JPH0915011A - Ultrasonic wave transmitter and receiver device - Google Patents

Ultrasonic wave transmitter and receiver device

Info

Publication number
JPH0915011A
JPH0915011A JP7160573A JP16057395A JPH0915011A JP H0915011 A JPH0915011 A JP H0915011A JP 7160573 A JP7160573 A JP 7160573A JP 16057395 A JP16057395 A JP 16057395A JP H0915011 A JPH0915011 A JP H0915011A
Authority
JP
Japan
Prior art keywords
wave
vibrator
flow rate
ultrasonic
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7160573A
Other languages
Japanese (ja)
Other versions
JP3535612B2 (en
Inventor
Isao Mizowaki
功 溝脇
Shoji Miyajima
昭治 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP16057395A priority Critical patent/JP3535612B2/en
Publication of JPH0915011A publication Critical patent/JPH0915011A/en
Application granted granted Critical
Publication of JP3535612B2 publication Critical patent/JP3535612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To accurately measure flow rate of a gas of which flow rate changes fast by using an ultrasonic wave flowmeter by weakening receiving output of reflection wave of an ultrasonic wave and enhancing accuracy of the measurement of the flow rate. CONSTITUTION: A vibrator 2 provided on the upstream side in a flow tube 1 and a vibrator 3 provided in on the downstream side therein are disposed to be inclined at angle α to each other. The receiving level of a reflection wave which is incident on the vibrator 3 by being reflected by the vibrator 2 after reflected by the vibrator 3 is relatively weaker than the receiving level of a signal wave which is outputted from the vibrator 2 to be directly received by the vibrator 3, so that the measurement accuracy is not adversely affected thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来の技術】超音波の速度とそれを伝える流体の速度
にはベクトル加算が成り立つことを利用して、流体の流
れる向きに対して順方向と逆方向に超音波を発射させ、
その伝搬時間(到着時間)の差を測定することによって
流体の速度(流量)を測定する伝搬速度差法を用いた流
量測定方法が公知である(例えば、昭和54年日刊工業
新聞社発行、流量計測ハンドブック、P246〜260
参照)。
2. Description of the Related Art Utilizing the fact that vector addition is established between the velocity of an ultrasonic wave and the velocity of a fluid transmitting it, an ultrasonic wave is emitted in the forward direction and the reverse direction with respect to the flowing direction of the fluid,
A flow rate measurement method using a propagation velocity difference method for measuring the velocity (flow rate) of a fluid by measuring the difference in the propagation time (arrival time) is known (for example, published by Nikkan Kogyo Shimbun in 1979, flow rate). Measurement Handbook, P246-260
reference).

【0002】この流量測定方法では、図3に示すよう
に、流管1の上流と下流に離れて対向配置した超音波振
動子2、3を送波器又は受波器として用いたときの順方
向と逆方向の伝搬時間tdとtuとから、流体の速度V
を V=(tu−td)・C2 /2Lcosθ として求める時間差法や、 V=〔(1/td)−(1/tu)〕・L/2cosθ として求める時間逆数差法等がある。
In this flow rate measuring method, as shown in FIG. 3, the order in which the ultrasonic transducers 2 and 3 arranged facing each other at an upstream side and a downstream side of the flow tube 1 are used as a wave transmitter or a wave receiver, respectively. From the propagation times td and tu in the opposite direction, the velocity V of the fluid
There is a time difference method for obtaining V = (tu-td) · C 2 / 2Lcosθ, and a time reciprocal difference method for obtaining V = [(1 / td) − (1 / tu)] · L / 2cosθ.

【0003】なお、Cは音速、Lは振動子2と振動子3
の距離、θは振動子2の中心2aと振動子3の中心3a
を結ぶ直線が流体の速度ベクトルV(つまり管1の軸
心)となす角度である。
C is the speed of sound, L is the vibrator 2 and the vibrator 3.
, Θ is the center 2a of the vibrator 2 and the center 3a of the vibrator 3
The straight line connecting the lines is the angle formed by the velocity vector V of the fluid (that is, the axis of the tube 1).

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術では、
振動子2と3が互いに真正面を向いて対向配置されてい
るので、一方の振動子2を送波器としてパルス駆動する
と、図4に符号イで示すような波形の信号波が他方の振
動子(受波器)3に受信される。この信号波は振動子3
の表面で反射して振動子2の表面に戻り、振動子2の表
面で反射して、振動子3に図4で符号ロで示す波形の反
射波として受信される。
In the above prior art,
Since the oscillators 2 and 3 are arranged so as to face each other and face each other, when one of the oscillators 2 is pulse-driven as a wave transmitter, a signal wave having a waveform as indicated by reference numeral a in FIG. (Receiver) 3 receives. This signal wave is the oscillator 3
Is reflected by the surface of the oscillator 2, returns to the surface of the oscillator 2, is reflected by the surface of the oscillator 2, and is received by the oscillator 3 as a reflected wave having a waveform indicated by reference numeral B in FIG.

【0005】振動子2と3の間の距離Lが100〜20
0mmで、伝搬媒体としての被計測流体が気体で、かつ超
音波の周波数つまり駆動周波数が100kHz〜300
kHzの条件で図3のように両振動子2と3を相対向さ
せて配置した場合の反射波の受信出力は、振動子面での
反射による損失及び媒体(気体)伝搬中の損失により信
号波の受信出力の1/10程度の大きさとなる。
The distance L between the vibrators 2 and 3 is 100 to 20.
At 0 mm, the fluid to be measured is a gas, and the frequency of ultrasonic waves, that is, the driving frequency is 100 kHz to 300.
The received output of the reflected wave when the two oscillators 2 and 3 are arranged opposite to each other under the condition of kHz as shown in FIG. 3 is a signal due to the loss due to the reflection on the oscillator surface and the loss during the medium (gas) propagation. It is about 1/10 of the received output of the wave.

【0006】ところが一般に超音波の到達(伝搬)時間
tdやtuは図4に示す信号波イの第3波又は第5波で
検出するため受信信号の出力が小さい。そのため両振動
子を相対向させると、媒体の温度や流速が変化して信号
波に反射波が重なった場合に反射波が雑音となり、超音
波の到達時間を正確に検出できなくて、流量計測に無視
できない程の誤差を生じ、流量変化が速い流れを正確に
測定できないという問題点があった。
However, in general, the arrival (propagation) time td or tu of the ultrasonic wave is detected by the third wave or the fifth wave of the signal wave A shown in FIG. 4, so that the output of the received signal is small. Therefore, if both transducers face each other, when the temperature and flow velocity of the medium change and the reflected wave overlaps with the signal wave, the reflected wave becomes noise and the arrival time of the ultrasonic wave cannot be detected accurately, and the flow rate measurement However, there was a problem that an error that cannot be ignored was generated, and a flow with a rapid flow rate change could not be accurately measured.

【0007】そこで、本発明はこのような問題点を解消
できる超音波流量計の超音波送受信装置を提供すること
を目的とする。
Therefore, it is an object of the present invention to provide an ultrasonic wave transmitting / receiving device for an ultrasonic flowmeter which can solve the above problems.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の超音波送受信装置は、流管(1)の上流と
下流に対向配置された一組の振動子(2)(3)の距離
が100〜200mmで、伝播媒体が気体で、駆動周波数
が100〜300kHzで、かつ信号波の第3波又は第
5波を検出して伝搬時間を計測し、この伝搬時間から流
体の流量を測定する超音波流量計において、前記一組の
振動子を構成する振動子(2)(3)の送・受信面が相
対向する位置より4〜8°傾けて配置されたことを特徴
とするものである。
In order to achieve the above-mentioned object, the ultrasonic transmitting / receiving apparatus of the present invention comprises a pair of transducers (2) (3) arranged to face each other upstream and downstream of the flow tube (1). ) Is 100 to 200 mm, the propagation medium is gas, the driving frequency is 100 to 300 kHz, and the propagation time is measured by detecting the third wave or the fifth wave of the signal wave. In an ultrasonic flow meter for measuring a flow rate, the transmitter / receiver surfaces of the vibrators (2) and (3) forming the set of vibrators are arranged at an angle of 4 to 8 ° from the opposite positions. It is what

【0009】[0009]

【作用】反射波が受波器に入射する入射角が大きくなる
ので、反射波の受信出力が信号波の受信出力に対して小
さな比率になり、いわゆるS/Nが向上する。
Since the incident angle at which the reflected wave enters the receiver becomes large, the received output of the reflected wave becomes a small ratio to the received output of the signal wave, and so-called S / N is improved.

【0010】[0010]

【実施例】図1は実施例で、1は流管、2と3は流管1
の上流と下流に間隔を100〜200mm離して配置した
一組の超音波振動子、2a、3aは各振動子2、3の振
動面の中心、θは両中心2a、3aを結ぶ直線と媒体
(気体)の速度ベクトルVとの交差する角度、αは振動
子2、3を傾けた角度で、4〜8°に定めている。なお
超音波の駆動周波数は100〜300kHzである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment in which 1 is a flow tube and 2 and 3 are flow tubes 1.
Of ultrasonic transducers 2a and 3a, which are arranged at intervals of 100 to 200 mm upstream and downstream of the transducer, are the centers of the vibrating surfaces of the transducers 2 and 3, and θ is a straight line connecting the centers 2a and 3a and the medium The angle at which the (gas) velocity vector V intersects, α is the angle at which the vibrators 2 and 3 are tilted, and is set to 4 to 8 °. The driving frequency of ultrasonic waves is 100 to 300 kHz.

【0011】一方の振動子を100〜300kHzの超
音波でパルス駆動したときの伝搬時間(到達時間)td
やtuは、信号波の第3波又は第5波を検出して計測す
る。そしてこの伝搬時間から流速Vを算出し、最終的に
流量を算出する。
Propagation time (arrival time) td when one oscillator is pulse-driven by an ultrasonic wave of 100 to 300 kHz
And tu detect and measure the third wave or the fifth wave of the signal wave. Then, the flow velocity V is calculated from this propagation time, and finally the flow rate is calculated.

【0012】因みに、傾きの角度αを0°から10°の
範囲で変化させたときの信号波の受信出力と反射波の受
信出力の最大振巾AとBは表1のようで、同表にAとB
の比率B/Aも示す。このB/AはいわばS/Nに相当
する。
Incidentally, Table 1 shows the maximum amplitudes A and B of the received output of the signal wave and the received output of the reflected wave when the inclination angle α is changed in the range of 0 ° to 10 °. To A and B
The ratio B / A of is also shown. This B / A corresponds to S / N, so to speak.

【0013】[0013]

【表1】 [Table 1]

【0014】従って、傾きαを4〜8°にすると、信号
波受信出力Aは、αが0°の場合より小さくなるが、十
分実用になる値である。またαを4〜8°にすると反射
波の受信出力Bが小さくなり、いわゆるS/Nに相当す
るB/Aが小さくなるため、反射波が信号波に重なって
も支障にならない。そのためパルス駆動間隔を短くし
て、計測間隔を短くできる。
Therefore, when the inclination α is set to 4 to 8 °, the signal wave reception output A becomes smaller than that when α is 0 °, but is a value that is sufficiently practical. Further, when α is set to 4 to 8 °, the reception output B of the reflected wave becomes small and B / A corresponding to so-called S / N becomes small, so that there is no problem even if the reflected wave overlaps the signal wave. Therefore, the pulse drive interval can be shortened and the measurement interval can be shortened.

【0015】その結果、流量変化の速い気体の流量を正
確に測定できる。また、測定を連続的に繰り返すことが
できるため、その面からも流量測定の精度を向上でき
る。なお、図2は送波器2と受波器3を、相対向する位
置からずらして配置した場合の超音波信号の反射の有様
を示す模式図で、信号波は受信器3へ角度α1 の入射角
で受信されるが、反射波は受波器3へ大きな入射角α2
で受信される。そのためα2 >α1 となり、反射波は計
測上問題ない程度に弱められる。そして信号波は受信器
3の中心3aからわずかにずれ、その入射角も0°から
わずかα1 だけずれるので、信号の大きさは幾分減少す
るが、計測には支障がない程度におさまる。図2で、4
は信号波、5は反射波を示す。
As a result, the flow rate of gas whose flow rate changes rapidly can be measured accurately. In addition, since the measurement can be continuously repeated, the accuracy of the flow rate measurement can be improved in that respect as well. 2 is a schematic diagram showing the reflection of ultrasonic signals when the wave transmitter 2 and the wave receiver 3 are arranged so as to be displaced from the positions facing each other. Although received at an incident angle of 1 , the reflected wave enters the receiver 3 at a large incident angle α 2
Received at. Therefore, α 2 > α 1 , and the reflected wave is weakened to the extent that there is no problem in measurement. Then, the signal wave slightly shifts from the center 3a of the receiver 3 and the incident angle thereof also deviates from 0 ° by only α 1, so that the magnitude of the signal is somewhat reduced, but it does not hinder the measurement. In FIG. 2, 4
Indicates a signal wave, and 5 indicates a reflected wave.

【0016】[0016]

【発明の効果】本発明の超音波送受信装置は上述のよう
に構成されているので、送波器(振動子)を短い間隔で
駆動し、流量測定間隔を短くできるため、流量変化の速
い気体の流量を精度良く測定できる。
Since the ultrasonic transmitter / receiver of the present invention is configured as described above, the wave transmitter (vibrator) can be driven at a short interval and the flow rate measurement interval can be shortened. The flow rate can be measured accurately.

【0017】また、効果的に測定の繰り返しを利用し
て、連続計測できるため、流量測定の分解能が上げられ
る。
Further, since the measurement can be continuously performed by effectively utilizing the repetition of the measurement, the resolution of the flow rate measurement can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

【図2】図1の実施例で、信号波と反射波の受波器(振
動子)への入射角を説明する模式図である。
FIG. 2 is a schematic diagram for explaining an incident angle of a signal wave and a reflected wave on a wave receiver (vibrator) in the embodiment of FIG.

【図3】従来技術の縦断面図である。FIG. 3 is a vertical sectional view of a conventional technique.

【図4】受波器(振動子)で受信される信号波と反射波
の出力波形を示す線図である。
FIG. 4 is a diagram showing output waveforms of a signal wave and a reflected wave received by a wave receiver (vibrator).

【符号の説明】[Explanation of symbols]

1 流管 2、3 振動子 2a、3a 振動子の中心 θ 両振動子2、3の中心2a、3aを結ぶ直
線と流速ベクトルVのなす角度 α 傾き
1 Flow tube 2, 3 Oscillator 2a, 3a Center of oscillator θ Angle α formed by a straight line connecting the centers 2a, 3a of both oscillators 2, 3 and the flow velocity vector V

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流管(1)の上流と下流に対向配置され
た一組の振動子(2)(3)の距離が100〜200mm
で、伝搬媒体が気体で、駆動周波数が100〜300k
Hzで、かつ信号波の第3波又は第5波を検出して伝搬
時間を計測し、この伝搬時間から流体の流量を測定する
超音波流量計において、 前記一組の振動子を構成する振動子(2)(3)の送・
受信面が相対向する位置より4〜8°傾けて配置された
ことを特徴とする超音波送受信装置。
1. A distance between a pair of vibrators (2) and (3) arranged facing each other upstream and downstream of the flow tube (1) is 100 to 200 mm.
The propagation medium is gas and the driving frequency is 100 to 300k.
In the ultrasonic flow meter, which measures the propagation time by detecting the third wave or the fifth wave of the signal wave at Hz, and measuring the flow rate of the fluid from this propagation time, a vibration forming the set of vibrators. Sending children (2) (3)
An ultrasonic transmitting / receiving device, wherein the receiving surfaces are arranged at an angle of 4 to 8 ° from the opposite positions.
JP16057395A 1995-06-27 1995-06-27 Ultrasound transceiver Expired - Fee Related JP3535612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16057395A JP3535612B2 (en) 1995-06-27 1995-06-27 Ultrasound transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16057395A JP3535612B2 (en) 1995-06-27 1995-06-27 Ultrasound transceiver

Publications (2)

Publication Number Publication Date
JPH0915011A true JPH0915011A (en) 1997-01-17
JP3535612B2 JP3535612B2 (en) 2004-06-07

Family

ID=15717895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16057395A Expired - Fee Related JP3535612B2 (en) 1995-06-27 1995-06-27 Ultrasound transceiver

Country Status (1)

Country Link
JP (1) JP3535612B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666244B2 (en) 2000-07-25 2003-12-23 Nichiha Corporation Building board and manufacturing method thereof
WO2004036152A1 (en) * 2002-10-16 2004-04-29 Murata Manufacturing Co., Ltd. Ultrasonic flow meter and wave transmission/reception device
JP2008261817A (en) * 2007-04-13 2008-10-30 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2009058444A (en) * 2007-08-31 2009-03-19 Institute Of National Colleges Of Technology Japan Flowmeter for artificial respirator
JP2016099139A (en) * 2014-11-18 2016-05-30 愛知時計電機株式会社 Ultrasonic flowmeter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666244B2 (en) 2000-07-25 2003-12-23 Nichiha Corporation Building board and manufacturing method thereof
WO2004036152A1 (en) * 2002-10-16 2004-04-29 Murata Manufacturing Co., Ltd. Ultrasonic flow meter and wave transmission/reception device
JP2008261817A (en) * 2007-04-13 2008-10-30 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2009058444A (en) * 2007-08-31 2009-03-19 Institute Of National Colleges Of Technology Japan Flowmeter for artificial respirator
JP2016099139A (en) * 2014-11-18 2016-05-30 愛知時計電機株式会社 Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP3535612B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
EP0713080B1 (en) Method and device for measuring with sing-around technique
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
JP2002131105A (en) Ultrasonic flow rate measuring method
US7806003B2 (en) Doppler type ultrasonic flow meter
JPH05223608A (en) Ultrasonic flowmeter
JP3535612B2 (en) Ultrasound transceiver
JP3692689B2 (en) Flowmeter
JP3436179B2 (en) Ultrasonic flowmeter and flow measurement method
JP6187343B2 (en) Ultrasonic measuring instrument
JP2007064792A (en) Ultrasonic flow measuring instrument
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JP2005300244A (en) Ultrasonic flow meter
JPH0710252Y2 (en) Ultrasonic probe
SU1603290A1 (en) Apparatus for ultrasonic inspection of surface layer of materials
JPS61100616A (en) Apparatus for measuring flow amount
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JPH09236462A (en) Ultrasonic flowmeter
JPH07218242A (en) Peripheral length measuring apparatus
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JPH0627089A (en) Velocity measuring apparatus for surface acoustic wave
JPH05172793A (en) Sound characteristic value measuring device
JPH0361892B2 (en)
SU735922A1 (en) Correlation rate-of-flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees