JP4759829B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP4759829B2 JP4759829B2 JP2001110950A JP2001110950A JP4759829B2 JP 4759829 B2 JP4759829 B2 JP 4759829B2 JP 2001110950 A JP2001110950 A JP 2001110950A JP 2001110950 A JP2001110950 A JP 2001110950A JP 4759829 B2 JP4759829 B2 JP 4759829B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- comparison
- period
- output
- reference value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Details Of Flowmeters (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液体や気体の流量を計測する流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置では、圧力変動が発生した場合であっても正確な流量を求めるために様々な提案がなされており、例えば特開平11−44563号公報に記載されているようなものがあった。図4を用いてこの種の流量計測装置の動作について説明する。
【0003】
図4において、流体流路1に、流量検出手段としての第1振動子2と第2振動子3が、流れの方向に対向して取り付けられていて、流量計測手段16がこれらふたつの振動子間で超音波の送受信を行い、その時超音波伝搬に要した時間を用いて流量値を求めている。このような構成においては、流路1の内部で圧力変動が発生した場合にはその影響を受けて、流速が変化するため正確な流量値を求められない。そのため、圧力検出手段10が取
り付けられており、圧力検出手段10の出力信号の交流成分が脈動計測手段11に入力されるとともに、比較手段12で信号レベルのゼロクロス通過点が検出され、これに同期して、流量計測手段の発停が制御されている。この構成により、圧力周期に合わせて計測時間を制御し、脈動時の正確な平均流量を求めることが可能となっていた。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の流量計測装置では、次のような課題があった。すなわち、圧力信号波形は必ずしも、正弦波の様に単純な波形ではなく、多くの場合は複数の周波数成分が合成された複雑な波形となっている。また、比較的正弦波に近い波形であっても、1周期毎の波形を取ると周期やレベルに多少のばらつきを含んでいる場合もある。そのため、ゼロクロスと同期して計測しても、必ずしも、圧力変動周期の流量を平均化したことにならないため、正確な平均流量が求められず、計測精度の点で課題を有していた。
【0005】
本発明は、前記従来の課題を解決するもので、圧力変動周期を正確に捉えることにより、流量計測のタイミングを最適化し、高精度の計測が可能な流量計測装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の流量計測装置は、流体の流量を検出する流量検出手段と、流体の圧力変動を検出する脈動検出手段と、前記脈動検出手段の出力と設定可能な比較基準値とを比較する比較手段と、前記比較手段の出力より脈動周期を計測する周期検出手段と、前記比較手段の比較基準値を変更する設定変更手段と、前記周期計測手段で求めた周期に応じて前記流量検出手段の動作時間を制御する計測制御手段とを備えたものである。
【0007】
これによって、比較基準値を適切に定めることにより、正確な圧力変動周期を捉えて、流量計測のタイミングを最適化できるので、圧力変動の影響を受けない高精度の流量計測を実現するものである。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、流体の流量を検出する流量検出手段と、流体の圧力変動を検出する脈動検出手段と、前記脈動検出手段の出力と設定可能な比較基準値とを比較する比較手段と、前記比較手段の出力より脈動周期を計測する周期検出手段と、前記周期検出手段で計測された脈動周期が所定値よりも小さければ、前記比較手段の比較基準値を大とする設定変更手段と、前記周期検出手段で求めた周期で前記流量検出手段を動作させる計測制御手段と、を備えた流量計測装置である。これにより、比較基準値を適切に定めることにより、正確な圧力変動周期を捉えて、流量計測のタイミングを最適化できるので、圧力変動の影響を受けない高精度の流量計測を実現できる。また、平均周期が短くて変化勾配の急な波形であっても、圧力変動の緩やかな点を捉えて周期を検出できるので、検出周期のばらつきを低減できる。
【0009】
請求項2に記載の発明は、特に、請求項1に記載の設定変更手段を、比較手段の出力変化が所定時間以上なければ比較手段の比較基準値を小とする構成とすることにより、比較基準値を過大に上昇させることがなくなるため、比較基準値の最適化を図ることができる。
【0010】
請求項3に記載の発明は、特に、請求項1または2に記載の計測制御手段の開始停止信号を比較手段の出力変化点と同期して出力される構成とすることにより、圧力変動に対する時間遅れの小さい計測ができるため、圧力変動に対する追従性を高めることができる。
【0011】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0012】
(実施例1)
図1は本発明の実施例1の流量計測装置を示すブロック図である。図1において、流体流路1の途中に流量検出手段として超音波を発信する第1振動子2と受信する第2振動子3が流れ方向に配置されている。4は第1振動子2への送信回路、5は第2振動子3で受信した超音波を信号処理する受信回路で、6は第1振動子2と第2振動子3の送受信を切換える切換手段、7は受信回路5で超音波を検知した後第1振動子2からの送信と第2振動子3での受信を複数回繰り返す繰り返し手段、8は繰り返し手段7により行われる複数回の超音波伝搬の所要時間を計測する計時手段、9は計時測手段8の計測値から流量を求める流量演算手段である。また、10は流路1内の圧力を検出する圧力検出手段、11は圧力検出手段11の信号出力の交流成分をコンデンサを介して取り出す脈動検出手段、12は脈動検出手段により取り出された交流信号と設定電圧とを比較し、その大小関係を二値信号に変換して出力する比較手段、13は比較手段12の二値信号の小から大への出力変化点の間隔を計測し脈動周期を検出する周期検出手段、14は周波数検出手段13の出力結果に応じて流量計測時間を制御する計測制御手段、15は比較手段12の比較基準値を変更する設定変更手段である。
【0013】
次に、動作作用について説明する。静止流体中の音速をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝搬速度は(c+v)、逆方向の伝搬速度は(c−v)となる。振動子2と3の間の距離をL、超音波伝搬軸と流路の中心軸とがなす角度をθ、流れの順方向に発信された超音波の伝搬する時間をt1、流れの逆方向に発信された超音波の伝搬する時間をt2とすると、
t1=L/(c+vcosθ) (1)
t2=L/(c−vcosθ) (2)
となる。(1)式、(2)式より流速vを求めると、
v=(L/2cosθ)・(1/t1−1/t2) (3)
となり、Lとθが既知ならt1、t2を計測して流速vが求められる。ここで、流路断面積をS、補正係数をKとすれば、流量Qは
Q=K・S・v (4)
となる。式(3)、(4)から明らかなように、伝搬時間を求めることにより流量Qが求められる。一方、流路1内部に圧力変動が発生している場合には流速vは一定しないが、周期的な変動が発生している場合には、圧力変動n周期の間の伝搬時間を計測し、その平均値を求めれば、変動の影響はキャンセルされて、正確な値を求めることができる。
【0014】
次に図2を用いて、計測制御手順について説明する。脈動検出手段11の出力信号と比較基準値0Vとの比較処理が比較手段12で行われる。比較手段12は脈動検出手段11の交流信号が比較基準値より高ければH、低ければLの二値信号を出力する。計測制御手段14は、比較手段12の立ち上がり波形、すなわち、出力信号がLからHに変化する変化点t1aと同期して、繰り返し手段7に対して、繰り返し計測の開始信号を出力する。この時、切換手段6は、予め第1振動子2を送信回路4に、第2振動子3を受信回路5に接続して超音波を流れの順方向に送信した伝搬時間を計測する体制が取られている。計測制御手段14の開始信号出力を受けて送受信が開始され、送受信1回が終了する毎に、繰り返し手段7は送受信の回数をカウントすると共に、送信回路4に超音波の送信を指示する。繰り返し手段7での繰り返し計測と平行して、計時手段8では送受信に要した時間が計測される。そして、計測制御手段14は、再び比較手段12の出力がLからHに変化する点t1bで、計測の停止信号を出力する。計測制御手段14からの停止信号を受けると、繰り返し手段7は、新たな送受信を中止する。ここで、計時手段8で計測した伝搬時間と繰り返し手段7行った送受信の繰り返し回数を元に、流量演算手段9で流れの順方向の
伝搬時間t1を求める。この後、切換手段6は第1振動子2に、受信回路5を第2振動子3に繋ぎ換えることにより流れの逆方向に超音波を送信した伝搬時間を計測する体制を取る。比較手段12の信号がLからHに切換わる点t2aおよびt2bで、計測制御手段14がそれぞれ開始信号、停止信号を出力し、順方向と同様の手順で、逆方向の計測が行われる。以上のように求めた順方向、逆方向の伝搬時間を基に、流量演算手段9では(3)、(4)式を用いて流量Qを求める。
【0015】
ここでは、比較手段12における比較基準値は0Vとしたが、この値は固定されるものではない。設定変更手段15により脈動波形の発生原因、周期、絶対レベルに応じて適正な値に設定することにより、周期検出の精度が向上し、結果として流量計測の精度が向上する。
【0016】
以上のように、本実施例において、設定変更手段が比較基準値を適切に定めることにより、正確な圧力変動周期を捉えて、流量計測のタイミングを最適化できるので、圧力変動の影響を受けない高精度の流量計測を実現できる。
【0017】
特に、周期検出手段13の平均周期が小となるに従って、比較手段12の比較基準値を大とすることにより、平均周期が短くて変化勾配の急な波形であっても、圧力変動の緩やかな点を捉えて周期を検出できるので、検出周期のばらつきを低減できる。
【0018】
(実施例2)
図3は、本発明の実施例2の動作を説明するタイミングチャートである。脈動波形が図2で示したような正弦波であれば、1周期でゼロクロスを2回生じるが、図3で示すような波形であったとすると、1周期の間に4回ゼロクロスを生じる。以後、このような現象を中割れ現象と称する。比較手段12の比較基準値の初期値を0とすると、比較手段12の出力は図の如く変化し、周期検出手段13の検出値がTa、Tbと交互に変化する。この場合、Taの期間では、圧力平均値はプラス側、Tbの期間ではマイナス側に振れるため、いずれの期間で平均化したとしても流量平均値の真値を得ることはできない。設定変更手段15は、周期検出手段15で周期を求める毎に予め定めた所定値Ts(Tb>Ts>Ta)と比較処理を行い、Tsより小さな値を検出すると、中割れ波形と判断して比較手段12の比較基準値をV1に変更する。これにより、比較手段12の出力は図3後半のように変化し、常に一定周期Tcが得られるになる。その結果、脈動の影響がキャンセルされて正確な流量値を求めることができるようになる。
【0019】
以上のように、本実施例においては、周期検出手段の計測周期が所定値より小さければ比較手段の比較基準値を大とすることで、短時間で発生した変動を受け付けないので、ノイズや圧力波計の中割れの影響を回避して正確な変動周期を求めることができる。
【0020】
また、別の方法として、判定手段16で、周期のばらつきを基に比較手段12の比較基準値を変更しても良い。この場合には、圧力周期はほぼ一定であっても、波形周期のばらつきが大きくなるような場合にも対応して、比較基準値を最適化できるので、正確な圧力周期を求めることができる。ばらつきを求める方法は一定期間内の標準偏差を求める方法であっても、最大値と最小値の差を求める方法であっても良い。
【0021】
更に、本実施例においては、比較基準値の変更度合いが大きすぎると、比較手段12の出力がLのまま変化しなくなる場合も考えられる。この場合、判定手段16が所定時間以上、比較手段12の立ち上がり信号を検出できない場合に、比較基準値を小さく変化させれば良い。これによって、比較基準値を過大に上昇させることがなくなるため、比較基準値の最適化を図ることができる。
【0022】
なお、各実施例において、比較手段12の出力の立ち上がりと同期する構成で説明したが、立ち下がり信号であっても同様の効果が得られる。立ち上がり立ち下がりいずれの場合であっても、比較手段12の出力変化と同期して流量計測を行うことにより、圧力変動に対する時間遅れの小さい計測ができるため、圧力変動に対する追従性を高めることができる。
【0023】
また、別の方法として、周期検出手段13で求めた時間を繰り返し手段13の繰り返し回数に変換する演算処理を施して、比較信号と非同期で計測する方法もある。この場合には流量計測手段の動作が、脈動検出手段や比較手段のノイズで妨げられる危険性がないので、流量計測中の不要信号の影響を回避できるため、ノイズの影響を受け難い信頼性の高い計測が可能となる。
【0024】
更に、各実施例は超音波振動子を用いたものについて説明したが、それ以外の例えば熱線式のフローセンサであっても同等の効果が得られる。また、気体流量の計測装置に限らず、液体流量の計測装置であっても同等の効果が得られることは言うまでもない。
【0025】
【発明の効果】
以上説明したように本発明の請求項1〜3に記載の発明によれば、比較基準値を適切に定めることにより正確な変動周期を捉えることが可能となり、圧力変動の影響を受けない高精度の流量計測が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施例1における流量計測装置のブロック図
【図2】 同装置の動作を説明するタイミングチャート
【図3】 本発明の実施例2における流量計測装置の動作を説明するタイミングチャート
【図4】 従来の流量計測装置のブロック図
【符号の説明】
2 第1振動子(流量検出手段)
3 第2振動子(流量検出手段)
11 脈動検出手段
12 比較手段
13 周期検出手段
14 計測制御手段
15 設定変更手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures the flow rate of a liquid or gas.
[0002]
[Prior art]
In this type of conventional flow rate measuring device, various proposals have been made to obtain an accurate flow rate even when pressure fluctuations occur. For example, as described in Japanese Patent Application Laid-Open No. 11-44563. There was a thing. The operation of this type of flow rate measuring device will be described with reference to FIG.
[0003]
In FIG. 4, a
[0004]
[Problems to be solved by the invention]
However, the conventional flow rate measuring device has the following problems. That is, the pressure signal waveform is not necessarily a simple waveform such as a sine wave, and in many cases is a complex waveform in which a plurality of frequency components are synthesized. Even if the waveform is relatively close to a sine wave, taking a waveform for each period may include some variation in the period and level. For this reason, even if measurement is performed in synchronization with the zero cross, the flow rate in the pressure fluctuation cycle is not necessarily averaged, so that an accurate average flow rate cannot be obtained, and there is a problem in terms of measurement accuracy.
[0005]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a flow rate measurement device capable of optimizing the flow rate measurement timing and accurately measuring the flow rate by accurately grasping the pressure fluctuation period. .
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the flow rate measuring device of the present invention can be set with a flow rate detecting means for detecting a fluid flow rate, a pulsation detecting means for detecting a fluid pressure fluctuation, and an output of the pulsation detecting means. A comparison means for comparing with a comparison reference value, a period detection means for measuring a pulsation period from the output of the comparison means, a setting change means for changing a comparison reference value of the comparison means, and a period measurement means. Measurement control means for controlling the operation time of the flow rate detection means according to the cycle.
[0007]
In this way, by accurately determining the comparison reference value, it is possible to capture the exact pressure fluctuation period and optimize the flow measurement timing, thereby realizing highly accurate flow measurement that is not affected by pressure fluctuation. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention , the flow rate detecting means for detecting the flow rate of the fluid, the pulsation detecting means for detecting the fluid pressure fluctuation, and the comparison for comparing the output of the pulsation detecting means with a settable comparison reference value. A setting change to increase the comparison reference value of the comparison means if the pulsation period measured by the period detection means is smaller than a predetermined value. means and a measurement control means for causing operation of said flow rate detection means at a period determined by the period detecting means, a flow rate measuring device provided with a. As a result, by appropriately setting the comparison reference value, it is possible to capture the accurate pressure fluctuation period and optimize the flow rate measurement timing, thereby realizing highly accurate flow rate measurement that is not affected by the pressure fluctuation. Further, even if the average cycle is short and the waveform has a steep change gradient, the cycle can be detected by capturing a point where the pressure fluctuation is gentle, so that variations in the detection cycle can be reduced.
[0009]
According to the second aspect of the present invention, in particular, the setting change unit according to the first aspect is configured so that the comparison reference value of the comparison unit is made small if the output change of the comparison unit is not more than a predetermined time. Since the reference value is not increased excessively, the comparison reference value can be optimized.
[0010]
According to the third aspect of the present invention, in particular, the time for pressure fluctuation is obtained by adopting a configuration in which the start / stop signal of the measurement control unit according to the first or second aspect is output in synchronization with the output change point of the comparison unit. Since it is possible to measure with a small delay, it is possible to improve the followability to pressure fluctuation.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
Example 1
FIG. 1 is a block diagram showing a flow rate measuring apparatus according to
[0013]
Next, the operation and action will be described. When the velocity of sound in the static fluid is c and the velocity of the fluid flow is v, the propagation velocity of the ultrasonic wave in the forward direction is (c + v) and the propagation velocity in the reverse direction is (cv). The distance between the
t 1 = L / (c + v cos θ) (1)
t 2 = L / (c−v cos θ) (2)
It becomes. When the flow velocity v is obtained from the equations (1) and (2),
v = (L / 2 cos θ) · (1 / t 1 −1 / t 2 ) (3)
If L and θ are known, t 1 and t 2 are measured to obtain the flow velocity v. Here, if the channel cross-sectional area is S and the correction coefficient is K, the flow rate Q is Q = K · S · v (4)
It becomes. As is clear from the equations (3) and (4), the flow rate Q is obtained by obtaining the propagation time. On the other hand, the flow velocity v is not constant when a pressure fluctuation occurs in the
[0014]
Next, the measurement control procedure will be described with reference to FIG. The comparison unit 12 performs a comparison process between the output signal of the pulsation detecting unit 11 and the comparison reference value 0V. The comparison means 12 outputs a binary signal of H if the AC signal of the pulsation detection means 11 is higher than the comparison reference value, and L if it is lower. The
[0015]
Here, the comparison reference value in the comparison means 12 is set to 0 V, but this value is not fixed. By setting the appropriate value according to the cause, period, and absolute level of the pulsation waveform generated by the setting change means 15, the accuracy of period detection is improved, and as a result, the accuracy of flow rate measurement is improved.
[0016]
As described above, in this embodiment, the setting change means appropriately determines the comparison reference value, so that the accurate pressure fluctuation cycle can be captured and the timing of flow measurement can be optimized, so that it is not affected by the pressure fluctuation. Highly accurate flow measurement can be realized.
[0017]
In particular, by increasing the comparison reference value of the comparison unit 12 as the average cycle of the
[0018]
(Example 2)
FIG. 3 is a timing chart for explaining the operation of the second embodiment of the present invention. If the pulsation waveform is a sine wave as shown in FIG. 2, zero crossing occurs twice in one cycle, but if the waveform is as shown in FIG. 3, zero crossing occurs four times during one cycle. Hereinafter, such a phenomenon is referred to as a middle cracking phenomenon. When the initial value of the comparison reference value of the comparison means 12 is set to 0, the output of the comparison means 12 changes as shown in the figure, and the detection value of the period detection means 13 changes alternately with T a and T b . In this case, in the period T a, the pressure average is positive, since the swing in the negative side in a period of T b, it is impossible to obtain the true value of the flow rate average value even when averaged over any given period. The setting change means 15 performs a comparison process with a predetermined value T s (T b > T s > T a ) each time the period detection means 15 obtains a period, and if a value smaller than T s is detected, the setting change means 15 it is determined that the waveform changes the comparison reference value of the comparator 12 to V 1. As a result, the output of the comparison means 12 changes as in the latter half of FIG. 3, and a constant period Tc is always obtained. As a result, the influence of pulsation is canceled and an accurate flow rate value can be obtained.
[0019]
As described above, in this embodiment, if the measurement period of the period detection unit is smaller than a predetermined value, the comparison reference value of the comparison unit is increased, so that fluctuations generated in a short time are not accepted. The accurate fluctuation period can be obtained by avoiding the influence of the crack of the wave meter.
[0020]
As another method, the determination unit 16 may change the comparison reference value of the comparison unit 12 based on the variation in the period. In this case, even if the pressure cycle is substantially constant, the comparison reference value can be optimized in response to a case where the variation of the waveform cycle becomes large, so that an accurate pressure cycle can be obtained. The method for obtaining the variation may be a method for obtaining the standard deviation within a certain period, or a method for obtaining the difference between the maximum value and the minimum value.
[0021]
Furthermore, in this embodiment, if the comparison reference value is changed too much, the output of the comparison means 12 may remain unchanged at L. In this case, when the determination unit 16 cannot detect the rising signal of the comparison unit 12 for a predetermined time or longer, the comparison reference value may be changed small. As a result, the comparison reference value is not increased excessively, so that the comparison reference value can be optimized.
[0022]
In each of the embodiments, the configuration is described in which the rising edge of the output of the comparison means 12 is synchronized. However, the same effect can be obtained even with a falling signal. In either case of rising and falling, by measuring the flow rate in synchronization with the output change of the comparison means 12, it is possible to measure with a small time delay with respect to the pressure fluctuation, so that the followability to the pressure fluctuation can be improved. .
[0023]
Further, as another method, there is a method of performing measurement processing asynchronously with the comparison signal by performing arithmetic processing for converting the time obtained by the period detection means 13 into the number of repetitions of the repetition means 13. In this case, since there is no risk that the operation of the flow rate measuring means is hindered by the noise of the pulsation detecting means or the comparing means, it is possible to avoid the influence of unnecessary signals during flow rate measurement. High measurement is possible.
[0024]
Furthermore, although each example demonstrated what used the ultrasonic transducer | vibrator, even if it is other than that, for example, a heat ray type flow sensor, an equivalent effect is acquired. Needless to say, the same effect can be obtained not only with a gas flow rate measuring device but also with a liquid flow rate measuring device.
[0025]
【The invention's effect】
As described above, according to the inventions described in
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow rate measuring apparatus according to a first embodiment of the present invention. FIG. 2 is a timing chart illustrating the operation of the apparatus. FIG. 3 is a timing illustrating the operation of the flow rate measuring apparatus according to a second embodiment of the present invention. Chart [Figure 4] Block diagram of a conventional flow measurement device [Explanation of symbols]
2 First vibrator (flow rate detection means)
3 Second vibrator (flow rate detection means)
11 Pulsation detection means 12 Comparison means 13 Period detection means 14 Measurement control means 15 Setting change means
Claims (3)
流体の圧力変動を検出する脈動検出手段と、
前記脈動検出手段の出力と設定可能な比較基準値とを比較する比較手段と、
前記比較手段の出力より脈動周期を計測する周期検出手段と、
前記周期検出手段で計測された脈動周期が所定値よりも小さければ、前記比較手段の比較基準値を大とする設定変更手段と、
前記周期検出手段で求めた周期で前記流量検出手段を動作させる計測制御手段と、を備えた流量計測装置。Flow rate detection means for detecting the flow rate of the fluid;
Pulsation detecting means for detecting fluid pressure fluctuations;
Comparing means for comparing the output of the pulsation detecting means with a settable comparison reference value;
Period detection means for measuring a pulsation period from the output of the comparison means;
If the pulsation cycle measured by the cycle detection unit is smaller than a predetermined value , a setting change unit that increases the comparison reference value of the comparison unit;
Flow rate measuring apparatus provided with a operation makes measuring control the flow rate detecting means at a period determined by the period detecting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001110950A JP4759829B2 (en) | 2001-04-10 | 2001-04-10 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001110950A JP4759829B2 (en) | 2001-04-10 | 2001-04-10 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002310764A JP2002310764A (en) | 2002-10-23 |
JP4759829B2 true JP4759829B2 (en) | 2011-08-31 |
Family
ID=18962637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001110950A Expired - Fee Related JP4759829B2 (en) | 2001-04-10 | 2001-04-10 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4759829B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1144563A (en) * | 1997-07-29 | 1999-02-16 | Matsushita Electric Ind Co Ltd | Apparatus for measuring flow rate |
JP4425414B2 (en) * | 2000-03-09 | 2010-03-03 | パナソニック株式会社 | Flow measuring device |
-
2001
- 2001-04-10 JP JP2001110950A patent/JP4759829B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002310764A (en) | 2002-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3023569B2 (en) | Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium | |
JP5753970B2 (en) | Flow measuring device | |
WO2011040027A1 (en) | Flow rate measuring device | |
JP2002131105A (en) | Ultrasonic flow rate measuring method | |
WO2000068649A1 (en) | Flow rate measuring device | |
JP4556253B2 (en) | Flowmeter | |
JP4835068B2 (en) | Fluid flow measuring device | |
JP4759835B2 (en) | Flow measuring device | |
JP3350501B2 (en) | Flow measurement device | |
JP4759829B2 (en) | Flow measuring device | |
JPH0921667A (en) | Flow rate measuring apparatus | |
JP4797515B2 (en) | Ultrasonic flow measuring device | |
JP2008185441A (en) | Ultrasonic flowmeter | |
JP2008014800A (en) | Flow measuring instrument | |
JP5135807B2 (en) | Fluid flow measuring device | |
JP6767628B2 (en) | Flow measuring device | |
JP5135806B2 (en) | Fluid flow measuring device | |
JP4858220B2 (en) | Ultrasonic current meter | |
JPH08193861A (en) | Flow-rate measuring apparatus | |
JP2020180811A (en) | Ultrasonic flowmeter | |
JPS6242015A (en) | Temperature correcting method for ultrasonic flow meter | |
JP3627722B2 (en) | Flowmeter | |
JP4552285B2 (en) | Flowmeter | |
WO2012157261A1 (en) | Ultrasonic flow meter | |
JP5548951B2 (en) | Flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080318 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080414 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110523 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |