JPH1073463A - Method for measuring flow velocity using ultrasonic wave - Google Patents

Method for measuring flow velocity using ultrasonic wave

Info

Publication number
JPH1073463A
JPH1073463A JP8228758A JP22875896A JPH1073463A JP H1073463 A JPH1073463 A JP H1073463A JP 8228758 A JP8228758 A JP 8228758A JP 22875896 A JP22875896 A JP 22875896A JP H1073463 A JPH1073463 A JP H1073463A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
waves
flow velocity
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8228758A
Other languages
Japanese (ja)
Inventor
Shigenori Okamura
繁憲 岡村
Takaomi Ikada
隆臣 筏
Akio Tomita
明男 冨田
Akio Kono
明夫 河野
Eiji Nakamura
英司 中村
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8228758A priority Critical patent/JPH1073463A/en
Publication of JPH1073463A publication Critical patent/JPH1073463A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely recognize and catch a plurality of waves of receiving waves and secure sufficient measurement accuracy, by impressing a plurality of phase adjustment pulses of the same frequency as a resonant frequency of an ultrasonic transmitting receiving element after a driving pulse. SOLUTION: Subsequent to a first wave P of a driving pulse, phase adjustment pulses Pf of the same or approximately the same frequency as a resonant frequency of an ultrasonic transmitting receiving element are impressed to the ultrasonic transmitting receiving element. In consequence, vibrations of the phase adjustment pulses Pf are overlapped and added to a vibration by the first wave P, so that the vibrations are continued without being attenuated while the phase adjustment pulse Pf is output. Received waves W, W' are accordingly not attenuated suddenly showing a waveform with a uniformed phase and an amplitude necessary for measurements secured. Propagation time differences t1-t5 are measured by comparing reach timings of first - fifth waves W1-W5, thereby to obtain five measurement data. A flow velocity of a fluid is obtained from an averaged propagation time difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術】ガスその他の流体の流量を求めるに際
し、まず流体の流速を連続的ないし定期的に測定し、こ
れに基いて流量を演算することが行われている。このよ
うな流体の流速測定方法の一つとして、超音波を利用し
た方法が知られている。
2. Description of the Related Art When determining the flow rate of a gas or other fluid, the flow rate of the fluid is measured continuously or periodically, and the flow rate is calculated based on the measured flow rate. As one of such fluid flow velocity measuring methods, a method using ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図2
にて説明すると次のとおりである。図2において、
(1)は内部を矢印方向にガス等の流体が流れる管路で
ある。この管路(1)内には、流れ方向の上流側及び下
流側に、所定距離を隔てて送受波器(2)(3)が配置
されている。
FIG. 2 shows the principle of such an ultrasonic flow velocity measuring method.
The description is as follows. In FIG.
(1) is a pipeline through which a fluid such as gas flows in the direction of the arrow. In the pipeline (1), the transducers (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction.

【0004】前記の各送受波器(2)(3)は送波器と
受波器を兼ねるもので、振動子からなる超音波発信兼受
信素子(図示略)を備えており、この超音波発信兼受信
素子がパルス発生回路(4)からの駆動パルスにより駆
動されて振動し、超音波を発生送信する一方、送信され
てきた超音波を受信して超音波発信兼受信素子が振動し
たときの受信波が増幅回路(5)から電気信号として出
力されるものとなされている。
Each of the transducers (2) and (3) serves as both a transmitter and a receiver, and includes an ultrasonic transmitting / receiving element (not shown) composed of a vibrator. When the transmitting / receiving element is driven by the driving pulse from the pulse generation circuit (4) and vibrates to generate and transmit an ultrasonic wave, while receiving the transmitted ultrasonic wave and the ultrasonic transmitting / receiving element vibrates. Is output as an electric signal from the amplifier circuit (5).

【0005】そして、上流側送受波器(2)から流れに
対して順方向に送信された超音波が下流側送受波器
(3)で受波されるまでの伝搬時間と、下流側送受波器
(3)から流れに対して逆方向に送信された超音波が上
流側送受波器(2)で受波されるまでの伝搬時間との差
は、流速に関係することから、この伝搬時間差を求める
ことにより流体の流速を測定するものとなされている。
なお、図2において、(6)は各送受波器(2)(3)
とパルス発生回路(4)及び増幅回路(5)の接続を切
替える切替回路であり、まずパルス発生回路(4)と上
流側の送受波器(2)、下流側の送受波器(3)と増幅
回路(5)を接続して、上流側から下流側への伝搬時間
を測定したのち、該切替回路(6)の作動によりパルス
発生回路(4)と下流側の送受波器(3)、上流側の送
受波器(2)と増幅回路(5)とが接続されるように切
替えて、下流側から上流側への伝搬時間を測定するもの
となされている。
The propagation time until the ultrasonic wave transmitted from the upstream transducer (2) in the forward direction to the flow is received by the downstream transducer (3), and the downstream The difference between the propagation time until the ultrasonic wave transmitted in the opposite direction to the flow from the transmitter (3) and the ultrasonic wave received by the upstream transducer (2) is related to the flow velocity. , The flow velocity of the fluid is measured.
In FIG. 2, (6) indicates each transducer (2) (3)
And a switching circuit for switching the connection between the pulse generation circuit (4) and the amplification circuit (5). First, the pulse generation circuit (4), the upstream-side transducer (2), and the downstream-side transducer (3) After the amplifier circuit (5) is connected and the propagation time from the upstream side to the downstream side is measured, the pulse generating circuit (4) and the downstream transducer (3) are operated by the operation of the switching circuit (6). The transmission / reception device (2) on the upstream side and the amplifier circuit (5) are switched so as to be connected, and the propagation time from the downstream side to the upstream side is measured.

【0006】ところで、上記のような超音波の伝搬時間
差は、従来、相互の送受波器(2)(3)を介して増幅
回路(5)から出力される受信波の第1波を基準にして
測定していた。より具体的には、受信波の最初の第1波
が基準位相(基準電圧)に達した時点での時間差を測定
していた。
[0006] By the way, the propagation time difference of the ultrasonic waves as described above is conventionally based on the first wave of the received wave output from the amplifier circuit (5) via the mutual transducers (2) and (3). Was measured. More specifically, the time difference at the time when the first wave of the received wave reaches the reference phase (reference voltage) has been measured.

【0007】しかし、流速を測定するのに、上記のよう
な受信波の第1波のみを基準にして伝搬時間差を測定し
たのでは、1個の測定データしか得られないため些か信
頼性に欠けるという欠点があった。
However, if the propagation time difference is measured based on only the first wave of the received wave as described above to measure the flow velocity, only one measurement data can be obtained, so that the reliability is slightly increased. There was a disadvantage of lacking.

【0008】[0008]

【発明が解決しようとする課題】そこで、相互の送受波
器(2)(3)を介して増幅回路(5)から出力される
受信波の第1波、第2波、・・・の複数個の波が基準位
相(基準電圧)に達した時点でのそれぞれの時間差を測
定し複数個の測定データを得て、それらを平均化するこ
とで超音波の伝搬時間差を求める方法が考えられるが、
従来、送受波器(2)(3)の超音波発信素子に印加さ
れる駆動パルスは単発であったため、次のような問題が
あった。
Therefore, a plurality of first waves, second waves,... Of the received waves output from the amplifier circuit (5) via the mutual transducers (2) and (3). A method is conceivable in which the time difference when each of the waves reaches a reference phase (reference voltage) is measured, a plurality of measurement data is obtained, and the measured data is averaged to determine the propagation time difference of the ultrasonic wave. ,
Conventionally, since the drive pulse applied to the ultrasonic wave transmitting elements of the transducers (2) and (3) is single, there are the following problems.

【0009】即ち、パルス発生回路(4)から発信され
た単発の駆動パルス、例えば、図4の鎖線で示されるよ
うな矩形状の駆動パルスPが超音波発信素子に入力され
ると、該超音波発信素子が振動して該振動に応じた超音
波が出力され、増幅回路(5)に図4の実線で示される
ような受信波が出力される。この受信波は、第1波(W
1 )、第2波(W2 )のような初期の波では位相が均一
化しており、振幅も十分にあるが、この受信波はすぐに
減衰してしまうため、それ以降の波では位相は次第にば
らつき、振幅も小さくなってしまう。
That is, when a single drive pulse transmitted from the pulse generation circuit (4), for example, a rectangular drive pulse P shown by a chain line in FIG. The sound wave transmitting element vibrates and an ultrasonic wave corresponding to the vibration is output, and a reception wave as shown by a solid line in FIG. 4 is output to the amplifier circuit (5). This received wave is the first wave (W
1) The phase of the initial wave such as the second wave (W2) is uniform and the amplitude is sufficient, but the received wave is attenuated immediately, so that the phase of the subsequent waves gradually increases. The variation and the amplitude also become small.

【0010】このように、増幅回路(5)に出力される
受信波はすぐに減衰してしまうため、上記で述べた伝搬
時間差を求める方法、つまり受信波の第1波、第2波、
・・・の複数個の波が基準位相(基準電圧)に達した時
点でのそれぞれの時間差を測定し複数個のデータを得
て、それらを平均化することで超音波の伝搬時間差を求
める方法を利用するために必要な複数個の波を確実に認
識・捕捉するのが難しいという欠点があった。
As described above, since the received wave output to the amplifier circuit (5) is immediately attenuated, the above-described method of obtaining the propagation time difference, that is, the first wave, the second wave,
... A method of measuring the time difference at the time when a plurality of waves reach a reference phase (reference voltage), obtaining a plurality of data, and averaging them to obtain a propagation time difference of the ultrasonic wave. There is a drawback in that it is difficult to reliably recognize and capture a plurality of waves necessary for using the hologram.

【0011】この発明は、このような技術的背景に鑑み
てなされたものであって、受信波における複数個の波を
確実に認識・捕捉でき、ひいては十分な測定精度を確保
できる超音波流速測定方法の提供を目的とする。
The present invention has been made in view of such a technical background, and an ultrasonic flow velocity measurement capable of reliably recognizing and capturing a plurality of waves in a received wave, and ensuring sufficient measurement accuracy. The purpose is to provide a method.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、受信波の位相を均一化し、測定に必要
な振幅を確保できるように、超音波発信素子に印加する
駆動パルスの発信方法を工夫したものである。
In order to achieve the above object, the present invention provides a drive pulse applied to an ultrasonic transmitting element so as to equalize the phase of a received wave and to secure an amplitude required for measurement. The transmission method was devised.

【0013】即ち、この発明は、計測流体の上流側と下
流側にそれぞれ送波器及び受波器を配置し、前記各送波
器の超音波発信素子に駆動パルスを印加して相互に超音
波を発生送信するとともに、送信された超音波を相互に
受波器で受信し、各受信波の比較から求めた該超音波の
伝搬時間の差に基いて流速を測定する超音波流速測定方
法において、前記駆動パルスの後に、超音波発信素子お
よび超音波受信素子の共振周波数と同じないしほぼ同じ
周波数の位相合わせパルスを複数個印加することを特徴
とするものである。
That is, according to the present invention, a transmitter and a receiver are arranged on the upstream side and the downstream side of the measurement fluid, respectively, and a driving pulse is applied to the ultrasonic wave transmitting element of each of the transmitters to mutually supersonic. An ultrasonic flow velocity measuring method for generating and transmitting a sound wave, mutually receiving the transmitted ultrasonic waves by a receiver, and measuring a flow velocity based on a difference in propagation time of the ultrasonic waves obtained from a comparison of the received waves. Wherein a plurality of phase matching pulses having the same or substantially the same frequency as the resonance frequency of the ultrasonic transmitting element and the ultrasonic receiving element are applied after the driving pulse.

【0014】この駆動パルスの波形は、従来の単発の駆
動パルスの波形と同じ矩形波や三角波などでよく、ま
た、駆動パルスの後に送信する複数個の位相合わせパル
スの波形は矩形状が好ましいが、特に限定されるもので
ない。
The waveform of the driving pulse may be the same rectangular wave or triangular wave as the waveform of a conventional single-shot driving pulse, and the waveform of a plurality of phase matching pulses transmitted after the driving pulse is preferably rectangular. It is not particularly limited.

【0015】以上のように、前記駆動パルスの後に、超
音波発信素子および超音波受信素子の共振周波数と同じ
ないしほぼ同じ周波数の位相合わせパルスを複数個印加
することで、該超音波発信素子は駆動パルスによる振動
成分に重畳して位相合わせパルスによる振動が加わるこ
とになり、位相合わせパルスが出力されている期間は減
衰することなく振動を持続する。したがって、受信波
は、位相が均一化されるとともに測定に必要な振幅を持
つようなるため、受信波における複数個の波を確実に認
識・捕捉しうる。その結果、従来より信頼性の高い伝搬
時間差を求める方法、つまり受信波の第1波、第2波、
・・・の複数個の波が基準位相(基準電圧)に達した時
点でのそれぞれの時間差を測定し複数個のデータを得
て、それらを平均化することで超音波の伝搬時間差を求
める方法を利用することができるようになる。
As described above, by applying a plurality of phase matching pulses having the same or substantially the same frequency as the resonance frequency of the ultrasonic transmitting element and the ultrasonic receiving element after the driving pulse, the ultrasonic transmitting element The vibration due to the phase matching pulse is added to the vibration component due to the driving pulse, and the vibration is continued without attenuating while the phase matching pulse is being output. Therefore, the phase of the received wave is made uniform and has an amplitude necessary for measurement, so that a plurality of waves in the received wave can be reliably recognized and captured. As a result, a method of obtaining a more reliable propagation time difference than the conventional method, that is, the first wave, the second wave,
... A method of measuring the time difference at the time when a plurality of waves reach a reference phase (reference voltage), obtaining a plurality of data, and averaging them to obtain a propagation time difference of the ultrasonic wave. Can be used.

【0016】[0016]

【発明の実施の形態】次に、この発明の一実施形態を説
明する。図2はこの発明を実施するための超音波流速測
定装置を示すものである。図2において、(1)は管
路、(2)(3)は流れ方向の上流側及び下流側に所定
距離を隔てて配置された送受波器、(4)は駆動パルス
を発生するパルス発生回路、(5)は送受波器(2)
(3)で受信した受信波を出力する増幅回路、(6)は
各送受波器(2)(3)とパルス発生回路(4)及び増
幅回路(5)の接続を切替える切替回路であり、これら
は図3に示したものと同じである。
Next, one embodiment of the present invention will be described. FIG. 2 shows an ultrasonic flow velocity measuring device for carrying out the present invention. In FIG. 2, (1) is a pipeline, (2) and (3) are transducers arranged at a predetermined distance upstream and downstream in a flow direction, and (4) is a pulse generator for generating a drive pulse. Circuit, (5) is a transducer (2)
An amplifier circuit for outputting the received wave received in (3), (6) a switching circuit for switching the connection between each of the transducers (2) and (3), the pulse generator circuit (4) and the amplifier circuit (5); These are the same as those shown in FIG.

【0017】さらにこの実施形態では、増幅回路(5)
の出力側にゼロクロス検出回路(7)が設けられてい
る。このゼロクロス検出回路(7)は、増幅回路(5)
から受信波が出力された直後において、増幅回路(5)
から出力される受信波のゼロクロスを、例えば第1波で
は到達時間T1 、T1 ´のタイミングで検出し、これを
もって受信波到達タイミングとするものである。これを
利用することにより、基準電圧が変動した場合でも、ゼ
ロクロスのタイミングは変動しないから、受信波到達タ
イミングに変動が生じることはなく、ひいてはさらに精
度の高い流速測定を行うことができる。
Further, in this embodiment, the amplifier circuit (5)
A zero-crossing detection circuit (7) is provided on the output side of. This zero-cross detection circuit (7) includes an amplification circuit (5)
Immediately after the reception wave is output from the amplifying circuit (5)
Is detected at the timing of the arrival times T1 and T1 'for the first wave, for example, and this is used as the reception wave arrival timing. By utilizing this, even when the reference voltage fluctuates, the timing of the zero-cross does not fluctuate, so that the timing of arrival of the received wave does not fluctuate, and thus more accurate flow velocity measurement can be performed.

【0018】次に、図2に示した装置を用いた、この発
明に係る超音波測定方法を説明する。 まず、流体の上
流側の送受波器(2)における超音波発信素子を駆動す
るために、図1に鎖線で示すように、パルス発生回路
(4)から出力される駆動パルスの第1波(P)を矩形
波とし、その第1波(P)に続けて、超音波発信素子お
よび超音波受信素子の共振周波数と同じないしほぼ同じ
周波数で矩形状の位相合わせパルス(Pf)をパルス発生
回路(4)から複数個出力する。このような駆動パルス
が流体の上流側の送受波器(2)における超音波発信素
子に印加されると、該超音波発信素子は第1波による振
動成分に重畳して位相合わせパルスによる振動が加わる
ことになり、位相合わせパルスが出力されている期間は
減衰することなく振動を持続する。したがって、このよ
うな超音波発信素子の振動に対応して、図1の実線で示
されるような波形の受信波(W)が増幅回路(5)から
出力される。この受信波(W)は、急激に減衰すること
なく、位相が均一化されており、測定に必要な振幅も確
保された波形となされている。
Next, an ultrasonic measuring method according to the present invention using the apparatus shown in FIG. 2 will be described. First, in order to drive the ultrasonic wave transmitting element in the transmitter / receiver (2) on the upstream side of the fluid, as shown by a chain line in FIG. 1, a first wave () of the drive pulse output from the pulse generation circuit (4). P) is a rectangular wave, and after the first wave (P), a rectangular phase matching pulse (Pf) having a frequency equal to or substantially the same as the resonance frequency of the ultrasonic transmitting element and the ultrasonic receiving element is generated by a pulse generation circuit. A plurality is output from (4). When such a drive pulse is applied to the ultrasonic transmitting element in the transducer (2) on the upstream side of the fluid, the ultrasonic transmitting element is superimposed on the vibration component due to the first wave and the vibration due to the phase matching pulse is generated. Therefore, the vibration is continued without attenuating while the phase matching pulse is being output. Accordingly, a received wave (W) having a waveform as shown by the solid line in FIG. 1 is output from the amplifier circuit (5) in response to the vibration of the ultrasonic transmission element. The received wave (W) has a uniform phase without abrupt attenuation, and has a waveform in which the amplitude required for measurement is secured.

【0019】そして、伝搬時間差(位相差)を導出する
のに必要な時間差の測定データ数を5個として、ゼロク
ロス検出回路(7)により、増幅回路(5)から出力さ
れる受信波(W)のゼロクロスを図1に示すように到達
時間T1 、T2、・・・T5のタイミングで検出し、こ
れをもって受信波(W)の到達タイミングとする。受信
波(W)は位相が均一化されており、振幅も十分に確保
されているから、受信波(W)の各波を確実に捕捉で
き、したがって、T1、T2、・・・、T5の到達タイ
ミングを精度よく確定できる。
The number of time difference measurement data required to derive the propagation time difference (phase difference) is assumed to be 5, and the received wave (W) output from the amplifier circuit (5) by the zero-cross detection circuit (7) by the zero-cross detection circuit (7). Are detected at the timings of arrival times T1, T2,..., T5 as shown in FIG. 1, and this is used as the arrival timing of the received wave (W). Since the phase of the received wave (W) is uniformed and the amplitude is sufficiently ensured, each wave of the received wave (W) can be reliably captured, and therefore, T1, T2,. The arrival timing can be determined accurately.

【0020】次に、切替回路(6)により接続を切替
え、流体の下流側の送受波器(3)における超音波発信
素子を駆動するために、パルス発生回路(4)から上記
と同様の駆動パルスPおよび位相合わせパルスPf を出
力すると、受信波(W)と同様にして図1の破線で示さ
れるような波形の受信波(W´)が増幅回路(5)から
出力される。
Next, in order to switch the connection by the switching circuit (6) and drive the ultrasonic wave transmitting element in the transducer (3) on the downstream side of the fluid, the same driving as described above is performed from the pulse generating circuit (4). When the pulse P and the phase matching pulse Pf are output, a reception wave (W ') having a waveform as shown by a broken line in FIG. 1 is output from the amplifier circuit (5) in the same manner as the reception wave (W).

【0021】そして、上記と同様にして、伝搬時間差
(位相差)を導出するのに必要な時間差の測定データ数
を5個として、ゼロクロス検出回路(7)により、増幅
回路(5)から出力される受信波(W´)のゼロクロス
を図1に示すように到達時間T1 ´、T2´、・・・T
5´のタイミングで検出し、これをもって受信波(W
´)の到達タイミングとする。
In the same manner as described above, the number of measurement data of the time difference necessary for deriving the propagation time difference (phase difference) is set to five, and the data is output from the amplifier circuit (5) by the zero-cross detection circuit (7). As shown in FIG. 1, the zero cross of the received wave (W ') reaches the arrival times T1', T2 ',.
5 ′, and the received wave (W
)).

【0022】しかして、得られた2つの受信波(W)
(W´)は、図1に示すように流体流速に応じて変化す
る伝搬時間差(位相差)t1 、t2 、・・・、t5 を生
じているから、それぞれの受信波(W)(W´)の第1
半波(W1 )(W1 ´)、第2半波(W2 )(W2
´)、・・・、第5半波(W5 )(W5 ´)の到達タイ
ミングを比較することによりこの伝搬時間差t1 、t2
、・・・、t5 を測定し5個の測定データを得て、そ
れらを平均化した伝搬時間差から流体流速を求め、必要
に応じて流量を求める。さらに、流体流速を連続的ない
し定期的に測定する必要がある場合には、上記の操作を
所定の時間ごとに連続的ないし定期的に繰り返せば良
い。
Thus, the two received waves (W) obtained
(W ') has propagation time differences (phase differences) t1, t2,..., T5 that vary according to the fluid flow velocity as shown in FIG. 1, so that each received wave (W) (W') ) First
Half-wave (W1) (W1 '), second half-wave (W2) (W2
),..., The fifth half-waves (W5) (W5 ') are compared to determine the propagation time differences t1, t2.
,..., T5 are measured to obtain five pieces of measurement data, the fluid velocity is obtained from the averaged propagation time difference, and the flow rate is obtained as necessary. Further, when it is necessary to measure the fluid flow velocity continuously or periodically, the above operation may be repeated continuously or periodically at predetermined intervals.

【0023】なお、以上の実施形態では、受信波到達タ
イミングをゼロクロス点に設定したが、受信波到達タイ
ミングの設定はこれに限定されることはなく、受信波の
出力値がゼロクロス点以外の基準位相に達したときをも
って受信波到達タイミングを確定するものとしても良
い。さらに、流体流れの上流側と下流側に各1個の送受
波器を設け、切替回路で接続を切替えて、上流側から下
流側への送信と下流側から上流側への送信を順次的に行
う場合を示したが、上流側に送波器と受波器を別々に設
けるとともに下流側にもこれに対応して受波器と送波器
を別々に設けることにより、伝搬時間の測定を同時的に
行うものとしても良い。
In the above embodiment, the arrival timing of the received wave is set to the zero cross point. However, the setting of the arrival timing of the received wave is not limited to this. The arrival timing of the received wave may be determined when the phase is reached. Furthermore, one transducer is provided for each of the upstream and downstream sides of the fluid flow, and the connection is switched by a switching circuit, so that transmission from the upstream side to the downstream side and transmission from the downstream side to the upstream side are sequentially performed. Although the case of performing is shown, the transmitter and the receiver are separately provided on the upstream side and the receiver and the transmitter are separately provided on the downstream side, so that the measurement of the propagation time can be performed. It may be performed simultaneously.

【0024】[0024]

【発明の効果】この発明は、上述の次第で、計測流体の
上流側と下流側にそれぞれ送波器及び受波器を配置し、
駆動パルスを前記各送波器の超音波発信素子に印加して
相互に超音波を発生送信するとともに、送信された超音
波を相互に受波器で受信し、各受信波の比較から求めた
該超音波の伝搬時間の差に基いて流速を測定する超音波
流速測定方法において、前記駆動パルスを矩形波とし、
該駆動パルスの後に超音波発信素子および超音波受信素
子の共振周波数と同じないしほぼ同じ周波数の位相合わ
せパルスを複数個印加することを特徴とするものである
から、駆動パルスを単発としたときと違って、増幅回路
に出力される受信波はすぐに減衰せず、位相が均一化さ
れるとともに測定に必要な振幅をもつ振動波形となり、
受信波の複数個の波を確実に認識・捕捉しうることにな
る。その結果、受信波の伝搬時間差を求めるのに、受信
波の第1波、第2波、・・・の複数個の波が基準位相
(基準電圧)に達した時点でのそれぞれの時間差を測定
し複数個の測定データを得て、それらを平均化すること
で超音波の伝搬時間差を求める方法を利用することがで
きるため、従来のような受信波の第1波のみを基準にし
て伝搬時間差を求める方法より伝搬時間差の信頼性が高
くなり、より測定精度の高い流速測定が可能となる。
According to the present invention, as described above, a transmitter and a receiver are arranged on the upstream side and the downstream side of the measurement fluid, respectively.
The drive pulse was applied to the ultrasonic wave transmitting elements of the respective transmitters to generate and transmit ultrasonic waves to each other, and the transmitted ultrasonic waves were mutually received by the receiver, and were obtained by comparing the received waves. In the ultrasonic flow velocity measuring method for measuring the flow velocity based on the difference in the propagation time of the ultrasonic wave, the drive pulse is a rectangular wave,
After the drive pulse, it is characterized by applying a plurality of phase matching pulses of the same or substantially the same frequency as the resonance frequency of the ultrasonic transmission element and the ultrasonic reception element, when the drive pulse is a single shot In contrast, the received wave output to the amplifier circuit does not attenuate immediately, becomes a vibration waveform with the uniform phase and the amplitude required for measurement,
A plurality of received waves can be reliably recognized and captured. As a result, in order to determine the propagation time difference of the received wave, the respective time differences when a plurality of waves of the first wave, the second wave,... Of the received wave reach the reference phase (reference voltage) are measured. By obtaining a plurality of measurement data and averaging them, it is possible to use a method of obtaining a propagation time difference of an ultrasonic wave. The reliability of the propagation time difference is higher than that of the method for determining the velocity, and the flow velocity measurement with higher measurement accuracy can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明において、送波器の超音波発信素子に
印加する駆動パルスと、受信波との関係を示す波形図で
ある。
FIG. 1 is a waveform diagram showing a relationship between a drive pulse applied to an ultrasonic wave transmitting element of a transmitter and a received wave in the present invention.

【図2】この発明の実施形態で用いた超音波流速測定回
路の概略構成図である。
FIG. 2 is a schematic configuration diagram of an ultrasonic flow velocity measuring circuit used in an embodiment of the present invention.

【図3】超音波流速測定の原理構成を説明するための概
略構成図である。
FIG. 3 is a schematic configuration diagram for explaining the principle configuration of ultrasonic flow velocity measurement.

【図4】従来方法において、送波器の超音波発信素子に
印加する駆動パルスと、受信波との関係を示す波形図で
ある。
FIG. 4 is a waveform chart showing a relationship between a drive pulse applied to an ultrasonic wave transmitting element of a transmitter and a received wave in a conventional method.

【符号の説明】[Explanation of symbols]

1…配管 2、3…送受波器 4…パルス発生回路 5…増幅回路 P…駆動パルス W、W´…受信波 DESCRIPTION OF SYMBOLS 1 ... Piping 2, 3 ... Transceiver 4 ... Pulse generation circuit 5 ... Amplification circuit P ... Drive pulse W, W '... Received wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 明男 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 河野 明夫 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 中村 英司 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 保田 哲也 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akio Tomita 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. Kansai Gas Meter Co., Ltd. (72) Eiji Nakamura, Inventor 2- 10-16 Higashi-Kobashi, Higashi-Nari-ku, Osaka-shi Kansai Gas Meter Co., Ltd. Inside the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測流体の上流側と下流側にそれぞれ送
波器及び受波器を配置し、前記各送波器の超音波発信素
子に駆動パルスを印加して相互に超音波を発生送信する
とともに、送信された超音波を相互に受波器で受信し、
各受信波の比較から求めた該超音波の伝搬時間の差に基
いて流速を測定する超音波流速測定方法において、 前記駆動パルスの後に、超音波発信素子および超音波受
信素子の共振周波数と同じないしほぼ同じ周波数の位相
合わせパルスを複数個印加することを特徴とする超音波
流速測定方法。
1. A transmitter and a receiver are arranged on an upstream side and a downstream side of a measurement fluid, respectively, and a driving pulse is applied to an ultrasonic transmitting element of each of the transmitters to generate and transmit ultrasonic waves mutually. While receiving the transmitted ultrasonic waves with each other,
In the ultrasonic flow velocity measuring method for measuring the flow velocity based on the difference in the propagation time of the ultrasonic wave obtained from the comparison of each received wave, after the driving pulse, the same as the resonance frequency of the ultrasonic transmitting element and the ultrasonic receiving element Or an ultrasonic flow velocity measuring method, wherein a plurality of phase matching pulses having substantially the same frequency are applied.
JP8228758A 1996-08-29 1996-08-29 Method for measuring flow velocity using ultrasonic wave Pending JPH1073463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8228758A JPH1073463A (en) 1996-08-29 1996-08-29 Method for measuring flow velocity using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8228758A JPH1073463A (en) 1996-08-29 1996-08-29 Method for measuring flow velocity using ultrasonic wave

Publications (1)

Publication Number Publication Date
JPH1073463A true JPH1073463A (en) 1998-03-17

Family

ID=16881374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8228758A Pending JPH1073463A (en) 1996-08-29 1996-08-29 Method for measuring flow velocity using ultrasonic wave

Country Status (1)

Country Link
JP (1) JPH1073463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232659A (en) * 2006-03-03 2007-09-13 Ricoh Elemex Corp Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232659A (en) * 2006-03-03 2007-09-13 Ricoh Elemex Corp Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
CN108369242B (en) Improved beamformed acoustic signal travel time flow meter
WO2004054319A1 (en) Method and device for measuring sound wave propagation time between loudspeaker and microphone
JPH08105871A (en) Acoustic electrical effect type ultrasonic transmitting/ receiving device and ultrasonic transmitting/receiving method
JP2005337848A (en) Ultrasonic distance measuring device
JPH1073463A (en) Method for measuring flow velocity using ultrasonic wave
JP2003014515A (en) Ultrasonic flowmeter
JPH1073462A (en) Method for measuring flow velocity using ultrasonic wave
JP5326697B2 (en) Ultrasonic measuring instrument
JP2608961B2 (en) Sound wave propagation time measurement method
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP4797515B2 (en) Ultrasonic flow measuring device
JPH09318644A (en) Ultrasonic flow velocity measuring method
JP3235637B2 (en) Ultrasonic fluid flow meter
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JP2000338123A (en) Ultrasonic floe speed measuring method
JPH1038650A (en) Ultrasonic flow velocity measuring method
JP2003050145A (en) Method and apparatus for ultrasonic flow-velocity measurement
JPH11148848A (en) Method for judging pulse skip in measuring ultrasonic wave propagation time
JPH0421807B2 (en)
JPS58117471A (en) Method and device for determining system response
JP3453876B2 (en) Ultrasonic flow meter
JP2000321105A5 (en)
SE502506C2 (en) Ways of measuring vibration of a measuring object
JPH0926341A (en) Ultrasonic flowmeter
JP3186569B2 (en) Vortex flow meter