JP3627722B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP3627722B2
JP3627722B2 JP2002117243A JP2002117243A JP3627722B2 JP 3627722 B2 JP3627722 B2 JP 3627722B2 JP 2002117243 A JP2002117243 A JP 2002117243A JP 2002117243 A JP2002117243 A JP 2002117243A JP 3627722 B2 JP3627722 B2 JP 3627722B2
Authority
JP
Japan
Prior art keywords
measurement
repeating
time
unit
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002117243A
Other languages
Japanese (ja)
Other versions
JP2003315132A (en
JP2003315132A5 (en
Inventor
康裕 梅景
行夫 長岡
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002117243A priority Critical patent/JP3627722B2/en
Publication of JP2003315132A publication Critical patent/JP2003315132A/en
Publication of JP2003315132A5 publication Critical patent/JP2003315132A5/ja
Application granted granted Critical
Publication of JP3627722B2 publication Critical patent/JP3627722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体や気体の流量を計測する流量計に関し、さらに詳しくは流量変動が発生した場合にも精度よく流量値を計測する流量計に関するものである。
【0002】
【従来の技術】
従来、この種の流量計は、特開平9−15006号公報のようなものが知られていた。以下、その構成について図5を参照しながら説明する。図5に示すように、ガス流量を計測するアナログフローセンサ1から所定の第1サンプリング時間毎に計測値を読み取るサンプリングプログラム2と、所定時間におけるガス消費流量を算出するガス消費量算出プログラム3と、第1サンプリング時間に所定時間内で第2サンプリング時間毎にアナログフローセンサの計測値を読み出してその平均値を演算する平均値演算プログラム4と、フローセンサの出力から圧力変動の周期を推定する圧力変動周期推定プログラム5と、メモリーとしてのRAM6で構成されていた。ここで、7は前記各プログラムを記憶しておくメモリーのROM、8はそのプログラムを実行するCPUである。この構成により、所定計測時間がポンプの振動周期の1周期以上、またはその周期の倍数であるように計測処理するものであり、平均化することで流量に変動が発生しても計測流量が影響されにくい構成としている。
【0003】
【発明が解決しようとする課題】
しかしながら上記従来技術では、変動周期が変化するたびに周期を推定して計測時間を変更する必要があり、変動周期が変化した場合に適応しにくいという課題と、複雑な推定プログラム処理に高度なCPUが必要となり消費電流も多くなるという課題があった。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するために、流路内の流量を計測する流量計測手段と、前記流路内に発生する圧力脈動の脈動周期より短い周期で複数回の流量計測を行う計測制御手段と、前記複数回の計測流量より平均流量を求めて計測流量とする流量検出手段を備えた構成とした。
【0005】
上記発明によれば、流路内で発生する圧力変動の周波数が変化しても、変動周期以上の短い時間で計測するので、その影響を少なくすることができ安定した流量計測を実現することができる。
【0006】
【発明の実施の形態】
本発明は、流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段の一方から音波を送信して他方の音波送受信手段で受信する送受信動作を繰返し行う第1繰返手段と、前記第1繰返手段により計測される送受信時間を計測する第1計時手段と、前記他方の音波送受信手段から音波を送信して一方の音波送受信手段で受信する送受信動作を繰返し行う第2繰返手段と、前記第2繰返手段により計測される送受信時間を計測する第2計時手段と、前記第1繰返手段と前記第2繰返手段の動作を一つの計測単位とした動作を繰返し行う第3繰返手段と、前記第1繰返手段と前記第2繰返手段の送受信関係を切り替える切替手段と、前記第3繰返手段によって繰り返された後の前記第1計時手段の計測時間と前記第2計時手段の計測時間の値に基づいて流量を検出する流量検出手段とを備え、前記切替手段および前記第1繰返手段または前記第2繰返手段によって決定される計測周期を、流路内に発生する圧力脈動の脈動周期より短い周期で計測する計測制御手段を備えた構成とした。これにより、流路内で発生する圧力変動の周波数が変化しても、変動周期以上の短い時間で計測するので、その影響を少なくすることができ安定した流量計測を実現できる。
【0007】
更に、前記計測制御手段は、前記第3繰返手段で繰り返した時の総計測時間と、圧力脈動の変化の周期幅とを実質的に一致させるように制御する。総計測時間が所定時間となるようにすることで、脈動の周期が所定間隔で変化する場合には、どの脈動周期においても安定した流量計測とすることができる。
【0008】
また、前記計測制御手段による計測周期を0.002秒から0.05秒の範囲とすることで低い周波数の脈動を精度よく計測することができる。なお、0.005秒を最適設定とすることで、200Hzより低い周波数の脈動を精度よく計測することができる。
また、前記計測制御手段は、第1繰返手段を最初に動作させるタイミングを所定時間内でランダムに制御する。ランダムに制御することで一定周期の脈動を精度よく計測することができる。
【0009】
さらに、前記計測制御手段は、3秒の範囲内でランダム動作を設定可能に制御する。3秒の範囲でランダムに計測することで、低周波数の脈動をランダムに計測することができ脈動の影響を抑制して精度よく計測することができる。なお、2秒を最適設定とする。
【0010】
また、第1繰返手段と第2繰返手段および第1計時手段と第2計時手段を兼用し、それらの繰返回数を同じ回数に設定した。そして、同じ回数に設定することで、計測時間間隔が安定して、精度の高い流量計測を行うことができる。
【0011】
また、第1繰返手段と第2繰返手段の繰返回数を2回に設定した。そして、2回に設定することで、音波の反射波の影響を少なくすることができ、流量計測をより高精度に行うことができる。
【0012】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0013】
(実施例1)
図1は本発明の実施例1の流量計のブロック図である。図1において、10は流路9に設けられて音波を送受信する音波送受信手段としての第1振動子、11は音波送受信手段としての第2振動子、12は前記第1振動子10と前記第2振動子11の送受信関係を交互に切り替える切替手段、13は前記第1振動子10を送信手段にして前記第2振動子11で受信する信号伝搬を繰返し行う第1繰返手段、14は前記第2振動子11を送信手段にして前記第1振動子10で受信する信号伝搬を繰返し行う第2繰返手段、15は前記第1繰返手段13により計測される送受信時間を計測する第1計時手段、16は前記第2繰返手段により計測される送受信時間を計測する第2計時手段、17は前記第1繰返手段と第2繰返手段の動作を一つの計測単位とした動作を繰返し行う第3繰返手段、18は前記第3繰返手段によって繰り返された後の前記第1計時手段15の計測時間と前記第2計時手段16の計測時間の値に基づいて流量を検出する流量検出手段である。そして、19は前記切替手段および第1繰返手段または第2繰返手段によって決定される計測周期を、流路内に発生する圧力脈動の脈動周期より短い周期で計測する計測制御手段である。ここで、音波の伝搬時間から流量を計測する流量計測手段は、超音波流量計測装置のことであり、全体を示すものである。
【0014】
次に動作、作用について図2から図4を用いて説明する。図2に示すように、本発明の流量計は、第1繰返手段13の繰返し開始信号により計測が開始され、送信信号を第1振動子10に入力する。そして、第1振動子10が振動して超音波を放射し、第2振動子11が受信する。そして、この間の伝搬時間を第1計時手段が所定クロックでカウントしつつ時間を計測するものである。図中の遅延時間は、音波の減衰を待つための待機時間であり、所定時間に設定されたものである。そして、この遅延時間と伝搬時間をカウントした値を検出した後、再び第1振動子10に送信信号を入れ超音波を発信して、第2振動子11で受信する繰返し計測を所定回数行う。ここでは、繰返し回数は2回として説明する。そして、第1計時手段が2回の送受信動作の計測時間1を計測する。ここで、2回の繰返し回数としたことで、超音波が受信側の振動子によって反射して更に1往復した反射波の影響を除去することができる効果がある。
【0015】
そして、次に送受信の方向を切替手段12で切り替える。すなわち、次の第2繰返手段14の繰返し開始信号により計測が開始され、送信信号を第2振動子11に入力する。そして、第2振動子11が振動して超音波を放射した超音波を、第1振動子10が受信する。そして、この間の伝搬時間を第2計時手段が所定クロックでカウントしつつ時間を計測するものである。この送受信の動作を2回繰り返した時の計測時間2を計測する。
【0016】
このような第1繰返手段13と第2繰返手段14の繰返動作を一つの計測単位として、第3繰返手段17が複数回の計測を行う。そして、この繰返し動作の後の第1計時手段の計測時間1と第2計時手段の計測時間2の逆数差から、所定の式に基づいて流量を算出するものである。
【0017】
ここで、図3に示すように、前記切替手段の切替時間および第1繰返手段または第2繰返手段の総計時時間によって決定される計測周期を、流路内に発生する圧力脈動の脈動周期より短い周期で計測することによって、圧力脈動の変動速度に追随することができ、精度よく流量を計測することができる。そして、計測周期は、圧力脈動の周期の1/2以下にすることが望ましいが、圧力脈動周期より少し小さい周期でも、十分に精度よく計測することができる。例えば、計測周期を0.002秒から0.05秒の範囲で設定することがよいが、最適値として約0.005秒とすれば(厳密には0.00468秒であるが、流量によって変化するのでおおよそで良い。)、圧力脈動は約200Hz付近まで計測できるということである。計測周期を変更することで、計測時間を軽減できる場合があり、発生する脈動の周波数に応じて対応すると、消費電力を軽減できる効果がある。図4に圧力脈動波形と計測のタイミングチャートを示す。
【0018】
また、圧力脈動が所定の周期幅で変化していくことがわかっているなら、その変化する周期幅に総計測時間を一致させることで、どの周期においても精度よく流量を計測することができる。これは、総計測時間が圧力脈動の周期の整数倍になるためで、計測時間が圧力脈動周期の公倍数なり、周期ごとの計測を実現することができるためである。例えば、ガスエンジンの制御のように、回転数が100rpmごとに制御される場合、圧力脈動は0.833Hzごとに変化する。この場合、総計測時間は、1.2秒とすることで、どの回転数においても圧力脈動を周期単位で計測することができるので、脈動時の計測精度が大きく向上する。また、平均時間も短縮でき、短時間で高い精度の流量計測を実現することができる。
【0019】
次に、第1繰返手段を最初に動作するタイミングをランダムに制御する計測制御手段を説明する。計測の最初に出力する繰り返し開始信号のタイミングを、所定時間間隔で繰り返していると、いつも同じタイミングで計測することになり、圧力脈動の特定の部分のみを繰り返し計測する場合がある。そこで、計測を開始するタイミングをランダムにすることによって、特定部分のみの計測を避けるようにすることができるのである。そして、ランダムに開始することで計測流量が平均化されるので、所定時間計測した計測流量値は、精度の高いものとなる。例えば、圧力脈動が200Hzの場合は、0.005秒の範囲でランダムにすれば良く、0.5Hzでは2秒の範囲でランダムにする必要がある。よって、低周波数から高周波数まで幅広い周波数範囲にわたって行う時は、0.3Hz程度の低周波数を考えて3秒の範囲でランダムに計測を行うことが望ましい。そして、そのランダムに振り分ける数は、大きいほど精度よく計測できるが、計測時間が長くかかるという課題もある。よって、計測制御手段を動作させるマイコンなどの能力から、8個から256個の2のn乗の値の中から設定することが望ましい。最適値としては、8個、または64個、128個などの値を推奨する。
【0020】
なお、ここでは第1繰返手段と第2繰返手段を別々の手段として説明しているが、同時に動作するものではないので、切り替えて使用するように構成すれば、ひとつの繰返手段で兼用することができる。また、その結果、同じ繰返し回数に設定することができ、計測精度を向上することができる。
【0021】
このように、流路内に発生する圧力脈動の脈動周期より短い周期で計測することで、流路内で発生する圧力変動を迅速に追随することができ、周波数が変化しても、その影響を少なくすることができ安定した流量計測を実現できる。そして、総計測時間が、所定時間となるように制御することで、脈動の周期が所定間隔で変化する場合には、どの脈動周期においても安定した流量計測とすることができる。そして、計測周期が、流路内に発生する圧力脈動の脈動周期より短い周期に設定することで、脈動をより精度よく計測することができる。また、第3繰返手段を動作するタイミングをランダムに制御することで、一定周期の脈動を精度よく計測することができる。さらに、第1繰返手段と第2繰返手段の繰返回数を同じ回数に設定することで、計測時間間隔が安定して、精度の高い流量計測を行うことができる。本流量計は、ガスメーターのようにガスエンジンなどの圧力脈動を生じる機器が接続された配管上の流量を計測することが実現でき、脈動があっても精度が良いことと、計測周期を短くすることで短時間の計測時間とすることができるので、瞬時計測を実現できる。その結果、ガス漏れ検知などの保安機能を高精度により速い時間で実現することができるのである。
【0022】
【発明の効果】
以上説明したように本発明の流量計によれば、次の効果が得られる。
【0023】
本発明は、流路内の流量を計測する流量計測手段と、前記流路内に発生する圧力脈動の脈動周期より短い周期で複数回流量計測を行う計測制御手段と、前記複数回の計測流量より平均流量を求めて計測流量とする流量検出手段を備えた。そして、流路内で発生する圧力変動の周波数が変化しても、短い周期で計測することで、その影響を少なくすることができ安定した流量計測を実現できる。
【図面の簡単な説明】
【図1】本発明の実施例1の流量計のブロック図
【図2】同流量計の動作を説明するタイミングチャート
【図3】同流量計の動作を説明するタイミング説明図
【図4】同流量計の動作を説明する脈動波形と計測タイミングチャート
【図5】従来の流量計を示すブロック図
【符号の説明】
9 流路
10 第1振動子(音波送受信手段)
11 第2振動子(音波送受信手段)
12 切替手段
13 第1繰返手段
14 第2繰返手段
15 第1計時手段
16 第2計時手段
17 第3繰返手段
18 流量検出手段
19 計測制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow meter that measures the flow rate of a liquid or gas, and more particularly to a flow meter that accurately measures a flow value even when a flow rate fluctuation occurs.
[0002]
[Prior art]
Conventionally, this type of flowmeter has been known as disclosed in JP-A-9-15006. The configuration will be described below with reference to FIG. As shown in FIG. 5, a sampling program 2 that reads a measured value every predetermined first sampling time from an analog flow sensor 1 that measures a gas flow rate, and a gas consumption calculation program 3 that calculates a gas consumption flow rate at a predetermined time, The average value calculation program 4 for reading the measurement value of the analog flow sensor every second sampling time within the predetermined time within the first sampling time and calculating the average value, and estimating the pressure fluctuation period from the output of the flow sensor It consists of a pressure fluctuation period estimation program 5 and a RAM 6 as a memory. Here, 7 is a ROM of a memory for storing each program, and 8 is a CPU for executing the program. With this configuration, the measurement process is performed so that the predetermined measurement time is one or more times the vibration period of the pump or a multiple of that period. It is hard to be configured.
[0003]
[Problems to be solved by the invention]
However, in the above-described prior art, it is necessary to estimate the period and change the measurement time every time the fluctuation period changes, and it is difficult to adapt when the fluctuation period changes, and a sophisticated CPU for complicated estimation program processing And the current consumption is increased.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a flow rate measuring means for measuring the flow rate in the flow path, and a measurement control means for measuring the flow rate a plurality of times in a cycle shorter than the pulsation cycle of the pressure pulsation generated in the flow path. And it was set as the structure provided with the flow volume detection means which calculates | requires an average flow volume from the said multiple times of measurement flow volume, and makes it a measurement flow volume.
[0005]
According to the above invention, even if the frequency of the pressure fluctuation generated in the flow path changes, measurement is performed in a short time that is equal to or longer than the fluctuation cycle, so that the influence can be reduced and stable flow measurement can be realized. it can.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a pair of sound wave transmission / reception means provided in a flow path for transmitting / receiving sound waves, and a first repetition of repeatedly performing a transmission / reception operation of transmitting sound waves from one of the sound wave transmission / reception means and receiving it by the other sound wave transmission / reception means A first time measuring means for measuring transmission / reception time measured by the first repeating means, and a transmission / reception operation in which a sound wave is transmitted from the other sound wave transmitting / receiving means and received by the one sound wave transmitting / receiving means. 2 repetition means, 2nd time measuring means for measuring the transmission / reception time measured by the 2nd repetition means, and the operation of the first repetition means and the second repetition means as one unit of measurement. A third repeating means for repeatedly performing, a switching means for switching the transmission / reception relationship between the first repeating means and the second repeating means, and the first time counting means after being repeated by the third repeating means. Measurement time and second time A flow rate detecting means for detecting a flow rate based on the value of the measurement time of the stage, and generating a measurement cycle determined in the flow path by the switching means and the first repeating means or the second repeating means It was set as the structure provided with the measurement control means to measure with a period shorter than the pulsation period of the pressure pulsation to do. Thereby, even if the frequency of the pressure fluctuation generated in the flow path changes, measurement is performed in a short time that is equal to or longer than the fluctuation cycle, so that the influence can be reduced and stable flow measurement can be realized.
[0007]
Further, the measurement control means controls so that the total measurement time when repeated by the third repeat means substantially coincides with the period width of the pressure pulsation change. By setting the total measurement time to be a predetermined time, when the pulsation period changes at a predetermined interval, stable flow rate measurement can be performed in any pulsation period.
[0008]
Further, by setting the measurement cycle by the measurement control means in the range of 0.002 seconds to 0.05 seconds, it is possible to accurately measure low frequency pulsations. Note that, by setting 0.005 seconds as the optimum setting, pulsations with a frequency lower than 200 Hz can be accurately measured.
Further, the measurement control means randomly controls the timing at which the first repeating means is first operated within a predetermined time. By controlling at random, it is possible to accurately measure pulsations with a constant period.
[0009]
Furthermore, the measurement control unit sets control to allow random operated within 3 seconds. By randomly measuring in the range of 3 seconds, low-frequency pulsations can be measured randomly, and the influence of pulsations can be suppressed and measured accurately. Note that 2 seconds is the optimum setting.
[0010]
Further, the first repeating means, the second repeating means, the first timing means, and the second timing means are also used, and the number of repetitions is set to the same number. And by setting to the same frequency | count, a measurement time interval is stabilized and a highly accurate flow volume measurement can be performed.
[0011]
Further, the number of repetitions of the first repeating unit and the second repeating unit was set to two. And by setting it twice, the influence of the reflected wave of the sound wave can be reduced, and the flow rate can be measured with higher accuracy.
[0012]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
Example 1
FIG. 1 is a block diagram of a flow meter according to a first embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a first vibrator as a sound wave transmitting / receiving unit provided in the flow path 9 to transmit / receive a sound wave, 11 a second vibrator as a sound wave transmitting / receiving unit, and 12 a first transducer 10 and the first vibrator. Switching means for alternately switching the transmission / reception relationship of the two vibrators 11, 13 is a first repeating means for repeatedly transmitting a signal received by the second vibrator 11 using the first vibrator 10 as a transmitting means, Second repeating means for repeatedly transmitting a signal received by the first vibrator 10 using the second vibrator 11 as a transmitting means, 15 is a first for measuring a transmission / reception time measured by the first repeating means 13. Time measuring means, 16 is a second time measuring means for measuring the transmission / reception time measured by the second repeating means, and 17 is an operation using the operations of the first repeating means and the second repeating means as one unit of measurement. 3rd repeating means to repeat, 18 is the front A flow rate detecting means for detecting a flow rate based on the value of time measured by the second time measuring means 16 and the measurement time of the first time counting means 15 after it has been repeated by the third repeating unit. Reference numeral 19 denotes measurement control means for measuring the measurement cycle determined by the switching means and the first repeat means or the second repeat means with a period shorter than the pulsation period of the pressure pulsation generated in the flow path. Here, the flow rate measuring means for measuring the flow rate from the propagation time of the sound wave is an ultrasonic flow rate measuring device and shows the whole.
[0014]
Next, operation | movement and an effect | action are demonstrated using FIGS. 2-4. As shown in FIG. 2, the flowmeter of the present invention starts measurement by the repeat start signal of the first repeater 13 and inputs the transmission signal to the first vibrator 10. And the 1st vibrator | oscillator 10 vibrates and radiates | emits an ultrasonic wave, and the 2nd vibrator | oscillator 11 receives. Then, the first time measuring means counts the propagation time during this period with a predetermined clock, and measures the time. The delay time in the figure is a waiting time for waiting for the sound wave to decay, and is set to a predetermined time. Then, after detecting a value obtained by counting the delay time and the propagation time, a transmission signal is input to the first transducer 10 again, an ultrasonic wave is transmitted, and repeated measurement received by the second transducer 11 is performed a predetermined number of times. Here, the number of repetitions will be described as two. And the 1st time measuring means measures the measurement time 1 of two transmission / reception operations. Here, by setting the number of repetitions to two times, there is an effect that the influence of the reflected wave which is reflected by the transducer on the receiving side and further reciprocated once can be removed.
[0015]
Then, the direction of transmission / reception is switched by the switching means 12. That is, measurement is started by the next repetition start signal of the second repetition means 14, and the transmission signal is input to the second vibrator 11. Then, the first vibrator 10 receives the ultrasonic wave that the second vibrator 11 vibrates and radiates the ultrasonic wave. Then, the time is measured while the second time measuring means counts the propagation time during this period with a predetermined clock. The measurement time 2 when this transmission / reception operation is repeated twice is measured.
[0016]
The third repeater 17 performs a plurality of measurements using the repeat operation of the first repeater 13 and the second repeater 14 as one measurement unit. Then, the flow rate is calculated based on a predetermined formula from the reciprocal difference between the measurement time 1 of the first time measuring means and the measurement time 2 of the second time measuring means after this repeated operation.
[0017]
Here, as shown in FIG. 3, the measurement period determined by the switching time of the switching means and the total time of the first repeating means or the second repeating means is the pulsation of pressure pulsation generated in the flow path. By measuring at a cycle shorter than the cycle, it is possible to follow the fluctuation speed of the pressure pulsation, and to measure the flow rate with high accuracy. The measurement cycle is preferably set to ½ or less of the pressure pulsation cycle, but can be measured with sufficient accuracy even with a cycle slightly smaller than the pressure pulsation cycle. For example, it is preferable to set the measurement cycle in the range of 0.002 seconds to 0.05 seconds, but if the optimum value is about 0.005 seconds (strictly, it is 0.00468 seconds, it varies depending on the flow rate) The pressure pulsation can be measured up to about 200 Hz. By changing the measurement cycle, there are cases where the measurement time can be reduced, and responding to the frequency of the generated pulsation has the effect of reducing power consumption. FIG. 4 shows a pressure pulsation waveform and a timing chart of measurement.
[0018]
Further, if it is known that the pressure pulsation changes with a predetermined period width, the flow rate can be accurately measured in any period by making the total measurement time coincide with the changing period width. This is because the total measurement time is an integral multiple of the pressure pulsation cycle, and the measurement time is a common multiple of the pressure pulsation cycle, so that measurement can be realized for each cycle. For example, when the rotational speed is controlled every 100 rpm as in the case of control of a gas engine, the pressure pulsation changes every 0.833 Hz. In this case, by setting the total measurement time to 1.2 seconds, the pressure pulsation can be measured in units of cycles at any number of rotations, so that the measurement accuracy during pulsation is greatly improved. In addition, the average time can be shortened, and highly accurate flow rate measurement can be realized in a short time.
[0019]
Next, measurement control means for randomly controlling the timing at which the first repeating means is first operated will be described. If the timing of the repetition start signal output at the beginning of the measurement is repeated at a predetermined time interval, the measurement is always performed at the same timing, and only a specific part of the pressure pulsation may be repeatedly measured. Therefore, by making the measurement start timing random, it is possible to avoid measurement of only a specific portion. Since the measured flow rate is averaged by starting at random, the measured flow rate value measured for a predetermined time is highly accurate. For example, when the pressure pulsation is 200 Hz, it may be random within a range of 0.005 seconds, and when it is 0.5 Hz, it is necessary to randomize within a range of 2 seconds. Therefore, when performing over a wide frequency range from low frequency to high frequency, it is desirable to perform random measurement in a range of 3 seconds considering a low frequency of about 0.3 Hz. And although the number which distributes at random is large, it can measure accurately, but there also exists the subject that measurement time takes long. Therefore, it is desirable to set from 8 to 256 values of 2 to the power of n, from the ability of the microcomputer or the like to operate the measurement control means. As the optimum value, 8 values, 64 values, 128 values, etc. are recommended.
[0020]
Here, the first repeating means and the second repeating means are described as separate means, but they do not operate at the same time, so if they are configured to be used by switching, one repeating means is used. Can also be used. As a result, the same number of repetitions can be set, and the measurement accuracy can be improved.
[0021]
In this way, by measuring with a cycle shorter than the pulsation cycle of the pressure pulsation generated in the flow path, pressure fluctuations generated in the flow path can be followed quickly, and even if the frequency changes, the effect Can be reduced, and stable flow rate measurement can be realized. By controlling the total measurement time to be a predetermined time, when the pulsation cycle changes at a predetermined interval, stable flow rate measurement can be performed in any pulsation cycle. And a pulsation can be measured more accurately by setting a measurement period to a period shorter than the pulsation period of the pressure pulsation which generate | occur | produces in a flow path. Further, by randomly controlling the timing at which the third repeating means is operated, it is possible to accurately measure pulsations with a constant period. Furthermore, by setting the number of repetitions of the first repetition unit and the second repetition unit to the same number, the measurement time interval can be stabilized and highly accurate flow rate measurement can be performed. This flow meter can measure the flow rate on pipes connected to devices that generate pressure pulsations such as gas engines, such as a gas meter, and is accurate even if pulsation occurs, and shortens the measurement cycle. Therefore, a short measurement time can be obtained, so that instantaneous measurement can be realized. As a result, a security function such as gas leak detection can be realized with high accuracy and in a fast time.
[0022]
【The invention's effect】
As described above, according to the flowmeter of the present invention, the following effects can be obtained.
[0023]
The present invention includes a flow rate measuring means for measuring a flow rate in a flow path, a measurement control means for performing flow rate measurement a plurality of times in a cycle shorter than a pulsation cycle of pressure pulsation generated in the flow path, and the plurality of measured flow rates. A flow rate detecting means for obtaining an average flow rate to obtain a measured flow rate was provided. And even if the frequency of the pressure fluctuation which generate | occur | produces in a flow path changes, the influence can be lessened by measuring with a short period, and the stable flow measurement can be implement | achieved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow meter according to a first embodiment of the present invention. FIG. 2 is a timing chart for explaining the operation of the flow meter. FIG. 3 is a timing explanatory diagram for explaining the operation of the flow meter. Pulsation waveform and measurement timing chart explaining flow meter operation [Fig. 5] Block diagram showing a conventional flow meter [Explanation of symbols]
9 Channel 10 First vibrator (Sound wave transmission / reception means)
11 Second vibrator (sound wave transmission / reception means)
12 switching means 13 first repeating means 14 second repeating means 15 first timing means 16 second timing means 17 third repeating means 18 flow rate detecting means 19 measurement control means

Claims (7)

流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段の一方から音波を送信して他方の音波送受信手段で受信する送受信動作を繰返し行う第1繰返手段と、前記第1繰返手段により計測される送受信時間を計測する第1計時手段と、前記他方の音波送受信手段から音波を送信して一方の音波送受信手段で受信する送受信動作を繰返し行う第2繰返手段と、前記第2繰返手段により計測される送受信時間を計測する第2計時手段と、前記第1繰返手段と前記第2繰返手段の動作を一つの計測単位とした動作を繰返し行う第3繰返手段と、前記第1繰返手段と前記第2繰返手段の送受信関係を切り替える切替手段と、前記第3繰返手段によって繰り返された後の前記第1計時手段の計測時間と前記第2計時手段の計測時間の値に基づいて流量を検出する流量検出手段とを備え、前記切替手段および前記第1繰返手段または前記第2繰返手段によって決定される計測周期を、流路内に発生する圧力脈動の脈動周期より短い周期で計測する計測制御手段を備えた流量計。A pair of sound wave transmitting / receiving means provided in the flow path for transmitting / receiving sound waves; a first repeating means for repeatedly transmitting / receiving sound waves from one of the sound wave transmitting / receiving means and received by the other sound wave transmitting / receiving means; A first timing unit for measuring a transmission / reception time measured by the first repeating unit; and a second repeating unit for repeatedly performing a transmission / reception operation in which a sound wave is transmitted from the other sound wave transmitting / receiving unit and received by the one sound wave transmitting / receiving unit. And a second time measuring means for measuring a transmission / reception time measured by the second repeating means, and a second measuring means for repeatedly performing the operations of the first repeating means and the second repeating means as one unit of measurement. 3 repeater means, switching means for switching the transmission / reception relationship between the first repeater means and the second repeater means, the measurement time of the first timer means after being repeated by the third repeater means, Measurement of the second timing means A flow rate detecting means for detecting a flow rate based on a value between them, and a pressure pulsation that generates a measurement cycle determined by the switching means and the first repeating means or the second repeating means in the flow path A flow meter provided with a measurement control means for measuring at a cycle shorter than the pulsation cycle. 前記計測制御手段は、更に、前記第3繰返手段で繰り返した時の総計測時間と、圧力脈動の変化の周期幅とを実質的に一致させるように制御する請求項1記載の流量計。 The flowmeter according to claim 1, wherein the measurement control unit further controls the total measurement time when the measurement is repeated by the third repeating unit so as to substantially match the period width of the pressure pulsation change . 前記計測制御手段による計測周期を0.002秒から0.05秒の範囲とした請求項1又は請求項2記載の流量計。The flow meter according to claim 1 or 2, wherein a measurement cycle by the measurement control means is in a range of 0.002 seconds to 0.05 seconds. 前記計測制御手段は、前記第1繰返手段を最初に動作させるタイミングを所定時間内でランダムに制御する請求項1乃至請求項3のいずれか1項に記載の流量計。The flowmeter according to any one of claims 1 to 3 , wherein the measurement control unit randomly controls a timing at which the first repeating unit is first operated within a predetermined time. 前記計測制御手段は、3秒の範囲内でランダム動作を設定可能な請求項4記載の流量計。The flowmeter according to claim 4 , wherein the measurement control means can set a random operation within a range of 3 seconds. 前記第1繰返手段と前記第2繰返手段および前記第1計時手段と前記第2計時手段を兼用し、それらの繰返回数を同じ回数に設定した請求項1乃至請求項5のいずれか1項に記載の流量計。Shared with the first repeating unit and the second repeating unit and the first counting means and the second timing means, any one of claims 1 to 5 to set their number of repetitions to the same number of times The flow meter according to item 1. 前記第1繰返手段と前記第2繰返手段の繰返回数を2回に設定した請求項6記載の流量計。The flowmeter according to claim 6 , wherein the number of repetitions of the first repeating unit and the second repeating unit is set to two.
JP2002117243A 2002-04-19 2002-04-19 Flowmeter Expired - Lifetime JP3627722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117243A JP3627722B2 (en) 2002-04-19 2002-04-19 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117243A JP3627722B2 (en) 2002-04-19 2002-04-19 Flowmeter

Publications (3)

Publication Number Publication Date
JP2003315132A JP2003315132A (en) 2003-11-06
JP2003315132A5 JP2003315132A5 (en) 2004-12-16
JP3627722B2 true JP3627722B2 (en) 2005-03-09

Family

ID=29534519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117243A Expired - Lifetime JP3627722B2 (en) 2002-04-19 2002-04-19 Flowmeter

Country Status (1)

Country Link
JP (1) JP3627722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012218B2 (en) 2018-03-30 2022-01-28 パナソニックIpマネジメント株式会社 Gas security device

Also Published As

Publication number Publication date
JP2003315132A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP5753970B2 (en) Flow measuring device
JP5402620B2 (en) Flow measuring device
KR100487690B1 (en) Flowmeter
JP5524972B2 (en) Flow measuring device
JP4556253B2 (en) Flowmeter
JP2013148523A (en) Flow rate measuring instrument
JP3627722B2 (en) Flowmeter
JP3350501B2 (en) Flow measurement device
JP3838209B2 (en) Flow measuring device
JPH0921667A (en) Flow rate measuring apparatus
JP3666725B2 (en) Flow rate measuring method and apparatus, and electronic gas meter
JP5239876B2 (en) Flow measuring device
JP2006214793A (en) Device for measuring flow rate
JP4759835B2 (en) Flow measuring device
JP4157313B2 (en) Flowmeter
JP4774618B2 (en) Flow measuring device
JP3945530B2 (en) Flow measuring device
JP4007114B2 (en) Flow measuring device
JP5467332B2 (en) Fluid flow measuring device
JP3624901B2 (en) Flow measuring device
JP4163887B2 (en) Flowmeter
JP2003315115A (en) Flow measuring device
JP2005077197A5 (en)
JPH11108718A (en) Flow rate measuring equipment
JP4759829B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R151 Written notification of patent or utility model registration

Ref document number: 3627722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term