JP3945530B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP3945530B2 JP3945530B2 JP2006133313A JP2006133313A JP3945530B2 JP 3945530 B2 JP3945530 B2 JP 3945530B2 JP 2006133313 A JP2006133313 A JP 2006133313A JP 2006133313 A JP2006133313 A JP 2006133313A JP 3945530 B2 JP3945530 B2 JP 3945530B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- measurement
- value
- vibrator
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Details Of Flowmeters (AREA)
Description
本発明は、超音波を利用してガスなどの流量を計測する流量計測装置に関するものである。 The present invention relates to a flow rate measuring device that measures a flow rate of gas or the like using ultrasonic waves.
従来のこの種の流量計測装置は、たとえば、図11に示すように、流体管路1の一部に超音波振動子2と3を流れの方向に相対して設け、振動子1から流れ方向に超音波を発生しこの超音波を振動子2で検出すると再び振動子1から超音波を発生させ、この繰り返しを行ってその時間を計測し、逆に振動子2から流れに逆らって超音波を発生し同様の繰り返し時間を計測し、この時間の差から流体の速度を演算していた(例えば、特許文献1参照)。
しかしながら、上記従来の流量計測装置では計測のスタート信号はある一定の周波数かまたランダム関数を含めてある関数に決められており、流体が流れていない場合にも決められたサンプリング周波数で計測が行われていた。このため電力を使用する頻度が高く、電池駆動の場合短期間のうちに電池交換が必要になり消費電力の低減が課題となっていた。 However, in the conventional flow rate measuring device, the measurement start signal is determined to be a certain frequency or a function including a random function, and measurement is performed at the determined sampling frequency even when no fluid is flowing. It was broken. For this reason, the frequency of using electric power is high, and in the case of battery driving, battery replacement is required within a short period of time, and reduction of power consumption has been an issue.
本発明は上記課題を解決するもので、消費電力を低減することを目的としている。 The present invention solves the above-described problems, and aims to reduce power consumption.
上記目的を達成するために本発明の流量計測装置は、流体管路に設けられた第1振動子と、前記第1振動子から発信された超音波信号を受信する第2振動子と、前記振動子間の信号伝幡時間を計測する計測回路と、前記計測回路の信号に基づいて流量を算出する流量演算手段と、前記振動子による計測を開始する計測開始手段と、前記流量演算手段の値に基づいて前記計測開始手段の周期の平均値を変化させる平均周期可変手段と、ランダム値を発生する不規則値発生手段と、前記平均周期可変手段の信号に前記不規則値発生手段の信号を付加した周期可変手段とを備えたものである。 In order to achieve the above object, a flow rate measuring apparatus according to the present invention includes a first vibrator provided in a fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, A measurement circuit for measuring a signal propagation time between the transducers, a flow rate calculation unit for calculating a flow rate based on a signal of the measurement circuit, a measurement start unit for starting measurement by the transducer, and a flow rate calculation unit An average period variable means for changing an average value of the period of the measurement start means based on a value, an irregular value generation means for generating a random value, and a signal of the irregular value generation means as a signal of the average period variable means And a period variable means to which is added.
本発明の流量計測装置は、流量の変動があっても正確に計測することができる。 The flow rate measuring device of the present invention can accurately measure even if the flow rate varies.
本発明の流量計測装置は、流体管路に設けられた第1振動子と、前記第1振動子から発信された超音波信号を受信する第2振動子と、前記振動子間の信号伝幡時間を計測する計測回路と、前記計測回路の信号に基づいて流量を算出する流量演算手段と、前記振動子による計測を開始する計測開始手段と、前記流量演算手段の値に基づいて前記計測開始手段の周期の平均値を変化させる平均周期可変手段と、ランダム値を発生する不規則値発生手段と、前記平均周期可変手段の信号に前記不規則値発生手段の信号を付加した周期可変手段とを備えたものである。 The flow rate measuring device of the present invention includes a first vibrator provided in a fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a signal transmission between the vibrators. a measuring circuit for measuring time, and flow rate calculation means for calculating a flow rate based on the signal of the measuring circuit, a measurement starting means for starting the measurement by the transducer, the measurement start based on the value of the flow rate computing means An average period variable means for changing the average value of the period of the means , an irregular value generating means for generating a random value, and a period variable means for adding a signal of the irregular value generating means to a signal of the average period variable means; It is equipped with .
