JP4671481B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4671481B2
JP4671481B2 JP2000268300A JP2000268300A JP4671481B2 JP 4671481 B2 JP4671481 B2 JP 4671481B2 JP 2000268300 A JP2000268300 A JP 2000268300A JP 2000268300 A JP2000268300 A JP 2000268300A JP 4671481 B2 JP4671481 B2 JP 4671481B2
Authority
JP
Japan
Prior art keywords
time
wave
transmission
received wave
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000268300A
Other languages
Japanese (ja)
Other versions
JP2002071411A (en
Inventor
徳行 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2000268300A priority Critical patent/JP4671481B2/en
Publication of JP2002071411A publication Critical patent/JP2002071411A/en
Application granted granted Critical
Publication of JP4671481B2 publication Critical patent/JP4671481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は流体中の超音波の伝播時間を、上流から下流(順方向)と下流から上流(逆方向)の両方について測定して流速を算出し、さらに流量を求め積算する超音波流量計に関する。
【0002】
【従来の技術】
測定原理の一例として、図5に示すように、流体中に距離Lを離して流管3の上流と下流に配置した1組の超音波送受波器の一方の送受波器1から他方の送受波器2への順方向伝播時間T1 は、静止流体中の超音波の音速をC、流体の流れの速さをVとすると、
1 =L/(C+V)
となる。
【0003】
また、送受波器2から送受波器1への逆方向伝播時間T2 は、
2 =L/(C−V)
となる。
【0004】
この伝播時間T1 とT2 とから流速Vを、
V=(L/2){(1/T1 )−(1/T2 )}
として求めていた。
【0005】
また、伝播時間計測の分解能を上げるために、単純に1回の送信から受信までの時間T1 ,T2 を計測するのではなく、受信と同時に次の送信を行うことを複数回(n回)繰り返すことにより、伝播時間T1 ,T2 を各n個連続させ、最初(第1回目)の送信から最後(第n回目)の受信までの時間nT1 とかnT2 を測定するようにしている。
【0006】
このような測定方法に使う流量計を図6に示すブロック図により説明する(以下これを第1の従来技術という)。
【0007】
送受波器1と2はそれぞれ超音波振動子で構成されていて、送信にも受信にも使用できる。
【0008】
両送受波器は流体中を上流から下流及び下流から上流への超音波の送受を行う。受信波検知部4は受信側の送受波器が接続され受信波を検知すると受信波検知信号を出力する。送受波器駆動部5はコントロール部6より第1送信指令信号を受けると送信側の送受波器をまず駆動し、その後は受信波検知部4より受信波検知信号を受ける度に駆動する。ただし第1のカウンタ7より第n受信波検知信号を受けると、それ以後は新たに第1送信指令信号を受けるまでは駆動を停止する。
【0009】
第1のカウンタ7は受信波検知部4からの受信波検知信号をカウントしn番目の受信波検知信号を出力する。このカウンタ7はコントロール部6よりの第1送信指令信号でリセットされるようになっている。
【0010】
第2のカウンタ8は第1送信指令信号から第n受信波検知信号までの累積伝播時間を測定する。その時間(カウント値)はコントロール部6が読み取る。この例では第1送信指令信号でカウント値がゼロクリアされ、内蔵された基準クロック発生器からの基準クロックのカウントを開始するように構成されている。
【0011】
コントロール部6は一定間隔で送受切替信号を反転させて2つの送受波器1,2の役割の切り替えを行う。
【0012】
各切り替え後、毎回切り替えによるノイズ等がおさまる時間をおいて、第1送信指令信号を出力する。そして、第n受信波検知信号を入力すると、カウンタ8の測定(カウント値)を読み取り、直前に行った逆向きでの測定値とを用いて、その間の流速流量を演算する。
【0013】
このような測定方法において、超音波が受信側の送受波器に到達する時期、つまり到達ポイントを特定する受信検知の方法として、特定波のゼロクロスポイントを検知するようにしたものがある。
【0014】
この検知方法について図7により説明する。
【0015】
図7は発信のタイミングを示す発信駆動信号と受信波を示している。実際の受信波は非常に小さく、先ず増幅される。同図の受信波は増幅後の波形を示している。
【0016】
aが到達点で、徐々に振幅が大きくなる。その後最大振幅となり徐々に小さくなる。
【0017】
ところが到達点aはノイズに隠れて検知できない。そこで、次のような方法が行われている。
【0018】
ノイズより十分大きな基準電圧レベルとしてのしきい値VTHを決め、このレベルに最初に達した波、例えば同図の第3波がb点でしきい値に達した後ゼロレベルを通るゼロクロスポイントcを検知して受信検知とする方法である。
【0019】
しきい値VTHは常に何番目かのある特定の波(例えば第3波)のゼロクロスポイントを検知するように定めてあり、実際の到達時間Tは、a点からc点までの時間τを予め求めて記憶しておき、測定した時間T+τに相当する値から時間τを減算することにより求めている。到達時間Tは前記伝播時間T1 ,T2 に相当する。
【0020】
上記第1の従来技術のように、受信波検知部4により受信波検知信号を受けると同時に送波器駆動部5によって送信側の送受波器を再び駆動し、次の送信を行うものにおいては次のような欠点がある。
【0021】
上記の送信側の送受波器から発信された超音波には、受信側の送受波器で反射して送信側の送受波器に戻り、さらにその送信側の送受波器で反射して受信側の送受波器へ到達する波がある。この波はノイズとなる。このようなノイズを以降1.5往復ノイズと言う。
【0022】
すなわち、図8に示すように、図示されていない第1送信指令信号による第1駆動により発信された超音波の受信波Aが検知されるとこの検知と同時に第2駆動が行われて受信波Bが検知され、更にこの受信波の検知と同時に第3駆動が行われて受信波Cが検知されるが、この第3駆動による受信波Cの検知時には、上記第1駆動による1.5往復ノイズDが受信側の送受波器に到達し、受信波Cに1.5往復ノイズDが重なる。また、図では示されていないが、第4駆動による受信波は第2駆動による1.5往復ノイズと重なり、以下全ての受信波について同様のことが言える。
【0023】
このような1.5往復ノイズは受信波を変形させるため、上記特定波のゼロクロスポイントが正常な時点よりずれる結果になり、上記の到達時間の測定結果に悪影響を与える。
【0024】
特に、流量がゼロ付近では流れが安定しているため、上記1.5往復ノイズは受信波に対し同じタイミングになる。そのため、n回の繰り返しを行っても平均化されずに前記悪影響が残ってしまう。
【0025】
したがって、流量計測精度が悪い欠点がある。
【0026】
また、小型流量計においては、素子間の距離が短いため、1.5往復ノイズが大きく、また残響が残りやすいため、小型流量計の実現が困難な欠点がある。
【0027】
そこで本願出願人は上記の欠点を解決する超音波流量計を特願平9−173667号(特開平11−23333号)で提案した(以下これを第2の従来技術という)。
【0028】
この第2の従来技術は、送信側にも受信側にもはたらく少なくとも1対の超音波送受波器を設け、流体の流れの中を上流から下流及び下流から上流に超音波の送受を行い、その各向きの到達時間より流速さらに流量を求める超音波流量計であって、送信側の送受波器を発信させ、受信側の送受波器の信号を入力とする受信波検知部が受信波を検知すると、再び送信側の送受波器を発信させるようにし、これを一定回数(n回)繰り返すよう構成し、最初の発信から一定回数目(n回目)の受信までの時間を測定し、その結果から到達時間を求めるようにしたものにおいて、受信波検知部が受信波を検知してから再び送信側の送受波器を発信させるまでに一定の時間を置くようにし、この一定時間により前記最初の発信から一定回数目の受信までの時間が長くなる分を補正して前記到達時間を求めるようにしたこと超音波流量計であった。
【0029】
【発明が解決しようとする課題】
ところが、一方の送受波器から発信された超音波は、送受波器だけでなく、その他の箇所でも反射するため、1.5往復ノイズが発生する時間はかなり長くなる。従って、前記第2の従来技術のように1.5往復ノイズが本来の受信波と重ならないようにするには、前記一定時間(遅延時間)を大きくしなければならない。すると、その一定時間(遅延時間)自体の精度が問題になる。当然、受信から次の送信(発信)までに一定時間を置くと、その分総到達時間は長くなる。よって、一定時間分(遅延時間分)を総到達時間から減算して以後の計算に用いることになるが、総到達時間の測定と同時に一定時間分(遅延時間分)による総到達時間増加分を測定することは難しいため、計算では一定時間分(遅延時間分)を予め別の手段で測定し記憶しておいた値を使う。従って、実際の一定時間(遅延時間)と記憶しておいた値との差が測定誤差となる。特に一定時間(遅延時間)が大きいとその誤差分は真の到達時間に対して大きな割合となり、求められた流量はより大きな誤差を含んだものになるという問題点があった。
【0030】
また、前記一定時間(遅延時間)を大きくすると、測定時間が長くなり、その分消費電流が増加するという問題点が生じる。
【0031】
このような測定誤差や消費電流の増大という問題点は、1.5往復ノイズが本来の受信波と重ならないように、十分に大きな遅延時間を置くために生じたものである。
【0032】
そこで、本発明は1.5往復ノイズが本来の受信波に重ならないようにするのではなく、重なっても測定誤差に与える影響を極小にすることを狙うことにより、かかる問題点を解消できる超音波流量計を提供することを目的とする。
【0033】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、送信側にも受信側にもはたらく少なくとも1対の超音波送受波器を設け、流体の流れの中を上流から下流及び下流から上流に超音波の送受を行い、その各向きの到達時間より流速さらに流量を求める超音波流量計であって、
先ず送信側の送受波器を発信させ、受信側の送受波器の信号を入力とする受信波検知部が受信波の特定波のゼロクロスポイントを検知すると、再び送信側の送受波器を発信させるようにし、これを一定回数(n回)繰り返すよう構成し、最初の発信から一定回数目(n回目)の受信波の特定波のゼロクロスポイントまでの時間を測定し、その結果から到達時間を求めるようにしたもので、
前記受信波検知部が受信波の特定波のゼロクロスポイントを検知してから再び送信側の送受波器を発信させるまでに、時間を置かずに行う発信と、前記超音波送受波器の共振周波数の周期の半分の時間を置いて行う発信を選択できるようにし、この2つの発信のうち一方の発信を2回連続して選択することと、他方の発信を2回連続して選択することを、交互に繰り返して行うようにし、
前記時間を置いて行う発信により前記最初の発信から一定回数目の受信波の特定波のゼロクロスポイントまでの時間が長くなる分を補正して前記到達時間を求めるようにした超音波流量計である。
【0034】
超音波の周期は、超音波送受波器の固有振動数(共振周波数)の周期でもあり、また、受信波の周期でもある。
【0035】
【作用】
図7で説明した受信波にノイズ、例えば1.5往復ノイズが重なった場合を図1,図2によって説明する。両図は、図7に示す受信波の第3波のゼロクロスポイントcの付近を拡大して、受信波の一部を符号Aで示す。なお、時間軸(横軸)の拡大率を縦軸より大きくしているので、受信波Aの傾斜が図7よりもゆるやかになっている。また、受信波は次第に振幅が変化する正弦波であるが、図1,図2では、ゼロクロス付近だけを拡大して示しているので受信波Aは右下がりの直線になっている。
【0036】
図1で、符号Bで示す破線は本来の受信波Aにプラスのノイズ+eが重なった受信波で、このようにプラスのノイズが重なるとゼロクロスポイントがc点からd点に移動し、到達時間が大きくなる方向へシフトし、誤差が生じる。図2は本来の受信波Aにマイナスのノイズ−eが重なった受信波を符号B′で示す。このようにマイナスのノイズが重なるとゼロクロスポイントがc点からd′点に移動し、到達時間が小さくなる方向へシフトし、誤差が生じる。
【0037】
なお、両図では説明を簡便にするため、ノイズをプラスの一定電圧+eとか、マイナスの一定電圧−eで示したが、実際の1.5往復ノイズはゼロレベルを中心にほぼ正弦波状に振れる波形である。
【0038】
図1,図2で説明したように、ノイズの影響で、ゼロクロスポイントの測定値に誤差が生じる。両図ではノイズの電圧がプラスかマイナスかで説明したが、1.5往復ノイズの場合、その周期は本来の受信波の周期、即ち超音波の周期と同じであるため、1.5往復ノズルの位相によってゼロクロスポイントの測定値に及ぼす誤差が違ってくる。
【0039】
次に図3に従って、本発明の作用を説明する。同図でtは超音波の半周期である。各受信について考えると、影響を受ける1.5往復ノイズ源である発信は直前の発信を1つ前とすると3つ前の発信である。従って、超音波の到達時間をTとすると、各受信の1.5往復ノイズの対象となる発信からの時間は、
受信3の場合 3T
受信4の場合 3T+t
受信5の場合 3T+2t
受信6の場合 3T+t
受信7の場合 3T
受信8の場合 3T+t
受信9の場合 3T+2t
受信10の場合 3T+t
・・・
となる。つまり、対象となる発信からの時間は、毎回超音波の半周期tずつずれることになる。1.5往復ノイズの波形は毎回条件が同じため、ほとんど同じとなる。従って、半周期の違いは位相差180°を意味し、ゼロクロスポイントに与える影響は毎回逆で、しかも大きさもほとんど同じのため、互いに打ち消し合うことになり、総到達時間レベルでは1.5往復ノイズによる影響を受けないことになる。
【0040】
しかも本発明では、+半周期に対し、隣接する回の位相がゼロと1周期、つまり−180°と+180°の位相差となり、単純に180°差だけの場合と比較して1.5往復ノイズの影響を効果的に打ち消すことができる。
【0041】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図4の実施例に従って説明する。
【0042】
送受波器1,2は超音波振動子で送信にも受信にも使用できる。両送受波器は流体中を上流から下流及び下流から上流への超音波の送受信を行う。
【0043】
受信波検知部4は前記従来技術と同様に受信側の送受波器が接続され受信波の特定波、例えば第3波のゼロクロスポイントを検知すると受信波検知信号を出力する。送波器駆動部5はコントロール部6より第1送信指令信号を受けると送信側の送受波器をまず駆動し、その後は基本的に受信波検知部4より受信波検知信号を受ける度に駆動する。
【0044】
ただし、この受信波検知信号は受信点伝達部9を介して送波器駆動部5へ入力されていて、受信波検知信号を遅れなしで伝えるか、半周期分の時間tだけ遅らせて伝えるかを制御入力で選択できるようになっている。
【0045】
また、カウンタ7より第n受信波検知信号を受けるとそれ以後は新たに第1送信指令信号を受けるまでは駆動を停止する。カウンタ7は受信波検知部4からの受信波検知信号をカウントしn番目の受信波検知信号を受けると第n波受信波検知信号を出力する。このカウンタ7はコントロール部6よりの第1送信指令信号でリセットされるようになっている。
【0046】
カウンタ8は第1送信指令信号から第n受信波検知信号までの時間を測定する。その時間(カウント値)はコントロール部6が読み取る。この例では第1送信指令信号で、カウント値がゼロクリアされ、内蔵した基準クロック発生器からの基準クロックのカウントを開始するように構成されている。
【0047】
コントロール部6は一定間隔で送受切替信号を反転させることにより、2つの送受波器1,2の役割の切り替えを行う。
【0048】
各切り替え後、毎回切り替えによるノイズ等がおさまる時間をおいて、第1送信指令信号を出力する。そして、第n受信波検知信号を入力すると、カウンタ8の測定値(カウント値)を読み取り、直前に行った逆向きでの測定値とを用いて、その間の流速流量を演算する。
【0049】
発信4回中2回の受信から発信に一定時間tを置くことによるカウンタ8の測定値の増加分はあらかじめ測定し、コントロール部6に記憶させておき、流速演算時にその値を減算することにより補正している。
【0050】
受信点伝達部9は、受信波検知部4からの受信波検知信号と、カウンタ10の出力を制御入力に入力する図4(b)の回路で、コンデンサCと抵抗Rからなる時定数回路の時定数CRで前記半周期の遅延時間tを定めている。
【0051】
カウンタ10は受信波検知信号の立ち上がりをカウントし、そのQ2出力は受信波検知信号の2パルス毎に、ハイ、ローを繰り返す信号となる。この実施例では、Q2出力がハイのとき、即ち受信点伝達部9の制御入力がハイのとき、超音波の半周期tだけ遅れた信号を送波器駆動部5へ伝えるように構成されている。送波器駆動部5は、受信点伝達部9からの信号の立ち下がりで送信側送受波器を駆動する。
【0052】
こうして遅延を、なし、なし、半周期t、半周期tの順で超音波の発信を繰り返すようにしてある。
【0053】
【発明の効果】
本発明の超音波流量計は上述のように構成されており、受信波の特定波のゼロクロスポイントを検知してから次の発信までの遅延時間が、超音波の半周期という、到達時間に比較して小さな値であるため、遅延時間自体の変動が測定精度に悪影響を与えない。そして、効果的に1.5往復ノイズに起因する誤差を小さくできる。
【0054】
また、遅延時間(t)が短いため、それだけ測定に要する時間も短くなり、低消費電力で流量測定ができ、電池を電源とする超音波流量計の実用化に寄与する。
【図面の簡単な説明】
【図1】本発明の作用を説明する図である。
【図2】本発明の作用を説明する図である。
【図3】本発明の作用を説明する図である。
【図4】本発明の実施例で、(a)はブロック図、(b)は要部の電気回路図、(c)はタイミング図である。
【図5】超音波流量計の原理を説明する図である。
【図6】従来の超音波流量計のブロック図である。
【図7】受信波のゼロクロスポイントを説明する図である。
【図8】従来技術による受信波と1.5往復ノイズとの関係を示す図である。
【符号の説明】
1,2 超音波送受波器
4 受信波検知部
5 送波器駆動部
6 コントロール部
7,8,10 カウンタ
9 受信点伝達部
t 遅延時間
T 到達時間
c,d,d´ ゼロクロスポイント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flowmeter that measures the propagation time of ultrasonic waves in a fluid both upstream and downstream (forward direction) and downstream to upstream (reverse direction), calculates a flow velocity, and further obtains and integrates the flow rate. .
[0002]
[Prior art]
As an example of the measurement principle, as shown in FIG. 5, one transmitter / receiver 1 of a set of ultrasonic transducers arranged at the upstream and downstream of the flow tube 3 at a distance L in the fluid is sent and received from the other. The forward propagation time T 1 to the correlator 2 is as follows: C is the sound velocity of the ultrasonic wave in the static fluid, and V is the flow velocity of the fluid.
T 1 = L / (C + V)
It becomes.
[0003]
The backward propagation time T 2 from the transducer 2 to the transducer 1 is
T 2 = L / (C−V)
It becomes.
[0004]
From this propagation time T 1 and T 2 , the flow velocity V is
V = (L / 2) {(1 / T 1 ) − (1 / T 2 )}
Was asking.
[0005]
Further, in order to increase the resolution of the propagation time measurement, it is not necessary to simply measure the times T 1 and T 2 from one transmission to the reception, but to perform the next transmission at the same time as receiving a plurality of times (n times). ) By repeating, each of the n propagation times T 1 and T 2 is continued, and the time nT 1 or nT 2 from the first (first) transmission to the last (nth) reception is measured. Yes.
[0006]
A flow meter used in such a measuring method will be described with reference to a block diagram shown in FIG. 6 (hereinafter referred to as the first prior art).
[0007]
The transducers 1 and 2 are each composed of an ultrasonic transducer and can be used for both transmission and reception.
[0008]
Both transducers transmit and receive ultrasonic waves in the fluid from upstream to downstream and from downstream to upstream. The reception wave detection unit 4 outputs a reception wave detection signal when a reception-side transducer is connected and a reception wave is detected. When receiving the first transmission command signal from the control unit 6, the transmitter / receiver driving unit 5 first drives the transmitting-side transmitter / receiver, and thereafter drives whenever it receives the received wave detection signal from the received wave detection unit 4. However, when the nth received wave detection signal is received from the first counter 7, the driving is stopped until a new first transmission command signal is received thereafter.
[0009]
The first counter 7 counts the reception wave detection signal from the reception wave detector 4 and outputs the nth reception wave detection signal. The counter 7 is reset by a first transmission command signal from the control unit 6.
[0010]
The second counter 8 measures the accumulated propagation time from the first transmission command signal to the nth received wave detection signal. The control unit 6 reads the time (count value). In this example, the count value is cleared to zero by the first transmission command signal, and counting of the reference clock from the built-in reference clock generator is started.
[0011]
The control unit 6 inverts the transmission / reception switching signal at regular intervals to switch the roles of the two transducers 1 and 2.
[0012]
After each switching, the first transmission command signal is output after a time when noise or the like due to the switching is stopped each time. When the n-th received wave detection signal is input, the measurement (count value) of the counter 8 is read, and the flow rate flow rate between them is calculated using the measurement value in the reverse direction performed immediately before.
[0013]
In such a measurement method, there is a method of detecting a zero-cross point of a specific wave as a reception detection method for specifying a time when an ultrasonic wave reaches a transmitter / receiver on the receiving side, that is, an arrival point.
[0014]
This detection method will be described with reference to FIG.
[0015]
FIG. 7 shows a transmission drive signal and a reception wave indicating the timing of transmission. The actual received wave is very small and is first amplified. The received wave in the figure shows the waveform after amplification.
[0016]
a is the arrival point, and the amplitude gradually increases. After that, it becomes maximum amplitude and gradually decreases.
[0017]
However, the arrival point a is hidden behind noise and cannot be detected. Therefore, the following method is performed.
[0018]
A threshold V TH as a reference voltage level that is sufficiently larger than noise is determined, and a zero cross point that passes through the zero level after the wave that first reaches this level, for example, the third wave in FIG. This is a method of detecting c and setting it as reception detection.
[0019]
The threshold value V TH is always set so as to detect the zero cross point of a certain specific wave (for example, the third wave), and the actual arrival time T is the time τ from point a to point c. It is obtained in advance by storing and subtracting the time τ from the value corresponding to the measured time T + τ. The arrival time T corresponds to the propagation times T 1 and T 2 .
[0020]
As in the first prior art, the reception wave detection signal is received by the reception wave detection unit 4 and at the same time the transmitter on the transmission side is driven again by the transmitter drive unit 5 to perform the next transmission. There are the following disadvantages.
[0021]
The ultrasonic wave transmitted from the transmitter / receiver is reflected by the receiver / transmitter and returned to the transmitter / receiver, and further reflected by the transmitter / receiver. There are waves that reach the handset. This wave becomes noise. Such noise is hereinafter referred to as 1.5 round-trip noise.
[0022]
That is, as shown in FIG. 8, when the received wave A of the ultrasonic wave transmitted by the first drive by the first transmission command signal (not shown) is detected, the second drive is performed simultaneously with this detection and the received wave is received. B is detected, and the third drive is performed simultaneously with the detection of the received wave to detect the received wave C. When the received wave C is detected by the third drive, 1.5 reciprocations are performed by the first drive. The noise D reaches the receiving-side transducer, and the 1.5 round-trip noise D overlaps the received wave C. Although not shown in the figure, the received wave by the fourth drive overlaps with 1.5 round-trip noise by the second drive, and the same can be said for all the received waves hereinafter.
[0023]
Such 1.5 round-trip noise deforms the received wave, resulting in the result that the zero cross point of the specific wave is deviated from the normal time point, and adversely affects the arrival time measurement result.
[0024]
In particular, since the flow is stable near the flow rate of zero, the 1.5 round-trip noise has the same timing with respect to the received wave. Therefore, even if it repeats n times, the said bad influence will remain, without being averaged.
[0025]
Therefore, there is a drawback that the flow rate measurement accuracy is poor.
[0026]
In addition, since the distance between elements is short in a small flow meter, 1.5 round-trip noise is large and reverberation tends to remain.
[0027]
Therefore, the applicant of the present application has proposed an ultrasonic flowmeter that solves the above-mentioned drawbacks in Japanese Patent Application No. 9-173667 (Japanese Patent Laid-Open No. 11-23333) (hereinafter referred to as “second prior art”).
[0028]
This second prior art is provided with at least one pair of ultrasonic transducers acting on both the transmission side and the reception side, and transmits and receives ultrasonic waves in the fluid flow from upstream to downstream and from downstream to upstream, It is an ultrasonic flowmeter that determines the flow velocity and flow rate from the arrival time in each direction, and transmits the transmitter / receiver on the transmission side, and the received wave detector that receives the signal of the transmitter / receiver on the reception side receives the received wave. When detected, the transmitter / receiver on the transmission side is transmitted again, and this is repeated a certain number of times (n times), and the time from the first transmission to the reception of the certain number of times (n times) is measured. In the case where the arrival time is obtained from the result, a fixed time is set between the detection of the reception wave by the reception wave detection unit and the transmission side transmitter / receiver being transmitted again. Until a certain number of times Was ultrasonic flowmeter that was to determine the arrival time by correcting the time is long minute.
[0029]
[Problems to be solved by the invention]
However, since the ultrasonic wave transmitted from one transducer is reflected not only at the transducer but also at other locations, the time for generating 1.5 round-trip noise is considerably long. Therefore, in order to prevent 1.5 round-trip noise from overlapping with the original received wave as in the second prior art, the certain time (delay time) must be increased. Then, the accuracy of the fixed time (delay time) itself becomes a problem. Naturally, if a certain period of time is set between reception and the next transmission (transmission), the total arrival time increases accordingly. Therefore, a certain amount of time (delay time) is subtracted from the total arrival time and used in subsequent calculations. Since it is difficult to measure, a value obtained by measuring and storing a predetermined time (delay time) in advance by another means is used in the calculation. Therefore, the difference between the actual fixed time (delay time) and the stored value is a measurement error. In particular, if the fixed time (delay time) is large, the error is a large proportion of the true arrival time, and the obtained flow rate has a problem that includes a larger error.
[0030]
Further, if the predetermined time (delay time) is increased, the measurement time becomes longer, and the current consumption increases accordingly.
[0031]
Such problems of measurement error and increase in current consumption are caused by a sufficiently large delay time so that 1.5 round-trip noise does not overlap with the original received wave.
[0032]
Therefore, the present invention does not prevent 1.5 round-trip noise from overlapping with the original received wave, but aims at minimizing the effect on measurement error even if it overlaps. An object is to provide a sonic flow meter.
[0033]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is provided with at least one pair of ultrasonic transducers acting on both the transmitting side and the receiving side, and in the fluid flow from upstream to downstream and from downstream to upstream. An ultrasonic flowmeter that transmits and receives ultrasonic waves and obtains the flow rate and flow rate from the arrival time in each direction,
First, the transmitter / receiver on the transmission side is transmitted, and when the received wave detector that receives the signal of the transmitter / receiver on the reception side detects the zero cross point of the specific wave of the received wave, the transmitter / receiver on the transmission side is transmitted again. In this way, this is repeated a certain number of times (n times), the time from the first transmission to the zero-cross point of the specific wave of the received wave at the certain number of times (n times) is measured, and the arrival time is obtained from the result. It was something like
By thereby originating the transducer of the receiving wave detection unit again sender after detecting the zero-crossing point of a particular wave of a received wave, and transmitting performed without setting time, the resonance frequency of the ultrasonic transducer It is possible to select a transmission to be performed after half the period of time, and to select one of the two transmissions in succession twice and to select the other transmission twice in succession Are repeated alternately ,
An ultrasonic flowmeter that corrects the amount of time from the first transmission to the zero cross point of the specific wave of the received wave at a certain number of times due to the transmission performed at a predetermined time to obtain the arrival time. .
[0034]
The period of the ultrasonic wave is the period of the natural frequency (resonance frequency) of the ultrasonic transducer, and is also the period of the received wave.
[0035]
[Action]
The case where noise, for example, 1.5 round-trip noise overlaps with the received wave described in FIG. 7, will be described with reference to FIGS. In both figures, the vicinity of the zero cross point c of the third wave of the received wave shown in FIG. Note that the magnification of the time axis (horizontal axis) is larger than that of the vertical axis, so that the slope of the received wave A is gentler than in FIG. Further, the received wave is a sine wave whose amplitude gradually changes, but in FIGS. 1 and 2, only the vicinity of the zero cross is shown in an enlarged manner, and therefore the received wave A is a straight line with a lower right.
[0036]
In FIG. 1, the broken line indicated by symbol B is a received wave in which plus noise + e overlaps with the original received wave A, and when the plus noise overlaps in this way, the zero cross point moves from point c to point d, and the arrival time Shifts in the direction of increasing and an error occurs. FIG. 2 shows a received wave in which a negative noise -e is superimposed on the original received wave A by a symbol B ′. In this way, when the negative noise overlaps, the zero cross point moves from the point c to the point d ′ and shifts in a direction in which the arrival time is reduced, resulting in an error.
[0037]
In both figures, for simplicity of explanation, the noise is shown as a positive constant voltage + e or a negative constant voltage -e, but the actual 1.5 round-trip noise can swing in a substantially sinusoidal shape centered on the zero level. It is a waveform.
[0038]
As described with reference to FIGS. 1 and 2, an error occurs in the measured value of the zero cross point due to the influence of noise. In both figures, the noise voltage is described as positive or negative. However, in the case of 1.5 reciprocating noise, the period is the same as the period of the original received wave, that is, the period of ultrasonic waves. The error on the measured value of the zero cross point varies depending on the phase of the.
[0039]
Next, the operation of the present invention will be described with reference to FIG. In the figure, t is an ultrasonic half-cycle. Considering each reception, the transmission that is the 1.5 round-trip noise source that is affected is the previous three transmissions if the previous transmission is the previous one. Therefore, when the arrival time of the ultrasonic wave is T, the time from the transmission that is the target of 1.5 round-trip noise of each reception is
In case of reception 3 3T
In case of reception 4 3T + t
In case of reception 5 3T + 2t
In case of reception 6 3T + t
In case of reception 7 3T
In case of reception 8 3T + t
In case of reception 9 3T + 2t
In case of reception 10 3T + t
...
It becomes. That is, the time from the target transmission is shifted by a half period t of the ultrasonic wave every time. The 1.5 round-trip noise waveform is almost the same because the conditions are the same every time. Therefore, the difference in half cycle means a phase difference of 180 °, and the influence on the zero cross point is reversed every time and the magnitude is almost the same, so they cancel each other out. It will not be affected by.
[0040]
Moreover, in the present invention, the phase of the adjacent times is zero and one period with respect to the + half cycle, that is, a phase difference of −180 ° and + 180 °, which is 1.5 reciprocations as compared with the case of a simple 180 ° difference. The influence of noise can be effectively canceled out.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the example of FIG.
[0042]
The transducers 1 and 2 are ultrasonic transducers that can be used for both transmission and reception. Both transducers transmit and receive ultrasonic waves in the fluid from upstream to downstream and from downstream to upstream.
[0043]
The reception wave detection unit 4 is connected to a transmitter / receiver on the reception side as in the prior art, and outputs a reception wave detection signal when a specific wave of the reception wave, for example, a zero cross point of the third wave is detected. When receiving the first transmission command signal from the control unit 6, the transmitter driving unit 5 first drives the transmitting-side transmitter / receiver, and thereafter drives every time a received wave detection signal is received from the received wave detection unit 4. To do.
[0044]
However, the received wave detection signal is input to the transmitter drive unit 5 via the reception point transmission unit 9, and the reception wave detection signal is transmitted without delay or is delayed by time t corresponding to a half cycle. Can be selected by the control input.
[0045]
Further, when the nth received wave detection signal is received from the counter 7, the driving is stopped thereafter until the first transmission command signal is newly received. The counter 7 counts the received wave detection signal from the received wave detection unit 4 and outputs the nth received wave detection signal when the nth received wave detection signal is received. The counter 7 is reset by a first transmission command signal from the control unit 6.
[0046]
The counter 8 measures the time from the first transmission command signal to the nth received wave detection signal. The control unit 6 reads the time (count value). In this example, the count value is cleared to zero by the first transmission command signal, and the counting of the reference clock from the built-in reference clock generator is started.
[0047]
The control unit 6 switches the roles of the two transducers 1 and 2 by inverting the transmission / reception switching signal at regular intervals.
[0048]
After each switching, the first transmission command signal is output after a time when noise or the like due to the switching is stopped each time. When the nth received wave detection signal is input, the measurement value (count value) of the counter 8 is read, and the flow rate flow rate between them is calculated using the measurement value in the reverse direction performed immediately before.
[0049]
The increment of the measured value of the counter 8 due to placing a certain time t in the transmission from 2 out of 4 transmissions is measured in advance, stored in the control unit 6, and subtracted when calculating the flow velocity. It is corrected.
[0050]
The reception point transmission unit 9 is a circuit of FIG. 4B that inputs the reception wave detection signal from the reception wave detection unit 4 and the output of the counter 10 to the control input, and is a time constant circuit composed of a capacitor C and a resistor R. The delay time t of the half cycle is determined by the time constant CR.
[0051]
The counter 10 counts the rising edge of the received wave detection signal, and its Q2 output is a signal that repeats high and low every two pulses of the received wave detection signal. In this embodiment, when the Q2 output is high, that is, when the control input of the receiving point transmission unit 9 is high, a signal delayed by a half cycle t of the ultrasonic wave is transmitted to the transmitter driving unit 5. Yes. The transmitter driver 5 drives the transmitter-side transmitter / receiver at the falling edge of the signal from the reception point transmitter 9.
[0052]
In this way, the transmission of ultrasonic waves is repeated in the order of delay, none, half cycle t, and half cycle t.
[0053]
【The invention's effect】
The ultrasonic flowmeter of the present invention is configured as described above, and the delay time from the detection of the zero cross point of the specific wave of the received wave to the next transmission is compared with the arrival time, which is a half cycle of the ultrasonic wave. Therefore, the delay time itself does not adversely affect the measurement accuracy. And the error resulting from 1.5 round-trip noise can be reduced effectively.
[0054]
In addition, since the delay time (t) is short, the time required for the measurement is shortened, the flow rate can be measured with low power consumption, and it contributes to the practical use of an ultrasonic flow meter using a battery as a power source.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the operation of the present invention.
FIG. 2 is a diagram illustrating the operation of the present invention.
FIG. 3 is a diagram illustrating the operation of the present invention.
4A is a block diagram, FIG. 4B is an electric circuit diagram of a main part, and FIG. 4C is a timing diagram according to an embodiment of the present invention.
FIG. 5 is a diagram illustrating the principle of an ultrasonic flow meter.
FIG. 6 is a block diagram of a conventional ultrasonic flowmeter.
FIG. 7 is a diagram for explaining a zero cross point of a received wave.
FIG. 8 is a diagram showing the relationship between a received wave and 1.5 round-trip noise according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Ultrasonic transmitter / receiver 4 Received wave detection part 5 Transmitter drive part 6 Control part 7, 8, 10 Counter 9 Reception point transmission part t Delay time T Arrival time c, d, d 'Zero cross point

Claims (1)

送信側にも受信側にもはたらく少なくとも1対の超音波送受波器を設け、流体の流れの中を上流から下流及び下流から上流に超音波の送受を行い、その各向きの到達時間より流速さらに流量を求める超音波流量計であって、
先ず送信側の送受波器を発信させ、受信側の送受波器の信号を入力とする受信波検知部が受信波の特定波のゼロクロスポイントを検知すると、再び送信側の送受波器を発信させるようにし、これを一定回数(n回)繰り返すよう構成し、最初の発信から一定回数目(n回目)の受信波の特定波のゼロクロスポイントまでの時間を測定し、その結果から到達時間を求めるようにしたもので、
前記受信波検知部が受信波の特定波のゼロクロスポイントを検知してから再び送信側の送受波器を発信させるまでに、時間を置かずに行う発信と、前記超音波送受波器の共振周波数の周期の半分の時間を置いて行う発信を選択できるようにし、この2つの発信のうち一方の発信を2回連続して選択することと、他方の発信を2回連続して選択することを、交互に繰り返して行うようにし、
前記時間を置いて行う発信により前記最初の発信から一定回数目の受信波の特定波のゼロクロスポイントまでの時間が長くなる分を補正して前記到達時間を求めるようにした超音波流量計。
Provide at least one pair of ultrasonic transducers acting on both the transmitting and receiving sides, and transmit and receive ultrasonic waves from upstream to downstream and from downstream to upstream in the fluid flow. Furthermore, an ultrasonic flowmeter for obtaining a flow rate,
First, the transmitter / receiver on the transmission side is transmitted, and when the received wave detector that receives the signal of the transmitter / receiver on the reception side detects the zero cross point of the specific wave of the received wave, the transmitter / receiver on the transmission side is transmitted again. In this way, this is repeated a certain number of times (n times), the time from the first transmission to the zero-cross point of the specific wave of the received wave at the certain number of times (n times) is measured, and the arrival time is obtained from the result. It was something like
By thereby originating the transducer of the receiving wave detection unit again sender after detecting the zero-crossing point of a particular wave of a received wave, and transmitting performed without setting time, the resonance frequency of the ultrasonic transducer It is possible to select a transmission to be performed after half the period of time, and to select one of the two transmissions in succession twice and to select the other transmission twice in succession Are repeated alternately ,
The ultrasonic flowmeter which correct | amends the part which the time from the said first transmission to the zero cross point of the specific wave of the received wave of the fixed number of times by the transmission performed after the said time is calculated | required, and calculates | requires the said arrival time.
JP2000268300A 2000-09-05 2000-09-05 Ultrasonic flow meter Expired - Fee Related JP4671481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268300A JP4671481B2 (en) 2000-09-05 2000-09-05 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268300A JP4671481B2 (en) 2000-09-05 2000-09-05 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2002071411A JP2002071411A (en) 2002-03-08
JP4671481B2 true JP4671481B2 (en) 2011-04-20

Family

ID=18755093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268300A Expired - Fee Related JP4671481B2 (en) 2000-09-05 2000-09-05 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4671481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354609C (en) * 2002-11-26 2007-12-12 松下电器产业株式会社 Ultrasonic flowmeter and ultrasonic flow rate measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535364B2 (en) * 1984-10-29 1993-05-26 Tokimec Inc
JPH1151725A (en) * 1997-08-06 1999-02-26 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000298047A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772428B2 (en) * 1996-11-28 2006-05-10 松下電器産業株式会社 Ultrasonic current meter
JP3506045B2 (en) * 1999-05-17 2004-03-15 松下電器産業株式会社 Flow measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535364B2 (en) * 1984-10-29 1993-05-26 Tokimec Inc
JPH1151725A (en) * 1997-08-06 1999-02-26 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000298047A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2002071411A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
WO2011083766A1 (en) Ultrasonic flowmeter
WO2012081195A1 (en) Flow volume measuring device
JP2007187506A (en) Ultrasonic flowmeter
JP4561088B2 (en) Ultrasonic flow meter
JP4760115B2 (en) Fluid flow measuring device
JP4835068B2 (en) Fluid flow measuring device
JP4671481B2 (en) Ultrasonic flow meter
JP2866332B2 (en) Ultrasonic flow meter
JP4020455B2 (en) Ultrasonic flow meter
JP3781485B2 (en) Ultrasonic flow meter
JP4424959B2 (en) Ultrasonic flow meter
JP4861465B2 (en) Ultrasonic flow meter
JP3624743B2 (en) Ultrasonic flow meter
JP3958834B2 (en) Ultrasonic flow meter
JP2004069524A (en) Flow rate measuring apparatus
JP4960554B2 (en) Ultrasonic flow meter
JP3906107B2 (en) Ultrasonic flow meter
JP3958886B2 (en) Ultrasonic flow meter
JP4825367B2 (en) Ultrasonic flow meter
JP3883093B2 (en) Ultrasonic flow meter
JP2008185441A (en) Ultrasonic flowmeter
JP2008014800A (en) Flow measuring instrument
JP4323612B2 (en) Ultrasonic flow meter
JP2001242000A (en) Ultrasonic level meter
JP4759835B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees