JPH11148848A - Method for judging pulse skip in measuring ultrasonic wave propagation time - Google Patents

Method for judging pulse skip in measuring ultrasonic wave propagation time

Info

Publication number
JPH11148848A
JPH11148848A JP31513097A JP31513097A JPH11148848A JP H11148848 A JPH11148848 A JP H11148848A JP 31513097 A JP31513097 A JP 31513097A JP 31513097 A JP31513097 A JP 31513097A JP H11148848 A JPH11148848 A JP H11148848A
Authority
JP
Japan
Prior art keywords
pulse
propagation time
ultrasonic wave
ultrasonic
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31513097A
Other languages
Japanese (ja)
Inventor
Shigenori Okamura
繁憲 岡村
Akio Tomita
明男 冨田
Takaomi Ikada
隆臣 筏
Toru Yoshioka
徹 吉岡
Akio Kono
明夫 河野
Eiji Nakamura
英司 中村
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP31513097A priority Critical patent/JPH11148848A/en
Publication of JPH11148848A publication Critical patent/JPH11148848A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for judging pulse skip which judges whether a pulse skip has occurred or not. SOLUTION: A transmitter and a receiver are provided with an interval in a medium, and the ultrasonic wave transmitted from the transmitter is detected with the receiver, and the propagation time of ultrasonic wave in a medium is measured based on a time point when the level of a reference pulse P1 in a pulse train forming a reception oscillation wave reaches a threshold value VTH. Here, the measurement is continuously performed by a plurality of times to obtain a maximum value and a minimum value of the propagation time. When the difference between the maximum value and the minimum value corresponds to the oscillation cycle of a ultrasonic wave element, a pulse skip wherein a next pulse P3 skips the reference pulse P12 to reach the threshold value VTH is judged to have occurred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば超音波を
利用してガスその他の流体の流速を測定する超音波流速
測定方法に用いられる、超音波伝搬時間の測定における
パルス飛び判定方法に関し、より具体的には、受信振動
波を形成するパルス列のうち超音波伝搬時間を確定する
ための基準パルスとしきい値の関係に狂いを生じている
か否かを判定するパルス飛び判定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a pulse jump in measuring an ultrasonic propagation time used in an ultrasonic flow velocity measuring method for measuring the flow velocity of a gas or other fluid using ultrasonic waves, for example. More specifically, the present invention relates to a pulse jump determination method for determining whether or not the relationship between a reference pulse for determining an ultrasonic wave propagation time in a pulse train forming a received vibration wave and a threshold value is out of order.

【0002】[0002]

【従来の技術】上記のような超音波流速測定方法は、計
測媒体の上流側と下流側にそれぞれ送波器及び受波器を
配置し、前記各送波器の超音波発信素子に駆動パルスを
印加して相互に超音波を発生送信するとともに、送信さ
れた超音波を相互に受波器で受信し、各受信波の比較か
ら求めた超音波の伝搬時間の差に基いて流速を測定する
方法である。このような流速測定は、例えばガスその他
の流量を求める場合等に実施されるものである。
2. Description of the Related Art An ultrasonic flow velocity measuring method as described above is arranged such that a transmitter and a receiver are arranged on an upstream side and a downstream side of a measuring medium, respectively, and a driving pulse is applied to an ultrasonic transmitting element of each of the transmitters. To generate and transmit ultrasonic waves to each other, receive the transmitted ultrasonic waves with each other, and measure the flow velocity based on the difference in the propagation time of the ultrasonic waves obtained from the comparison of each received wave How to Such a flow velocity measurement is performed, for example, when obtaining a flow rate of a gas or the like.

【0003】ところで、超音波素子は2次の振動系であ
って静電容量とインダクタンスよりなる2次の振動回路
と考えることができるため、受信波の振動波形は図2
(イ)に示すように、徐々に振幅が大きくなったのち減
衰する形となる。そして、この受信波の正側半波を形成
するパルス列のうちの所定の基準パルスP1 がしきい値
VTHに達した時点t1 をもって送信波の受波器への到達
時点とみなし、超音波の伝搬時間が確定される。
Since the ultrasonic element is a secondary vibration system and can be considered as a secondary vibration circuit composed of capacitance and inductance, the vibration waveform of the received wave is shown in FIG.
As shown in (a), the amplitude gradually increases and then attenuates. The time point t1 at which the predetermined reference pulse P1 of the pulse train forming the positive half wave of the received wave reaches the threshold value VTH is regarded as the time point at which the transmitted wave arrives at the receiver, and the propagation of the ultrasonic wave is performed. The time is fixed.

【0004】[0004]

【発明が解決しようとする課題】前記のような超音波流
速測定において、流速の増大等に起因して超音波の受信
波形が減衰することがある。そして、減衰の程度が大き
くなると、図2(ロ)のように、受信波の基準パルスP
1 のピーク電圧値がしきい値VTHを下回り、前記基準パ
ルスP1 を超えて次のパルスP3 がしきい値VTHに達す
るというパルス飛びが生じ得る。
In the ultrasonic flow velocity measurement as described above, the reception waveform of the ultrasonic wave may be attenuated due to an increase in the flow velocity or the like. Then, when the degree of attenuation increases, as shown in FIG.
A pulse jump may occur in which the peak voltage value of 1 falls below the threshold value VTH, exceeds the reference pulse P1, and the next pulse P3 reaches the threshold value VTH.

【0005】しかし、この場合には、基準パルスP1 の
次のパルスP3 がしきい値VTHに達した時点t2 が送信
波の受波器への到達時点とみなされるため、超音波の伝
搬時間に誤差を生じ、ひいては高精度な流速測定等を行
うことができないという欠点があった。
However, in this case, the time point t2 at which the pulse P3 following the reference pulse P1 reaches the threshold value VTH is regarded as the time point at which the transmitted wave reaches the receiver. There is a drawback that an error is generated and, as a result, high-precision flow measurement or the like cannot be performed.

【0006】この発明は、このような欠点を解消するた
めになされたものであって、超音波伝搬時間の測定にお
いて、上記のようなパルス飛びを生じているか否かを判
定するためのパルス飛び判定方法の提供を課題とする。
The present invention has been made to solve such a drawback, and a pulse jump for determining whether or not the above-described pulse jump has occurred in the measurement of the ultrasonic propagation time. It is an object to provide a determination method.

【0007】[0007]

【課題を解決するための手段】上記課題は、媒体中に送
波器と受波器を離間配置し、前記送波器から送信された
超音波を前記受波器により受信するとともに、受信振動
波を形成するパルス列における基準パルスのレベルがし
きい値に達した時点に基いて媒体中の超音波の伝搬時間
を測定するに際し、前記測定を連続的に複数回行って伝
搬時間の最大値と最小値を求め、これらの最大値と最小
値の差が超音波素子の振動周期に対応する場合には、前
記基準パルスを超えて次のパルスがしきい値に達するパ
ルス飛びを生じているものと判定することを特徴とする
超音波伝搬時間のパルス飛び判定方法によって解決され
る。
SUMMARY OF THE INVENTION The object of the present invention is to dispose a transmitter and a receiver separately in a medium, receive the ultrasonic wave transmitted from the transmitter by the receiver, and receive the ultrasonic wave. When measuring the propagation time of the ultrasonic wave in the medium based on the time when the level of the reference pulse in the pulse train forming the wave reaches the threshold value, the maximum value of the propagation time by performing the measurement continuously plural times. A minimum value is obtained, and if the difference between the maximum value and the minimum value corresponds to the vibration period of the ultrasonic element, a pulse jump exceeding the reference pulse and reaching the threshold value of the next pulse is generated. This is solved by a method of determining a pulse jump of the ultrasonic wave propagation time, characterized in that

【0008】上記構成によれば、伝搬時間の最小値は基
準パルスとしきい値との関係に基いて得られた値であ
り、最大値はパルス飛びを生じて基準パルスの次のパル
スとしきい値との関係に基いて得られた値である。そし
て、基準パルスと次のパルスとは、受信波の振動周期の
一周期相当分だけ位相がずれているから、前記伝搬時間
の最大値と最小値の差は、受信波の周期にほぼ等しい。
また受信波の振動周期は超音波素子の振動周期に等しい
から、伝搬時間の最大値と最小値の差が超音波素子の振
動周期にほぼ等しいときは、パルス飛びが発生している
と判定することができる。
According to the above configuration, the minimum value of the propagation time is a value obtained based on the relationship between the reference pulse and the threshold value, and the maximum value is a pulse which causes a pulse jump and the next pulse of the reference pulse and the threshold value. Is a value obtained based on the relationship with Since the reference pulse and the next pulse are out of phase by an amount corresponding to one oscillation cycle of the received wave, the difference between the maximum value and the minimum value of the propagation time is substantially equal to the cycle of the received wave.
Since the oscillation cycle of the received wave is equal to the oscillation cycle of the ultrasonic element, when the difference between the maximum value and the minimum value of the propagation time is substantially equal to the oscillation cycle of the ultrasonic element, it is determined that a pulse jump has occurred. be able to.

【0009】[0009]

【発明の実施の形態】図1はこの発明の一実施形態を実
施するための超音波流速測定装置の概略構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram of an ultrasonic flow velocity measuring device for carrying out an embodiment of the present invention.

【0010】図1において、1は内部を矢印方向にガス
等の流体が流れる管路である。この管路1内には、流れ
方向の上流側及び下流側に、所定距離を隔てて送受波器
2、3が配置されている。
In FIG. 1, reference numeral 1 denotes a conduit through which a fluid such as gas flows in the direction of an arrow. In the pipe 1, the transducers 2 and 3 are arranged at a predetermined distance on the upstream side and the downstream side in the flow direction.

【0011】前記の各送受波器2、3は送波器と受波器
を兼ねるもので、振動子からなる超音波発信兼受信素子
(図示略)を備えている。そして、この超音波発信兼受
信素子がパルス発生回路4からの駆動パルスにより駆動
されて振動し、超音波を発生送信する一方、送信されて
きた超音波を受信して超音波発信兼受信素子が振動した
時の受信波が、増幅回路5から電気信号として出力され
るものとなされている。
Each of the transducers 2 and 3 serves as both a transducer and a transducer, and includes an ultrasonic transmitting / receiving element (not shown) composed of a vibrator. The ultrasonic transmitting / receiving element is driven and vibrated by the driving pulse from the pulse generation circuit 4 to generate and transmit an ultrasonic wave, while receiving the transmitted ultrasonic wave and transmitting and receiving the ultrasonic wave. The received wave when vibrated is output from the amplifier circuit 5 as an electric signal.

【0012】そして、上流側送受波器2から流れに対し
て順方向に送信された超音波が下流側送受波器3で受信
されるまでの伝搬時間と、下流側送受波器3から流れに
対して逆方向に送信された超音波が上流側送受波器2で
受信されるまでの伝搬時間との差は、流速に関係するこ
とから、この伝搬時間差を求めることにより流体の流速
を測定するものとなされている。なお、図1において、
6は各送受波器2、3とパルス発生回路4及び増幅回路
5の接続を切替える切替回路であり、まずパルス発生回
路4と上流側送受波器2、下流側送受波器3と増幅回路
5を接続して、上流側から下流側への伝搬時間を測定し
たのち、該切替回路6の作動によりパルス発生回路4と
下流側送受波器3、上流側送受波器2と増幅回路5とが
接続されるように切替えて、下流側から上流側への伝搬
時間を測定するものとなされている。
The propagation time until the ultrasonic wave transmitted from the upstream transducer 2 in the forward direction to the flow is received by the downstream transducer 3 and the flow from the downstream transducer 3 to the flow On the other hand, since the difference from the propagation time until the ultrasonic wave transmitted in the opposite direction is received by the upstream transducer 2 is related to the flow velocity, the flow velocity of the fluid is measured by obtaining the propagation time difference. It has been done. In FIG. 1,
Reference numeral 6 denotes a switching circuit for switching the connection between each of the transducers 2 and 3, the pulse generator 4 and the amplifier 5, and firstly, the pulse generator 4 and the upstream transducer 2, the downstream transducer 3 and the amplifier 5 And after measuring the propagation time from the upstream side to the downstream side, the operation of the switching circuit 6 causes the pulse generation circuit 4 and the downstream side transducer 3, and the upstream side transducer 2 and the amplification circuit 5 to connect with each other. The connection time is switched so that the propagation time from the downstream side to the upstream side is measured.

【0013】前記増幅回路5から出力される受信波の振
動波形は、図2(イ)のように、徐々に振幅が大きくな
ったのち減衰する形となる。この実施形態では、受信後
の第4波まで振幅が増大したのち減衰するものとなされ
るとともに、正側半波からなるパルス列のうち、第3番
目のパルスを基準パルスP1 に設定している。
As shown in FIG. 2A, the oscillation waveform of the received wave output from the amplifier circuit 5 has a shape that gradually increases in amplitude and then attenuates. In this embodiment, the amplitude is increased to the fourth wave after reception and then attenuated, and the third pulse of the pulse train composed of the positive half-wave is set as the reference pulse P1.

【0014】図1において、7は所定のしきい値VTHと
前記基準パルスP1 の電圧レベルを比較して、基準パル
スP1 の電圧レベルがしきい値に達すると到達信号を出
力する比較回路、8は超音波が送信されてから前記到達
信号が出力されるまでの伝搬時間を演算するとともに、
伝搬時間の測定を連続して複数回繰り返し行った場合の
最大値、最小値の差、及び平均値を演算する演算回路で
ある。
In FIG. 1, reference numeral 7 denotes a comparison circuit which compares a predetermined threshold value VTH with the voltage level of the reference pulse P1, and outputs a reaching signal when the voltage level of the reference pulse P1 reaches the threshold value. While calculating the propagation time from the transmission of the ultrasound until the arrival signal is output,
This is an arithmetic circuit that calculates the difference between the maximum value and the minimum value and the average value when the measurement of the propagation time is repeated a plurality of times continuously.

【0015】前記しきい値VTHは、受信波における前記
基準パルスP1 の直前のパルスP2のピーク電圧値より
も高くかつ基準パルスP1 のピーク電圧値よりも低い所
定の値に設定されている。従って、通常は、受信波の前
記基準パルスP1 がしきい値VTHとクロスし、このクロ
スしたタイミングt1 をもって受信波の到達が判断され
る。しかし、流速が増大すると図2(ロ)のように超音
波の受信波形が減衰し、減衰の程度が大きくなると、前
述したようなパルス飛びが発生する。
The threshold value VTH is set to a predetermined value higher than the peak voltage value of the pulse P2 immediately before the reference pulse P1 in the received wave and lower than the peak voltage value of the reference pulse P1. Therefore, normally, the reference pulse P1 of the received wave crosses the threshold value VTH, and the arrival of the received wave is determined at the crossing timing t1. However, when the flow velocity increases, the reception waveform of the ultrasonic wave is attenuated as shown in FIG. 2 (b), and when the degree of attenuation increases, the pulse jump occurs as described above.

【0016】そこで、以下のようにしてパルス飛びの有
無を判定する。即ち、流速測定中の所定の時期に、連続
する複数回(例えば50回)の測定値について、演算回
路8によりその最小値、最大値及び平均値を演算する。
而して、パルス飛びが発生していない状態では、基準パ
ルスP1 の電圧レベルがしきい値VTHに到達したタイミ
ングt1 に基づいて伝搬時間が得られ、これが最小値と
なる。一方、パルス飛びが発生している状態では、図2
(ロ)のように、基準パルスP1 の次のパルスP3 の電
圧レベルがしきい値VTHに到達したタイミングt2 に基
づいて伝搬時間が得られ、これが最大値となる。そし
て、最大値と最小値の差は、図2に示すように基準パル
スP1 がしきい値VTHに到達してから次のパルスP3 が
しきい値VTHに到達するまでの時間Tに等しく、この時
間Tは受信波の振動周期にほぼ等しい。
Therefore, the presence or absence of a pulse jump is determined as follows. That is, the arithmetic circuit 8 calculates the minimum value, the maximum value, and the average value of a plurality of continuous (eg, 50) measurement values at a predetermined time during the flow velocity measurement.
Thus, when no pulse jump occurs, the propagation time is obtained based on the timing t1 at which the voltage level of the reference pulse P1 reaches the threshold value VTH, and this is the minimum value. On the other hand, in the state where the pulse jump has occurred, FIG.
As shown in (b), the propagation time is obtained based on the timing t2 when the voltage level of the pulse P3 following the reference pulse P1 reaches the threshold value VTH, and this is the maximum value. The difference between the maximum value and the minimum value is equal to the time T from the time when the reference pulse P1 reaches the threshold value VTH until the time when the next pulse P3 reaches the threshold value VTH, as shown in FIG. The time T is substantially equal to the oscillation period of the received wave.

【0017】一方、受信波は超音波素子の周波数に対応
する周期にて振動するから、この周期を容易に知ること
ができる。例えば40KHzの超音波素子の場合、受信
波の振動周期は25μmである。
On the other hand, since the received wave oscillates at a cycle corresponding to the frequency of the ultrasonic element, this cycle can be easily known. For example, in the case of a 40 KHz ultrasonic element, the oscillation period of the received wave is 25 μm.

【0018】そこで、前記により求めた伝搬時間の最大
値と最小値の差が、受信波の振動周期(前記の例で言え
ば25μm)にほぼ等しければ、パルス飛びが発生して
いると判断することができる。また、パルス飛びの発生
頻度の大小に応じて、伝搬時間の平均値も大小に変化す
ることから、演算回路8により求めた伝搬時間の平均値
に基づいてパルス飛びの発生頻度を推測することができ
る。
Therefore, if the difference between the maximum value and the minimum value of the propagation time obtained as described above is substantially equal to the oscillation period of the received wave (25 μm in the above example), it is determined that a pulse jump has occurred. be able to. In addition, since the average value of the propagation time changes according to the magnitude of the frequency of the pulse jump, the frequency of the pulse jump can be estimated based on the average value of the propagation time obtained by the arithmetic circuit 8. it can.

【0019】こうして、パルス飛びの発生の有無や発生
頻度を把握し、これに基づいて通常の測定により得られ
た測定データを補正等することにより、精度の高い超音
波流速測定を行うことができ、ひいては流体の高精度な
流速計測(流量測定)を行うことができる。
In this way, the presence / absence and frequency of occurrence of a pulse jump can be ascertained, and the measurement data obtained by ordinary measurement can be corrected based on the information, so that a highly accurate ultrasonic flow velocity measurement can be performed. Thus, the flow velocity measurement (flow rate measurement) of the fluid with high accuracy can be performed.

【0020】[0020]

【発明の効果】この発明は上述の次第で、媒体中に送波
器と受波器を離間配置し、前記送波器から送信された超
音波を前記受波器により受信するとともに、受信振動波
を形成するパルス列における基準パルスのレベルがしき
い値に達した時点に基いて媒体中の超音波の伝搬時間を
測定するに際し、前記測定を連続的に複数回行って伝搬
時間の最大値と最小値を求め、これらの最大値と最小値
の差が超音波素子の振動周期に対応する場合には、前記
基準パルスを超えて次のパルスがしきい値に達するパル
ス飛びを生じているものと判定することを特徴とするも
のであるから、パルス飛びを生じているか否かを簡単に
調べることができ、ひいては超音波伝搬時間を高精度に
測定することが可能となる。
As described above, according to the present invention, a transmitter and a receiver are separately arranged in a medium, the ultrasonic wave transmitted from the transmitter is received by the receiver, and the receiving vibration When measuring the propagation time of the ultrasonic wave in the medium based on the time when the level of the reference pulse in the pulse train forming the wave reaches the threshold value, the maximum value of the propagation time by performing the measurement continuously plural times. A minimum value is obtained, and if the difference between the maximum value and the minimum value corresponds to the vibration period of the ultrasonic element, a pulse jump exceeding the reference pulse and reaching the threshold value of the next pulse is generated. Therefore, it is possible to easily determine whether or not a pulse jump has occurred, and it is possible to measure the ultrasonic wave propagation time with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を説明するための超音波
流速測定装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an ultrasonic flow velocity measuring device for explaining an embodiment of the present invention.

【図2】(イ)はパルス飛びを生じていないときの
(ロ)はパルス飛びを生じているときのそれぞれ受信波
の波形図である。
FIG. 2A is a waveform diagram of a received wave when a pulse jump does not occur, and FIG. 2B is a waveform diagram of a received wave when a pulse jump occurs.

【符号の説明】[Explanation of symbols]

2、3…送受波器 4…パルス発生回路 5…増幅回路 7…比較回路 8…演算回路 P1 …基準パルス VTH…しきい値 2, 3 ... transducer 4 ... pulse generation circuit 5 ... amplification circuit 7 ... comparison circuit 8 ... operation circuit P1 ... reference pulse VTH ... threshold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筏 隆臣 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 吉岡 徹 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 河野 明夫 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 中村 英司 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 保田 哲也 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takaomi Raft 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. Kansai Gas Meter Co., Ltd. (72) Inventor Akio Kono 2-10-16 Higashikobashi, Higashi-Nari-ku, Osaka-shi Kansai Gas Meter Co., Ltd. (72) Inventor Tetsuya Yasuda Kansai Gas Meter Co., Ltd. 2-10-16 Higashiobashi, Higashinari-ku, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 媒体中に送波器と受波器を離間配置し、
前記送波器から送信された超音波を前記受波器により受
信するとともに、受信振動波を形成するパルス列におけ
る基準パルスのレベルがしきい値に達した時点に基いて
媒体中の超音波の伝搬時間を測定するに際し、 前記測定を連続的に複数回行って伝搬時間の最大値と最
小値を求め、これらの最大値と最小値の差が超音波素子
の振動周期に対応する場合には、前記基準パルスを超え
て次のパルスがしきい値に達するパルス飛びが発生して
いるものと判定することを特徴とする超音波伝搬時間の
パルス飛び判定方法。
1. A transmitter and a receiver are spaced apart in a medium,
The ultrasonic wave transmitted from the transmitter is received by the receiver, and the propagation of the ultrasonic wave in the medium based on the point in time when the level of the reference pulse in the pulse train forming the received vibration wave reaches a threshold value When measuring time, the measurement is performed a plurality of times continuously to determine the maximum value and the minimum value of the propagation time, and when the difference between the maximum value and the minimum value corresponds to the vibration cycle of the ultrasonic element, A pulse jump determination method for ultrasonic propagation time, wherein it is determined that a pulse jump exceeding the reference pulse and the next pulse reaches a threshold value has occurred.
JP31513097A 1997-11-17 1997-11-17 Method for judging pulse skip in measuring ultrasonic wave propagation time Pending JPH11148848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31513097A JPH11148848A (en) 1997-11-17 1997-11-17 Method for judging pulse skip in measuring ultrasonic wave propagation time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31513097A JPH11148848A (en) 1997-11-17 1997-11-17 Method for judging pulse skip in measuring ultrasonic wave propagation time

Publications (1)

Publication Number Publication Date
JPH11148848A true JPH11148848A (en) 1999-06-02

Family

ID=18061776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31513097A Pending JPH11148848A (en) 1997-11-17 1997-11-17 Method for judging pulse skip in measuring ultrasonic wave propagation time

Country Status (1)

Country Link
JP (1) JPH11148848A (en)

Similar Documents

Publication Publication Date Title
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
US4576047A (en) Apparatus for determining the transit time of ultrasonic pulses in a fluid
JP2002131105A (en) Ultrasonic flow rate measuring method
JP3045677B2 (en) Ultrasonic flow meter
JP2003014515A (en) Ultrasonic flowmeter
JPH11148848A (en) Method for judging pulse skip in measuring ultrasonic wave propagation time
JP4797515B2 (en) Ultrasonic flow measuring device
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP2000338123A (en) Ultrasonic floe speed measuring method
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP3438371B2 (en) Flow measurement device
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPH1073462A (en) Method for measuring flow velocity using ultrasonic wave
JPH09318644A (en) Ultrasonic flow velocity measuring method
RU2006002C1 (en) Tester of pulse-frequency flowmeters
JP2003050145A (en) Method and apparatus for ultrasonic flow-velocity measurement
JPH0361892B2 (en)
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JPH1038650A (en) Ultrasonic flow velocity measuring method
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JPH1151726A (en) Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
JPH08233624A (en) Ultrasonic fluid vibrating flow meter
JP2001330485A (en) Ultrasonic flowmeter
JPH0117090B2 (en)
JP4671481B2 (en) Ultrasonic flow meter