以下本発明の実施例を説明する前に参考実施例について説明する。 Before describing embodiments of the present invention, reference embodiments will be described.
(参考実施例1)
図1において、流体管路4の途中に超音波を発信する第1振動子5と受信する第2振動子6を流れ方向に配置されている。7は第1振動子5への送信回路、8は第2振動子6で受信した信号の増幅回路で、この増幅された信号は基準信号と比較回路9で比較され、発信から受信までの時間をタイマカウンタのような計時手段10で求め、前記送信回路7から前記計時手段10まで計測回路11を形成する。
(Reference Example 1)
In FIG. 1, a
前記計時手段10による超音波伝幡時間に応じて管路の大きさや流れの状態を考慮して流量演算手段12で流量値を求め、この流量演算手段12の値によって周期可変手段13で測定周期の変更を行ない、この周期可変手段13の値に応じて計測開始手段14により、送信回路7への信号送出のタイミングを調節する。また流量演算手段12の演算終了を計測終了手段15に送出し、この計測終了手段15に同期して電圧制御手段16で計測回路11の電圧を低下させる。また計測開始手段14による計測の開始と同期して計測回路14の電圧を復帰させる。
The flow rate calculation unit 12 obtains a flow rate value in consideration of the size of the pipe line and the flow state according to the ultrasonic propagation time by the time measuring unit 10, and the
次にその動作について述べる。計測開始手段14から送信回路7よりバースト信号を送出され第1振動子5で発信された超音波信号は、流れの中を伝幡し第2振動子6で受信され増幅回路8と比較回路9で信号処理され、発信から受信までの時間を計時手段10で測定する。
Next, the operation will be described. The ultrasonic signal transmitted from the measurement starting means 14 from the
静止流体中の音をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝搬速度は(c+v)となる。振動子5と6の間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφとすると、超音波が到達する時間tは、
t=L/(c+vCOSφ) (1)
となり、(1)式より
v=(L/t−c)/COSφ (2)
となり、Lとφが既知ならtを測定すれば流速vが求められる。
If the sound in the static fluid is c and the velocity of the fluid flow is v, the propagation speed of the ultrasonic wave in the forward direction of the flow is (c + v). When the distance between the
t = L / (c + vCOSφ) (1)
From the equation (1), v = (L / tc) / COSφ (2)
If L and φ are known, the flow velocity v can be obtained by measuring t.
この流速より流量Qは、通過面積をS、補正計数をKとすれば、
Q=KSv (3)
となる。
From this flow velocity, if the flow rate Q is S and the correction count is K,
Q = KSv (3)
It becomes.
例えばガスメータのように積算値を正確に求める場合には、計測は煩雑に行う必要がある。特に流量が大きいときには計測サンプリング時間を速くして誤差を小さくする必要があるが、流量が比較的小さいかあるいは0の場合には計測サンプリング時間を遅くしてもほとんど誤差にならない。 For example, when the integrated value is accurately obtained as in a gas meter, the measurement needs to be performed in a complicated manner. In particular, when the flow rate is large, it is necessary to shorten the measurement sampling time to reduce the error, but when the flow rate is relatively small or 0, even if the measurement sampling time is delayed, there is almost no error.
よって流量演算手段12に応じて計測間隔を変更することができる。図2は流量が時間的に変化したときの計測の状態を示したもので、流量演算手段12の値が小さいときには周期可変手段13で計測時間の間隔を大きくし、流量演算手段12の値が大きくなるにともなって計測時間の間隔を小さくする。 Therefore, the measurement interval can be changed according to the flow rate calculation means 12. FIG. 2 shows the state of measurement when the flow rate changes with time. When the value of the flow rate calculation means 12 is small, the interval of the measurement time is increased by the period variable means 13 and the value of the flow rate calculation means 12 is changed. The measurement time interval is reduced as the value increases.
このように流量値によって計測の周期を変えるのであるが、計測と計測の間には計測回路11の電圧を低減する。すなわち流量演算手段12によって流量の計測を終了すると計測終了手段15に信号を送出し、電圧制御手段16で電圧を下げるかあるいは零にする。計測開始手段14によって計測が始まる以前に電圧制御手段16によって計測回路11の電圧を元に復帰させる。 In this way, the measurement cycle is changed according to the flow rate value, but the voltage of the measurement circuit 11 is reduced between the measurements. That is, when the flow rate calculation means 12 finishes measuring the flow rate, a signal is sent to the measurement end means 15 and the voltage control means 16 lowers the voltage or makes it zero. Before the measurement is started by the measurement start means 14, the voltage control means 16 restores the voltage of the measurement circuit 11 to the original.
(参考実施例2)
図4は参考実施例2を示し、流量演算手段12の値が零値のとき、零回数検出手段19によって計測周期を周期可変手段13で変更するもので、流量零の回数が連続して大きくなるに従い計測開始手段14の測定周期を大きくするものである。
(Reference Example 2)
FIG. 4 shows a second embodiment. When the value of the flow rate calculation means 12 is zero, the measurement cycle is changed by the cycle variable means 13 by the zero count detection means 19, and the number of times of zero flow is continuously increased. Accordingly, the measurement cycle of the measurement start means 14 is increased.
図5は流量の時間的な変化にともなって計測の時間間隔が変化している様子を示すものである。このとき流量零が長期に連続しても急に大きな流量が流れ出す場合もあるので、計測周期は極端に長くすることは避けるため上限を設定する。 FIG. 5 shows a state in which the measurement time interval changes as the flow rate changes with time. At this time, even if the flow rate is zero for a long period of time, a large flow rate may suddenly flow out, so an upper limit is set to avoid an extremely long measurement cycle.
(参考実施例3)(Reference Example 3)
図6は参考実施例3を示し、流量演算手段12の値を積算演算手段20によって積算し1日や1ヶ月あるいは1年の積算値を求めるものであり、ガスメータなどに利用される。流量零が何回か続いて計測周期が大きくなった後、急に大きな流量が流れ始めたときの場合を図7に示す。 FIG. 6 shows a third embodiment, in which the value of the flow rate calculation means 12 is integrated by the integration calculation means 20 to obtain an integrated value for one day, one month, or one year, and is used for a gas meter or the like. FIG. 7 shows a case where a large flow rate suddenly starts to flow after the flow rate zero continues several times and the measurement cycle becomes large.
図7で流量零が何回か続いた後、実際にはa〜bに示すような流量があったとしたとき、計測は時間T9のとき零を計測し、次の計測時間時間T10の時には流量bを計測することになる。このとき積算演算手段20に積算する方法として3種類がある。第1の方法として流量bの値に時間T10−T9(以下△t9という)の時間差を乗じた値を加算する方法であり、このとき実際の値より積算値は常に多く演算される。第2の方法として流量aの値(零)に時間差△t9を乗じた値を加算する、すなわち0を加算する方法であり、このとき実際の値より積算値は常に少なく演算される。第3の方法として流量bの値にある定数の値(0.1〜0.9)に時間差△t9を乗じた値を加算する、定数が0.5のとき7図の流量bの半分の値に△t9を乗じた値が加算される。すなわち流量cと流量bを結ぶ線が加算されることになる。In FIG. 7, when the flow rate zero continues several times, and it is actually assumed that there is a flow rate as shown in a to b, the measurement is zero at time T9 and the flow rate at the next measurement time period T10. b will be measured. At this time, there are three types of methods for integrating the integration calculation means 20. As a first method, a value obtained by multiplying the value of the flow rate b by a time difference of time T10-T9 (hereinafter referred to as Δt9) is added, and at this time, the integrated value is always calculated more than the actual value. As a second method, a value obtained by multiplying the value (zero) of the flow rate a by the time difference Δt9 is added, that is, 0 is added. At this time, the integrated value is always smaller than the actual value. As a third method, a value obtained by multiplying a constant value (0.1 to 0.9) in the value of the flow rate b by a time difference Δt9 is added. When the constant is 0.5, the value is half of the flow rate b in FIG. A value obtained by multiplying the value by Δt9 is added. That is, a line connecting the flow rate c and the flow rate b is added.
(参考実施例4)
図8は参考実施例4を示し、送信手段7から比較手段9までの超音波伝幡を繰り返し手段21によって回数設定手段22で設定された回数繰り返し、その累積時間を計時手段10で計測する。そして流量演算手段12の値が零値を連続して計測すると、その回数とともに周期可変手段13で測定周期の値を変更するとともに、繰り返し回数を少なくして、すなわち振動子の送信の回数を少なくしたり計測時間を短くして低消費電力にした探索計測手段23により流量値の概略を求める計測を行う。
( Reference Example 4)
FIG. 8 shows a fourth embodiment, in which ultrasonic transmission from the transmission means 7 to the comparison means 9 is repeated by the repetition means 21 for the number of times set by the number setting means 22, and the accumulated time is measured by the timing means 10. When the value of the flow rate calculation means 12 continuously measures a zero value, the value of the measurement period is changed by the period variable means 13 together with the number of times, and the number of repetitions is reduced, that is, the number of times of transmission of the vibrator is reduced. The measurement is performed to obtain an outline of the flow value by the search and measurement means 23 that shortens the measurement time and reduces power consumption.
このときの流量と計測時間の間隔を図9に示す。正確な流量を求めるT3、T4、T5、T6の計測の間にT3’、T4’、T5’、T6’の時間に探索計測を行う。もし図8に示すように、T6’の探索計測で所定値以上の流量を検出すると次回の計測はT7、T8のように測定周期を小さくして計測を行う。The interval between the flow rate and the measurement time at this time is shown in FIG. Search measurement is performed at times T3 ', T4', T5 ', and T6' during measurement of T3, T4, T5, and T6 for obtaining an accurate flow rate. As shown in FIG. 8, when a flow rate of a predetermined value or more is detected in the search measurement of T6 ', the next measurement is performed with a measurement cycle reduced as in T7 and T8.
(参考実施例5)(Reference Example 5)
図10は参考実施例5を示し、流量演算手段12の値によって周期可変手段13で計測の周期を変えるとともに、流量演算手段12の流量係数を係数設定手段24で変更するものである。測定周期の変更によって電子回路や超音波振動子の動作する時間が変わり、それによって応答や感度が変わることを考慮して流量係数を補正するものである。 FIG. 10 shows a fifth embodiment, in which the cycle of the measurement is changed by the cycle variable means 13 according to the value of the flow rate calculation means 12 and the flow coefficient of the flow rate calculation means 12 is changed by the coefficient setting means 24. The flow coefficient is corrected in consideration of changes in the operating time of the electronic circuit and the ultrasonic transducer due to the change in the measurement period, and changes in response and sensitivity.
以上の参考実施例をふまえ以下本発明の実施例を添付図面を参照して説明する。 Based on the above reference embodiment, an embodiment of the present invention will be described below with reference to the accompanying drawings.
(実施例1)
図3において、流量演算手段12の値によって計測周期の平均値を周期可変手段17で変更し、さらにランダムな値を発生する信号を不規則値発生手段18で発生させ、平均周期可変手段17での値と周期可変手段13で加算値し、計測開始手段14への信号送出の周期を変化させる。このとき計測周期は流量値が一定であっても不規則値発生手段18の信号により所定の範囲内で不規則に変化する。不規則値発生手段18の値は平均すれば零になるように設定してある。
Example 1
In FIG. 3, the average value of the measurement period is changed by the period variable means 17 according to the value of the flow rate calculation means 12, and a signal for generating a random value is generated by the irregular value generation means 18. The value is added by the period variable means 13 to change the signal transmission period to the measurement start means 14. At this time, even if the flow rate value is constant, the measurement cycle changes irregularly within a predetermined range by the signal of the irregular value generating means 18. The value of the irregular value generating means 18 is set to be zero when averaged.
以上の参考実施例、および実施例の技術的意義を今一度総括すれば以下の通りである。 The above reference embodiment and the technical significance of the embodiment are summarized as follows.
(1)流体管路に設けられた第1振動子と、第1振動子から送信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段による流量計測の完了を報知する計測終了手段と、計測終了手段または計測開始手段によって計測回路の供給電圧を制御する電圧制御手段と、流量演算手段の値に基
づいて計測開始手段の周期を変化させる周期可変手段とを備えたので、流量値が大きいときには測定周期を短くして正確に測定でき、流量値が小さいときには測定周期を長くして消費電力を低減することができ、また間欠的な測定の間には回路の電圧を小さくまたは零にして消費電力の低減をはかることができ、電池寿命を長くすることができる。
(1) a first vibrator provided in a fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators , A flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, a measurement end means for notifying completion of flow rate measurement by the flow rate calculation means, and a measurement end means or measurement Since the voltage control means for controlling the supply voltage of the measurement circuit by the start means and the cycle variable means for changing the cycle of the measurement start means based on the value of the flow rate calculation means, the measurement cycle is shortened when the flow value is large. Therefore, when the flow rate value is small, the power consumption can be reduced by extending the measurement cycle, and the power consumption can be reduced by making the circuit voltage small or zero during intermittent measurement. Measure Bets can be, it is possible to increase the battery life.
(2)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の値に基づいて計測回路の周期の平均値を変化させる平均周期可変手段と、ランダム値を発生する不規則値発生手段と、前記平均周期可変手段の信号に前記不規則値発生手段の信号を付加した周期可変手段とを備えたので、流量値の周期的な変動に対しても測定周期が長くなっても高精度を保つことができる。 (2) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. The flow rate calculation means for calculating the flow rate based on the signal of the measurement circuit, the measurement start means for starting measurement by the vibrator, and the average cycle variable for changing the average value of the cycle of the measurement circuit based on the value of the flow rate calculation means Means, a random value generating means for generating a random value, and a period variable means in which the signal of the irregular value generating means is added to the signal of the average period variable means. However, high accuracy can be maintained even if the measurement period is long.
(3)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の零値の検出回数に応じて計測開始手段の周期を大きくする周期可変手段とを備えたので、流量値が零のときすなわち流体を使用していないときには測定周期を長くとれるので、家庭用ガスメータのように1日の使用時間が短いものでは消費電力を大幅に低減できる。 (3) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. , A flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a period for increasing the cycle of the measurement start means in accordance with the number of zero values detected by the flow rate calculation means Since it has a variable means, the measurement cycle can be extended when the flow rate is zero, that is, when no fluid is used, so the power consumption is greatly reduced when the daily usage time is short, such as a household gas meter. it can.
