultrasonic wave propagation velocity V (m / s) can be calculated by averaging the following equation.
Figure 2008286622

上記の構成からなる超音波測定装置Aを用いた超音波測定方法は次のとおりである。
上記超音波送波器10と各超音波受波器20,21,22との間で送受波される超音波のタイミングに基づき、測定対象物P内を伝播する超音波の伝播時間を計測し、上記各伝播時間と各超音波受波器20,21,22の配列間隔に基づき、測定対象物P内を伝播する超音波の伝播速度を平均化して算出する。
具体的には、超音波送波器10から送波された超音波パルスが超音波受波器20,21,22で受波されると、対応する受信信号がリレーボックス30,パルサ・レシーバ31を介してコントローラ32に入力される。
The ultrasonic measurement method using the ultrasonic measurement apparatus A having the above-described configuration is as follows.
Based on the timing of the ultrasonic waves transmitted and received between the ultrasonic transmitter 10 and each of the ultrasonic receivers 20, 21 and 22, the propagation time of the ultrasonic waves propagating in the measurement object P is measured. Based on the propagation times and the arrangement intervals of the ultrasonic receivers 20, 21, and 22, the propagation speed of the ultrasonic waves propagating in the measurement object P is averaged and calculated.
Specifically, when the ultrasonic pulse transmitted from the ultrasonic transmitter 10 is received by the ultrasonic receivers 20, 21, 22, the corresponding received signals are relay box 30, pulser / receiver 31. To the controller 32.

コントローラ32では、超音波送波器10と各超音波受波器20,21,22との間で送受波される超音波パルスのタイミング、従ってまた対応する送受信信号に基づいて、伝播時間ta,tb,tcを計測するとともに、それら伝播時間ta,tb,tcと超音波受波器20,21,22の互いの配列間隔Lに基づき、超音波の伝播速度V(m/s)を上記のように平均化して算出する。   In the controller 32, the propagation time ta, based on the timing of the ultrasonic pulse transmitted / received between the ultrasonic transmitter 10 and each ultrasonic receiver 20, 21, 22, and thus also the corresponding transmission / reception signal. While measuring tb and tc, the propagation speed V (m / s) of the ultrasonic wave is determined based on the propagation time ta, tb and tc and the arrangement interval L of the ultrasonic receivers 20, 21 and 22. The average is calculated as follows.

図2は、本発明の第二の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図である。なお、図1において説明したものと同等のものについては、それらと同一の符号を付して説明を省略し、ここでは相違点について詳細に説明する。   FIG. 2 is a schematic block diagram showing the overall configuration of the ultrasonic measurement apparatus according to the second embodiment of the present invention. In addition, about the thing equivalent to what was demonstrated in FIG. 1, the same code | symbol is attached | subjected to them, description is abbreviate | omitted, and a difference is demonstrated in detail here.

第二の実施形態に係る超音波測定装置Bは、超音波送波器10と超音波受波器20,21,22を上記の実施形態のものとは異なる配置にしたものであり、図2に示すように、超音波送波器10と超音波受波器20,21,22とを、測定部位Pの一側面(上面)P1に密着させて一列に並設している。
この構成においては、超音波送波器10から送波された超音波パルスが他側面P2で反射され、その反射パルスが超音波受波器20,21,22で受波される。
反射パルスが超音波受波器20,21,22で受波されると、対応する受信信号がリレーボックス30,パルサ・レシーバ31を介してコントローラ32に入力される。
コントローラ32では、超音波送波器10と各超音波受波器20,21,22との間で送受波される超音波パルスのタイミング、従ってまた対応する送受信信号に基づいて、伝播時間ta,tb,tcを計測するとともに、メモリに記憶されている超音波受波器20,21,22の互いの配列間隔Lに基づき、超音波の伝播速度を上記したように平均化して算出する。
The ultrasonic measurement apparatus B according to the second embodiment is configured by disposing the ultrasonic transmitter 10 and the ultrasonic receivers 20, 21, and 22 differently from those of the above-described embodiment. As shown in FIG. 2, the ultrasonic transmitter 10 and the ultrasonic receivers 20, 21, and 22 are arranged in parallel in close contact with one side surface (upper surface) P1 of the measurement site P.
In this configuration, the ultrasonic pulse transmitted from the ultrasonic transmitter 10 is reflected by the other side surface P2, and the reflected pulse is received by the ultrasonic receivers 20, 21, and 22.
When the reflected pulse is received by the ultrasonic receivers 20, 21, and 22, the corresponding received signal is input to the controller 32 via the relay box 30 and the pulser / receiver 31.
In the controller 32, the propagation time ta, based on the timing of the ultrasonic pulse transmitted / received between the ultrasonic transmitter 10 and each ultrasonic receiver 20, 21, 22, and also the corresponding transmission / reception signal. While measuring tb and tc, the ultrasonic wave propagation speed is averaged and calculated as described above based on the mutual arrangement interval L of the ultrasonic receivers 20, 21 and 22 stored in the memory.

図3は、本発明の第三の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図、図4は、冶具の一例を示す分解斜視図である。なお、本実施形態においても、図1において説明したものと同等のものについては、それらと同一の符号を付して説明を省略し、ここでは相違点について詳細に説明する。   FIG. 3 is a schematic block diagram showing the overall configuration of the ultrasonic measurement apparatus according to the third embodiment of the present invention, and FIG. 4 is an exploded perspective view showing an example of a jig. Also in the present embodiment, the same components as those described in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and differences will be described in detail here.

本発明の第三の実施形態に係る超音波測定装置Cは、冶具40によって一定の配列間隔に保持された3つの超音波送波器10A,10B,10C、冶具45によって既定の配列間隔Lに保持された3つの超音波受波器20,21,22、これら超音波受波器20,21,22を接続したリレーボックス30、パルサ・レシーバ31及びコントローラ32を有して構成されている。   The ultrasonic measurement apparatus C according to the third embodiment of the present invention has a predetermined arrangement interval L by three ultrasonic transmitters 10A, 10B, 10C and a jig 45 held at a fixed arrangement interval by the jig 40. The three ultrasonic receivers 20, 21, and 22 that are held, a relay box 30 that connects these ultrasonic receivers 20, 21, and 22, a pulsar receiver 31, and a controller 32 are configured.

冶具45は、図4にも示すように、直方体形に形成した本体41に、上記超音波受波器20,21,22を保持するための3つの保持孔42…を配列間隔Lで形成したものであり、それらの保持孔42…に超音波受波器20,21,22を挿入するだけで、それらの間隔Lを容易に揃えることができるものである。
なお、超音波送波器10A,10B,10Cを保持するための冶具40は、上記冶具45と同等の構成のものであるので、その詳細な説明を省略する。また、超音波受波器20,21,22や超音波送波器10A,10B,10Cの互いの配列間隔は、本実施形態においては同一の値としているが、異なる値としてもよいことは勿論である。
As shown in FIG. 4, the jig 45 has three holding holes 42 for holding the ultrasonic receivers 20, 21, 22 formed in the arrangement interval L in the main body 41 formed in a rectangular parallelepiped shape. Therefore, the interval L can be easily aligned only by inserting the ultrasonic receivers 20, 21, 22 into the holding holes 42.
In addition, since the jig 40 for holding the ultrasonic transmitters 10A, 10B, and 10C has the same configuration as the jig 45, detailed description thereof is omitted. In addition, although the arrangement intervals of the ultrasonic receivers 20, 21, and 22 and the ultrasonic transmitters 10A, 10B, and 10C are the same value in the present embodiment, it is of course possible to have different values. It is.

コントローラ32は、本装置C全体の制御中枢となるCPU、所要のプログラム、上記した超音波受波器20,21,22や超音波送波器10A,10B,10Cのそれぞれの配列間隔Lを記憶しているメモリ(いずれも図示しない)等により構成されており、所要のプログラムを実行することにより、上記伝播時間計測手段32A、伝播速度算出手段32Bとしての機能の他、次の機能を実現している。   The controller 32 stores a CPU that is the control center of the entire apparatus C, a required program, and the arrangement intervals L of the ultrasonic receivers 20, 21, 22 and the ultrasonic transmitters 10A, 10B, 10C. In addition to the functions as the propagation time measuring means 32A and the propagation speed calculating means 32B, the following functions are realized by executing a required program. ing.

(3)駆動する超音波送波器10A,10B,10Cを択一的に順次切り替える機能(送波器切替え手段32C)。
本実施形態においては、超音波送波器10A,10B,10Cを一定の時間間隔で自動的に切り替えているが、それらを異なる時間間隔で切り替えるようにしてもよく、また、手動により切り替えるようにしてもよい。
(3) A function of alternately switching the ultrasonic transmitters 10A, 10B, and 10C to be driven (transmitter switching means 32C).
In the present embodiment, the ultrasonic transmitters 10A, 10B, and 10C are automatically switched at regular time intervals. However, they may be switched at different time intervals, or may be switched manually. May be.

上記の構成からなる超音波測定装置Cの動作は、次のとおりである。
まず、超音波送波器10Aから送波された超音波パルスが超音波受波器20,21,22で受波されると、対応する受信信号がリレーボックス30,パルサ・レシーバ31を介してコントローラ32に入力される。
コントローラ32では、まず、超音波送波器10Aに対応する伝播時間ta,tb,tcを計測する。
The operation of the ultrasonic measurement apparatus C having the above configuration is as follows.
First, when the ultrasonic pulse transmitted from the ultrasonic transmitter 10 </ b> A is received by the ultrasonic receivers 20, 21, and 22, the corresponding received signals are transmitted via the relay box 30 and the pulser / receiver 31. Input to the controller 32.
The controller 32 first measures propagation times ta, tb, and tc corresponding to the ultrasonic transmitter 10A.

伝播時間ta,tb,tcを計測した後、換言すると一定時間が経過した後に、超音波送波器10Aから超音波送波器10Bに切り替えられる。
そして、超音波送波器10Bから送波した超音波パルスが超音波受波器20,21,22で受波されると、対応する受信信号がリレーボックス30,パルサ・レシーバ31を介してコントローラ32に入力される。
コントローラ32では、超音波送波器10Bに対応する伝播時間ta′,tb′,tc′を計測する。
After measuring the propagation times ta, tb, and tc, in other words, after a certain time has elapsed, the ultrasonic transmitter 10A is switched to the ultrasonic transmitter 10B.
When the ultrasonic pulse transmitted from the ultrasonic transmitter 10B is received by the ultrasonic receivers 20, 21, and 22, the corresponding received signals are transmitted to the controller via the relay box 30 and the pulser / receiver 31. 32.
The controller 32 measures the propagation times ta ′, tb ′, tc ′ corresponding to the ultrasonic transmitter 10B.

そして、さらに一定時間が経過した後に、超音波送波器10Bから超音波送波器10Cに切り替えられ、超音波送波器10Cから送波した超音波パルスが超音波受波器20,21,22で受波されると、上記と同様にして、対応する受信信号がリレーボックス30,パルサ・レシーバ31を介してコントローラ32に入力されて、超音波送波器10Cに対応する伝播時間ta″,tb″,tc″を計測する。
上記計測された伝播時間ta,tb,tc、ta′,tb′,tc′、ta″,tb″,tc″と、超音波受波器20,21,22の配列間隔Lに基づき、上記と同様にして測定対象物P内を伝播する超音波の伝播速度V(m/s)を平均化して算出する。これにより、さらに精確な超音波の伝播速度を算出することができる。
Then, after a certain time has passed, the ultrasonic wave transmitter 10B is switched to the ultrasonic wave transmitter 10C, and the ultrasonic pulse transmitted from the ultrasonic wave transmitter 10C is converted into the ultrasonic wave receivers 20, 21,. When the signal is received at 22, the corresponding received signal is input to the controller 32 via the relay box 30 and the pulser / receiver 31 in the same manner as described above, and the propagation time ta ″ corresponding to the ultrasonic transmitter 10 </ b> C. , Tb ″, tc ″.
Based on the measured propagation times ta, tb, tc, ta ′, tb ′, tc ′, ta ″, tb ″, tc ″ and the arrangement interval L of the ultrasonic receivers 20, 21, 22, Similarly, the propagation velocity V (m / s) of the ultrasonic wave propagating in the measurement object P is averaged and calculated, whereby a more accurate ultrasonic propagation velocity can be calculated.

なお、本発明は前述した実施形態に限るものではなく、次のように変形実施が可能である。
上記した各実施形態においては、3つの超音波受波器20,21,22を設けた例について説明したが、2つ若しくは4つ以上の超音波受波器を設けた構成にしてもよい。この場合にも、上記3つの超音波受波器20,21,22を用いて超音波の伝播速度を平均化して算出するときと同様の手法により、超音波の伝播速度を平均化して算出することができる。
The present invention is not limited to the above-described embodiment, and can be modified as follows.
In each of the above-described embodiments, an example in which three ultrasonic receivers 20, 21, and 22 are provided has been described. However, a configuration in which two or four or more ultrasonic receivers are provided may be employed. Also in this case, the ultrasonic wave propagation velocity is averaged and calculated by the same method as that used when the ultrasonic wave propagation velocity is averaged and calculated using the three ultrasonic receivers 20, 21, and 22. be able to.

上記した各実施形態においては、超音波受波器20,21,22の互いの配列間隔を一定の値に設定しているが、それは伝播速度算出手段32Bにおける超音波の伝播速度V(m/s)の算出を容易に行うためであり、従って互いの間隔を異なる値としてもよい。   In each of the above-described embodiments, the arrangement interval of the ultrasonic receivers 20, 21, and 22 is set to a constant value. This is because the ultrasonic wave propagation velocity V (m / m) in the propagation velocity calculation means 32B is set. This is to facilitate the calculation of s), and therefore, the interval between them may be a different value.

上記した各実施形態において、伝播速度算出手段32Bで算出した超音波の伝播速度に基づいて、測定対象物Pの厚みを算出する厚み算出手段32D(図3参照)を設けてもよい。
具体的には、伝播速度Vが求められていれば、測定対象物Pの厚みTは、例えば反射波の場合にはT=Vt/2で算出することができる。
In each of the above-described embodiments, the thickness calculating unit 32D (see FIG. 3) that calculates the thickness of the measurement object P may be provided based on the ultrasonic wave propagation velocity calculated by the propagation velocity calculating unit 32B.
Specifically, if the propagation velocity V is obtained, the thickness T of the measurement object P can be calculated by T = Vt / 2 in the case of a reflected wave, for example.

本発明の第一の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図である。1 is a schematic block diagram showing an overall configuration of an ultrasonic measurement apparatus according to a first embodiment of the present invention. 他の配置例にした超音波送波器と超音波受波器を含む本発明の第一の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the ultrasonic measuring device which concerns on 1st embodiment of this invention containing the ultrasonic wave transmitter and ultrasonic wave receiver which were made into the other example of arrangement | positioning. 本発明の第二の実施形態に係る超音波測定装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the ultrasonic measuring device which concerns on 2nd embodiment of this invention. 冶具の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of a jig.

符号の説明Explanation of symbols

10 超音波送波器
10A,10B,10C 超音波送波器
20,21,22 超音波受波器
32A 伝播時間計測手段
32B 伝播速度算出手段
40,45 冶具
P 測定対象物
DESCRIPTION OF SYMBOLS 10 Ultrasonic transmitter 10A, 10B, 10C Ultrasonic transmitter 20, 21, 22 Ultrasonic receiver 32A Propagation time measurement means 32B Propagation speed calculation means 40, 45 Jig P Measurement object

Claims (6)

一定の厚みを有する測定対象物内に超音波を送波する超音波送波器と、当該測定対象物内を伝播する超音波を受波しかつ既定の配列間隔にした複数の超音波受波器とを有する超音波測定装置であって、
上記超音波送波器と各超音波受波器との間で送受波される超音波のタイミングに基づき、測定対象物内を伝播する超音波の伝播時間を計測する伝播時間計測手段と、
上記各伝播時間と各超音波受波器の配列間隔に基づき、測定対象物内を伝播する超音波の伝播速度を平均化して算出する伝播速度算出手段とを有することを特徴とする超音波測定装置。
An ultrasonic transmitter that transmits ultrasonic waves into a measurement object having a certain thickness, and a plurality of ultrasonic waves that receive ultrasonic waves propagating through the measurement object and have predetermined array intervals. An ultrasonic measuring device comprising:
Propagation time measuring means for measuring the propagation time of the ultrasonic wave propagating in the measurement object based on the timing of the ultrasonic wave transmitted and received between the ultrasonic wave transmitter and each ultrasonic wave receiver,
Propagation speed calculating means for averaging and calculating the propagation speed of the ultrasonic waves propagating in the measurement object based on the propagation times and the arrangement intervals of the ultrasonic receivers. apparatus.
測定対象物の厚みをなす2つの表面の一方に超音波送波器を配し、かつ、他方に複数の超音波受波器を配列したことを特徴とする請求項1に記載の超音波測定装置。   2. The ultrasonic measurement according to claim 1, wherein an ultrasonic transmitter is arranged on one of the two surfaces forming the thickness of the measurement object, and a plurality of ultrasonic receivers are arranged on the other surface. apparatus. 測定対象物の厚みをなす2つの表面の一方又は他方に超音波送波器と複数の超音波受波器を配列したことを特徴とする請求項1に記載の超音波測定装置。   2. The ultrasonic measurement apparatus according to claim 1, wherein an ultrasonic transmitter and a plurality of ultrasonic receivers are arranged on one or the other of the two surfaces forming the thickness of the measurement object. 複数の超音波受波器を既定の配列間隔に保持するための冶具を有していることを特徴とする請求項1〜3のいずれか1項に記載の超音波測定装置。   The ultrasonic measurement apparatus according to claim 1, further comprising a jig for holding a plurality of ultrasonic receivers at a predetermined arrangement interval. 超音波送波器を所定の間隔で複数配列しているとともに、
それら超音波送波器のうち、駆動する超音波送波器を択一的に順次切り替える送波器切替え手段を有することを特徴とする請求項1〜4のいずれか1項に記載の超音波測定装置。
A plurality of ultrasonic transmitters are arranged at predetermined intervals,
The ultrasonic wave according to any one of claims 1 to 4, further comprising: a transmitter switching unit that sequentially and sequentially switches a driving ultrasonic transmitter among the ultrasonic transmitters. measuring device.
超音波送波器から一定の厚みを有する測定対象物内に超音波を送波し、当該測定対象物内を伝播する超音波を既定の配列間隔にした複数の超音波受波器により受波することより超音波の測定を行う超音波測定方法であって、
上記超音波送波器と各超音波受波器との間で送受波される超音波のタイミングに基づき、測定対象物内を伝播する超音波の伝播時間を計測し、
上記各伝播時間と各超音波受波器の配列間隔に基づき、測定対象物内を伝播する超音波の伝播速度を平均化して算出することを特徴とする超音波測定方法。
Ultrasonic waves are transmitted from an ultrasonic transmitter into a measurement object having a certain thickness, and the ultrasonic waves propagating through the measurement object are received by a plurality of ultrasonic receivers with a predetermined array interval. An ultrasonic measurement method for measuring ultrasonic waves by
Based on the timing of the ultrasonic wave transmitted and received between the ultrasonic wave transmitter and each ultrasonic wave receiver, the propagation time of the ultrasonic wave propagating in the measurement object is measured,
An ultrasonic measurement method characterized by averaging and calculating the propagation velocity of ultrasonic waves propagating in the measurement object based on the propagation times and the arrangement intervals of the ultrasonic receivers.
JP2007131378A 2007-05-17 2007-05-17 Ultrasonic measuring device and ultrasonic measuring method Pending JP2008286622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007131378A JP2008286622A (en) 2007-05-17 2007-05-17 Ultrasonic measuring device and ultrasonic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131378A JP2008286622A (en) 2007-05-17 2007-05-17 Ultrasonic measuring device and ultrasonic measuring method

Publications (1)

Publication Number Publication Date
JP2008286622A true JP2008286622A (en) 2008-11-27

Family

ID=40146482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131378A Pending JP2008286622A (en) 2007-05-17 2007-05-17 Ultrasonic measuring device and ultrasonic measuring method

Country Status (1)

Country Link
JP (1) JP2008286622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242332A (en) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic nondestructive measurement method, ultrasonic nondestructive measurement instrument, and program
JP2014194379A (en) * 2013-03-29 2014-10-09 Fuji Heavy Ind Ltd Impairment length measuring system and impairment length measuring method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257333A (en) * 1984-06-04 1985-12-19 Toshiba Corp Stress measuring method
JPH02236449A (en) * 1989-03-10 1990-09-19 Rion Co Ltd Ultrasonic measuring method and ultrasonic measurer for this method
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH04198794A (en) * 1990-11-29 1992-07-20 Yamamoto Tokuo Non-destructive measuring method by using acoustic wave of physical property of stratum
JPH05192332A (en) * 1992-01-21 1993-08-03 Shimadzu Corp Ultrasonic transmitting testing device
JPH09318607A (en) * 1996-06-03 1997-12-12 Tokimec Inc Method and device for measuring bulk wave velocity or thickness
JP2002267639A (en) * 2001-03-12 2002-09-18 Nisshin Kogyo Kk Apparatus and method for ultrasonically examining concrete structure
JP2005083774A (en) * 2003-09-05 2005-03-31 Techno Network Shikoku Co Ltd Thickness measuring instrument and thickness measuring method
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257333A (en) * 1984-06-04 1985-12-19 Toshiba Corp Stress measuring method
JPH02236449A (en) * 1989-03-10 1990-09-19 Rion Co Ltd Ultrasonic measuring method and ultrasonic measurer for this method
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH04198794A (en) * 1990-11-29 1992-07-20 Yamamoto Tokuo Non-destructive measuring method by using acoustic wave of physical property of stratum
JPH05192332A (en) * 1992-01-21 1993-08-03 Shimadzu Corp Ultrasonic transmitting testing device
JPH09318607A (en) * 1996-06-03 1997-12-12 Tokimec Inc Method and device for measuring bulk wave velocity or thickness
JP2002267639A (en) * 2001-03-12 2002-09-18 Nisshin Kogyo Kk Apparatus and method for ultrasonically examining concrete structure
JP2005083774A (en) * 2003-09-05 2005-03-31 Techno Network Shikoku Co Ltd Thickness measuring instrument and thickness measuring method
JP2006053045A (en) * 2004-08-11 2006-02-23 National Institute For Rural Engineering Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242332A (en) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic nondestructive measurement method, ultrasonic nondestructive measurement instrument, and program
JP2014194379A (en) * 2013-03-29 2014-10-09 Fuji Heavy Ind Ltd Impairment length measuring system and impairment length measuring method

Similar Documents

Publication Publication Date Title
JP2010243227A (en) Ultrasonic inspection device and ultrasonic inspection method
JP4012237B2 (en) Piping inspection method and apparatus
JP3913144B2 (en) Piping inspection method and apparatus
JP2009229355A (en) Device and method for monitoring oscillation of nuclear reactor
JP7056146B2 (en) Ultrasonic measuring device and measuring method
CN110536644B (en) Ultrasonic elasticity measurement device and method
JP2008286622A (en) Ultrasonic measuring device and ultrasonic measuring method
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JP2005043164A (en) Apparatus for measuring propagation time of sound wave
CN103841897A (en) Signal processing device and method, recording medium, and program
JP5827809B2 (en) Ultrasonic probe and method for measuring circumference of tubular object
JP2010261872A (en) Ultrasonic flowmeter
JP2016114441A (en) Ultrasonic flaw detection system and inspection method
KR102263722B1 (en) Nosie detecting device of ultrasonic sensor for vehicle and noise detecting method thereof
JPH10127632A (en) Ultrasonic diagnostic system
JP2002214205A (en) Ultrasonic flaw detector
JP5268686B2 (en) Measuring apparatus and measuring method by electromagnetic ultrasonic method
JP2001116733A (en) Ultrasonic sensor and material-measuring apparatus
JP2008510977A (en) System for forming ultrasound images by transmission using at least one piezoelectric film
JP2019215249A (en) Ultrasonic wave inspection system
JP2005292044A (en) Electromagnetic ultrasonic measuring device
JP5271638B2 (en) Flow line measurement system
JP7094192B2 (en) Ultrasonography system
JPH0375808B2 (en)
JP2012117850A (en) Position detecting method and position detecting device for ultrasound measuring probes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130401