(4)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の零値の検出時に計測開始手段の周期を大きくする周期可変手段と、流量演算手段の流量値を積算するとともに、零値検出後に所定値以上の流量を検出したとき流量値に前回計測からの経過時間を乗じた値を加算する積算演算手段とを備えたので、計測周期が長くなったときに不意に流れ始めた流量値を多めに測定することになり、危険な流体の漏洩量を積算値を求める場合に安全側に作用する。 (4) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. A flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a cycle variable means for increasing the cycle of the measurement start means when a zero value is detected by the flow rate calculation means, In addition to integrating the flow rate value of the flow rate calculation means, and equipped with an integration calculation means for adding a value obtained by multiplying the flow rate value by the elapsed time from the previous measurement when a flow rate of a predetermined value or more is detected after the zero value is detected. When the measurement cycle becomes long, the flow rate value that has unexpectedly started to flow is measured to a large extent, and this acts on the safe side when the amount of dangerous fluid leakage is calculated.
(5)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、前記計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の零値を検出したとき計測開始手段の周期を大きくする周期可変手段と、流量演算手段の流量値を積算するとともに、連続の零値検出後に所定値以上の流量を検出したときこの流量値を加算しない積算演算手段とを備えたので、計測周期が長くなったときに不意に流れ始めた流量値を少なくに測定することになり、流量積算値を必要量以上必ず供給するような場合に安全側に作用する。 (5) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. A flow rate calculating means for calculating a flow rate based on the signal of the measuring circuit, a measurement starting means for starting measurement by the vibrator, and a variable variable for increasing the period of the measurement starting means when a zero value of the flow rate calculating means is detected. And the integration calculation means for adding the flow rate value when the flow rate value greater than or equal to the predetermined value is detected after continuous zero value detection, and the measurement cycle becomes longer. Sometimes the flow rate value that has unexpectedly started to flow is measured to be small, and this acts on the safe side when the flow rate integrated value is always supplied in excess of the required amount.
(6)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の零値を検出したとき計測開始手段の周期を大きくする周期可変手段と、流量演算手段の流量値を積算するとともに、連続の零値検出後に所定値以上の流量を検出したときこの流量値に所定係数を乗じて加算する積算演算手段とを備えたので、計測周期が長くなったときに不意に流れ始めた流量値を状況に応じて多くあるいは少なく積算することができ、また平均値をとれば長期的にはほぼ正確な積算値を得ることもできる。 (6) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. A flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, and a cycle variable means for increasing the cycle of the measurement start means when a zero value of the flow rate calculation means is detected. And an integration calculation means for adding and multiplying the flow rate value by a predetermined coefficient when a flow rate greater than or equal to a predetermined value is detected after continuous zero value detection. Depending on the situation, it is possible to integrate more or less flow rate values that have unexpectedly started to flow when the time becomes longer, and if the average value is taken, a substantially accurate integrated value can be obtained in the long term.
(7)流体管路に設けられた第1振動子と、第1振動子から発信された超音波信号を受信する第2振動子と、振動子間の超音波伝達を複数回行う繰り返し手段と、繰り返し手段
の回数を設定する回数設定手段と、信号伝幡時間の累積時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の零値の検出以降に計測開始手段の周期を大きくする周期可変手段と、計測周期の間に回数設定手段の値を小さくした探索計測手段を備えたので、計測周期が長い時に不意に大きな流量が流れても流体が流れ始めたことをわずかな電力消費で行うことができる。
(7) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a repeating unit that performs ultrasonic transmission between the vibrators a plurality of times. , A number setting means for setting the number of repetition means, a measurement circuit for measuring the accumulated time of the signal transmission time, a flow rate calculation means for calculating a flow rate based on a signal of the measurement circuit, and a measurement by the vibrator is started Since the measurement start means, the cycle variable means for increasing the period of the measurement start means after detection of the zero value of the flow rate calculation means, and the search measurement means for decreasing the value of the number setting means during the measurement period are provided. Even when a large flow rate flows unexpectedly when the cycle is long, the fact that the fluid has started to flow can be performed with little power consumption.
(8)流体管路に設けられた第1振動子と、第1振動子から送信された超音波信号を受信する第2振動子と、振動子間の信号伝幡時間を計測する計測回路と、計測回路の信号に基づいて流量を算出する流量演算手段と、振動子による計測を開始する計測開始手段と、流量演算手段の値に基づいて計測開始手段の周期を変化させる周期可変手段と、周期可変手段の値に応じて流量演算手段の係数を変える係数設定手段とを備えたので、測定周期が長くなって連続的に測定しているときよりも超音波振動子や回路の状態が変わることによる誤差に対して流量係数により補正することができる。 (8) a first vibrator provided in the fluid conduit, a second vibrator that receives an ultrasonic signal transmitted from the first vibrator, and a measurement circuit that measures a signal propagation time between the vibrators. A flow rate calculation means for calculating a flow rate based on a signal from the measurement circuit, a measurement start means for starting measurement by the vibrator, a cycle variable means for changing the cycle of the measurement start means based on a value of the flow rate calculation means, Since the coefficient setting means for changing the coefficient of the flow rate calculation means according to the value of the period variable means is provided, the state of the ultrasonic transducer and the circuit changes compared to when the measurement period is long and continuous measurement is performed. The error due to this can be corrected by the flow coefficient.
4 流体管路
5 第1振動子
6 第2振動子
10 計時手段
11 計測回路
12 流量演算手段
13 周期可変手段
14 計測開始手段
15 計測終了手段
16 電圧制御手段
17 平均周期可変手段
18 不規則値発生手段
19 零回数検出手段
20 積算演算手段
21 繰り返し手段
22 回数設定手段
23 探索計測手段
24 係数設定手段
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006133313A JP3945530B2 (en) | 2006-05-12 | 2006-05-12 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006133313A JP3945530B2 (en) | 2006-05-12 | 2006-05-12 | Flow measuring device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003071396A Division JP3838209B2 (en) | 2003-03-17 | 2003-03-17 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006208406A JP2006208406A (en) | 2006-08-10 |
JP3945530B2 true JP3945530B2 (en) | 2007-07-18 |
Family
ID=36965385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006133313A Expired - Fee Related JP3945530B2 (en) | 2006-05-12 | 2006-05-12 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3945530B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012007974A (en) * | 2010-06-24 | 2012-01-12 | Panasonic Corp | Flow rate measuring device |
-
2006
- 2006-05-12 JP JP2006133313A patent/JP3945530B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012007974A (en) * | 2010-06-24 | 2012-01-12 | Panasonic Corp | Flow rate measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2006208406A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5753970B2 (en) | Flow measuring device | |
JPH08122117A (en) | Flow rate measuring device | |
JP5524972B2 (en) | Flow measuring device | |
JP4788235B2 (en) | Fluid flow measuring device | |
WO2000068649A1 (en) | Flow rate measuring device | |
JP3456060B2 (en) | Flow measurement device | |
JP3838209B2 (en) | Flow measuring device | |
JP3945530B2 (en) | Flow measuring device | |
JP3695031B2 (en) | Flow measuring device | |
JP3443658B2 (en) | Flow measurement device | |
JP2004069524A (en) | Flow rate measuring apparatus | |
JP4734822B2 (en) | Flow measuring device | |
JP4760115B2 (en) | Fluid flow measuring device | |
RU118743U1 (en) | ULTRASONIC FLOW METER | |
JP2002350202A (en) | Flow measurement device | |
JP2008014800A (en) | Flow measuring instrument | |
JP2005077197A (en) | Apparatus for measuring flow rate | |
JP4157313B2 (en) | Flowmeter | |
JP5990770B2 (en) | Ultrasonic measuring device | |
JP5585402B2 (en) | Flow measuring device | |
JP3443657B2 (en) | Flow measurement device | |
JP2004286762A (en) | Flow rate measuring device | |
JP2001091319A (en) | Flow measurement device | |
JP2008175668A (en) | Fluid flow measuring device | |
JP3821102B2 (en) | Flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |