JPH08193861A - Flow-rate measuring apparatus - Google Patents

Flow-rate measuring apparatus

Info

Publication number
JPH08193861A
JPH08193861A JP7006408A JP640895A JPH08193861A JP H08193861 A JPH08193861 A JP H08193861A JP 7006408 A JP7006408 A JP 7006408A JP 640895 A JP640895 A JP 640895A JP H08193861 A JPH08193861 A JP H08193861A
Authority
JP
Japan
Prior art keywords
flow rate
flow
ultrasonic
fluid
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7006408A
Other languages
Japanese (ja)
Other versions
JP3438371B2 (en
Inventor
Kenzo Ochi
謙三 黄地
Yukio Nagaoka
行夫 長岡
Motoyuki Nawa
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP00640895A priority Critical patent/JP3438371B2/en
Publication of JPH08193861A publication Critical patent/JPH08193861A/en
Application granted granted Critical
Publication of JP3438371B2 publication Critical patent/JP3438371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To increase the measuring accuracy of an ultrasonic flow-rate measuring apparatus. CONSTITUTION: A flow-rate measuring apparatus is composed of a first vibrator 8 which is installed at a fluid duct 4, of a second vibrator 9 which receives an ultrasonic signal transmitted from the first vibrator 8, of a repetition means 16 by which the transmission of ultrasonic waves between the vibrators is repeated a plurality of times, of a flow-rate arithmetic means 18 which computes a flow rate on the basis of the difference in the repetition time and of a receiving-amplitude detection means 15 which detects the amplitude of the receiving ultrasonic waves. Then, the correction factor of the flow rate is estimated from the receiving amplitude, and the measuring accuracy of the flow rate is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を利用してガス
・水などの流体の流量を計測する流量計測装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of a fluid such as gas or water using ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置は、図7に
示すように、流体管路1の一部に超音波振動子2と3を
流れの方向に相対して設け、振動子2から流れ方向に超
音波を発生しこの超音波を振動子3で検出すると再び振
動子2から超音波を発生させ、この繰り返しを行ってそ
の時間を計測し、逆に振動子3から流れに逆らって超音
波を発生し同様の繰り返し時間を計測し、この時間の差
から流体の速度を演算していた。
2. Description of the Related Art In a conventional flow rate measuring device of this type, as shown in FIG. 7, ultrasonic transducers 2 and 3 are provided in a part of a fluid pipe 1 so as to face each other in the flow direction. When an ultrasonic wave is generated in the flow direction from the vibrator, and the ultrasonic wave is detected by the vibrator 3, the ultrasonic wave is again generated from the vibrator 2, and the time is measured by repeating this. Then, ultrasonic waves were generated, the same repetition time was measured, and the velocity of the fluid was calculated from the difference in this time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の流量計測装置では、流体管路内の流体の流速に依存
した流速分布を示すため、即ち、低流速の場合には層流
となり、高流速の場合には乱流となる。従って、低流速
の場合の層流域と、高流速の場合の乱流域とでは流体の
流速から流体の流量を換算する際の流量換算係数が異な
り、これが流体の流量を求める時の誤差となり、測定精
度に影響を与え、広い流量範囲にわたって高精度の測定
が困難であった。
However, in the above-mentioned conventional flow rate measuring device, since the flow velocity distribution depends on the flow velocity of the fluid in the fluid pipe, that is, when the flow velocity is low, the flow velocity is laminar and the flow velocity is high. In case of, it becomes turbulent. Therefore, the laminar flow area for low flow velocity and the turbulent flow area for high flow velocity have different flow rate conversion factors when converting the flow rate of the fluid from the flow rate of the fluid. The accuracy was affected, and it was difficult to measure with high accuracy over a wide flow rate range.

【0004】本発明は上記課題を解決するもので、広い
流量範囲にわたって高精度の流量計測ができる流量計測
装置を提供するものである。
The present invention solves the above problems and provides a flow rate measuring device capable of highly accurate flow rate measurement over a wide flow rate range.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の流量計測装置は、以下の構成とした。
In order to achieve the above object, the flow rate measuring device of the present invention has the following configuration.

【0006】すなわち、流路の上流と下流とに、超音波
の伝播方向と流体の流れ方向とが、平行になるように設
置された超音波を送受信する一対の振動子と、前記振動
子の送信受信の切り換え手段と、前記振動子間相互の超
音波伝達を連続して複数回繰り返し行う繰り返し手段
と、超音波伝播の累積時間から流体の流速を演算する流
速演算手段と、超音波受信振幅検出手段と、前記超音波
受信振幅検出手段に基づく超音波受信振幅から流量補正
係数を演算する流量補正係数演算手段と、前記流速演算
手段による流体の流速と前記流量補正係数演算手段によ
る流量補正係数とから流体の流量を算出する流量演算手
段とを備えた構成とした。
That is, a pair of transducers for transmitting and receiving ultrasonic waves are installed upstream and downstream of the flow path so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculation means for calculating the flow velocity of fluid from the cumulative time of ultrasonic propagation, and ultrasonic reception amplitude Detection means, flow rate correction coefficient calculation means for calculating a flow rate correction coefficient from the ultrasonic wave reception amplitude based on the ultrasonic wave reception amplitude detection means, fluid flow rate by the flow rate calculation means and flow rate correction coefficient by the flow rate correction coefficient calculation means And a flow rate calculating means for calculating the flow rate of the fluid from the above.

【0007】また、流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、前記演算された流速を予め設定された上限、下
限の流速値と比較する流速比較手段と、超音波受信振幅
検出手段と、前記超音波受信振幅検出手段に基づく超音
波受信振幅から流量補正係数を演算する流量補正係数演
算手段と、前記流速比較手段により比較された流体の流
速と前記流量補正係数演算手段による流量補正係数とか
ら流体の流量を算出する流量演算手段とを備えた構成と
した。
Further, a pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow velocity comparison means for comparing the flow velocity with preset upper and lower flow velocity values, ultrasonic reception amplitude detection means, and flow rate correction for calculating a flow rate correction coefficient from the ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means. The coefficient calculating means and the flow rate calculating means for calculating the flow rate of the fluid from the flow rate of the fluid compared by the flow rate comparing means and the flow rate correction coefficient by the flow rate correction coefficient calculating means are provided.

【0008】また、流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、超音波受信振幅検出手段と、前記超音波受信振
幅検出手段に基づく超音波受信振幅を予め設定された上
限、下限の振幅値と比較する振幅比較手段と、前記振幅
比較手段により比較された超音波の振幅から流量補正係
数を演算する流量補正係数演算手段と、前記流速演算手
段による流体の流速と前記流量補正係数演算手段による
流量補正係数とから流体の流量を算出する流量演算手段
とを備えた構成とした。
Further, a pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculation means for calculating the flow velocity of fluid from the cumulative time of ultrasonic propagation, and ultrasonic reception amplitude Detection means, an amplitude comparison means for comparing the ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means with preset upper and lower limit amplitude values, and a flow rate from the amplitude of the ultrasonic waves compared by the amplitude comparison means. And a flow rate calculation means for calculating a flow rate based on the flow velocity of the fluid calculated by the flow velocity calculation means and the flow rate correction coefficient calculated by the flow rate correction coefficient calculation means. It was.

【0009】また、流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、前記演算された流速を予め設定された上限、下
限の流速値と比較する流速比較手段と、超音波受信振幅
検出手段と、前記超音波受信振幅検出手段に基づく超音
波受信振幅を予め設定された上限、下限の振幅値と比較
する振幅比較手段と、前記振幅比較手段により比較され
た超音波の振幅から流量補正係数を演算する流量補正係
数演算手段と、前記流速比較手段により比較された流体
の流速と前記流量補正係数演算手段による流量補正係数
とから流体の流量を算出する流量演算手段とを備えた構
成とした。
In addition, a pair of transducers for transmitting and receiving ultrasonic waves are installed upstream and downstream of the flow path so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other, and a pair of the transducers. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow velocity comparison means for comparing the flow velocity with preset flow velocity values of upper and lower limits, ultrasonic reception amplitude detection means, and ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means of preset upper and lower limits. An amplitude comparing means for comparing with an amplitude value, a flow rate correcting coefficient computing means for computing a flow rate correcting coefficient from the amplitude of the ultrasonic wave compared by the amplitude comparing means, and a flow velocity and a flow rate of the fluid compared by the flow velocity comparing means. And a flow rate calculation means for calculating the flow rate of the fluid from the flow correction coefficient by the positive coefficient calculation means configured to include a.

【0010】[0010]

【作用】本発明は上記構成によって、超音波の受信振幅
から流量換算係数を演算するため、広い流量範囲にわた
って、高精度な流量計測ができる流量計測装置が実現で
きる。
According to the present invention, since the flow rate conversion coefficient is calculated from the received amplitude of the ultrasonic wave with the above-described configuration, it is possible to realize a flow rate measuring device capable of highly accurate flow rate measurement over a wide flow rate range.

【0011】[0011]

【実施例】以下、本発明の第1の実施例を図面にもとづ
いて説明する。図1において、管状の流路4は、流量計
測を行う直管部5と、その両端に設けた絞り部6、7と
から構成した。超音波を送信・受信する振動子8、9は
直管部5の端部からほぼ振動子の径以上離れた絞り部内
に設置し、流れを乱さないようにした。また、振動子
8、9の直径は、直管部5の内径の約0.7程度とし
た。なお、矢印10は超音波の伝播の方向を示し、矢印
11は流体の流れの方向を示し、それぞれの方向が一致
するようにした。同図の場合、振動子8が上流側で、振
動子9が下流側となる。切り換え手段12で、バースト
信号を発生する発振器13からの信号が、上流側の振動
子8と結線されている場合、上流側の振動子8からでた
超音波は流路4内を伝播し、下流側の振動子9で受信さ
れる。受信信号は、切り換え手段12を通って増幅回路
14に入力される。増幅回路14では、受信信号を増幅
し、一方は振幅検出手段15へ出力し、他方は繰り返し
手段16へ出力する。振幅検出手段15では、超音波の
受信信号の振幅を検出し、その結果を流量補正係数演算
手段17へ伝送する。流量補正係数演算手段17では、
流量補正係数kを演算後、その結果を流量演算手段18
へ伝送する。一方、増幅回路14から繰り返し手段16
へ伝送された信号は、予め決められた回数決定手段19
の回数分だけ、バースト信号発生器に伝送され、前記の
超音波伝播を繰り返すことになる。予め決められた回数
だけ超音波の伝播を繰り返した後、タイマーなどの計時
手段21で、全所要時間を計時する。全所要時間を計時
した後、切り換え手段12を切り換えて、バースト信号
を発生する発振器13からの信号が、下流側の振動子9
に伝送されるようにし、また、上流側の振動子8で受信
された信号が、増幅回路14に伝送されるようにする。
このようにして、予め決められた回数だけ超音波の伝播
を繰り返した後、計時手段21で、全所要時間を計時す
る。このようにして、上流から下流、下流から上流への
1回あたりの超音波の伝播時間が求めれれる。すなわ
ち、上流から下流への時間をtdn、下流から上流への時
間をtupとすると、 tdn=L/(c+v)+dT、 tup=L/(c−v)+dTで示される。ここで、dTは
受信から送信までの回路系で遅れる遅延時間を示し、
c、vはそれぞれ流体中での超音波の伝播速度と、流体
の流速とを示し、Lは振動子間の距離を示す。回路系で
の遅延時間dTは、同一の回路系を使用するため、同じ
と考えることができ、予め既知である。従って、時間差
dtは、逆数をとって、次のようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the tubular flow path 4 is composed of a straight pipe portion 5 for measuring a flow rate and throttle portions 6 and 7 provided at both ends thereof. The transducers 8 and 9 for transmitting and receiving ultrasonic waves were installed in the throttle portion separated from the end of the straight pipe portion 5 by at least the diameter of the transducer so as not to disturb the flow. The diameters of the vibrators 8 and 9 were set to about 0.7 of the inner diameter of the straight pipe portion 5. The arrow 10 indicates the direction of ultrasonic wave propagation, and the arrow 11 indicates the direction of fluid flow so that the respective directions coincide. In the case of the figure, the vibrator 8 is on the upstream side and the vibrator 9 is on the downstream side. In the switching means 12, when the signal from the oscillator 13 that generates the burst signal is connected to the upstream transducer 8, the ultrasonic waves from the upstream transducer 8 propagate in the flow path 4, It is received by the vibrator 9 on the downstream side. The received signal is input to the amplifier circuit 14 through the switching means 12. The amplifier circuit 14 amplifies the received signal, one of which is output to the amplitude detecting means 15 and the other of which is output to the repeating means 16. The amplitude detecting means 15 detects the amplitude of the ultrasonic reception signal and transmits the result to the flow rate correction coefficient calculating means 17. In the flow rate correction coefficient calculation means 17,
After calculating the flow rate correction coefficient k, the result is calculated by the flow rate calculating means 18
Transmit to. On the other hand, from the amplifier circuit 14 to the repeating means 16
The signal transmitted to the device has a predetermined number of times determining means 19
The number of times is transmitted to the burst signal generator, and the above ultrasonic wave propagation is repeated. After repeating the ultrasonic wave propagation a predetermined number of times, the time required by the time measuring means 21 such as a timer is timed. After measuring the total required time, the switching means 12 is switched so that the signal from the oscillator 13 for generating the burst signal is transmitted to the oscillator 9 on the downstream side.
The signal received by the transducer 8 on the upstream side is transmitted to the amplifier circuit 14.
In this way, after repeating the propagation of ultrasonic waves a predetermined number of times, the time measuring means 21 measures the total required time. In this way, the propagation time of the ultrasonic wave from the upstream to the downstream and from the downstream to the upstream is calculated. That is, if the time from upstream to downstream is tdn and the time from downstream to upstream is tup, then tdn = L / (c + v) + dT and tup = L / (cv) + dT. Here, dT represents the delay time delayed in the circuit system from reception to transmission,
c and v indicate the propagation velocity of ultrasonic waves in the fluid and the flow velocity of the fluid, and L indicates the distance between the transducers. The delay time dT in the circuit system can be considered to be the same because the same circuit system is used, and it is known in advance. Therefore, the time difference
dt takes the reciprocal and becomes as follows.

【0012】 1/dt=1/(tdn−dT)−1/(tup−dT) =(c+v)/L−(c−v)/L =2・v/L このように、Lは振動子間の距離であり、予め既知であ
るから、時間差の逆数をとることにより、流体の流速v
を演算することができる。このとき得られる流体の流速
vは、上流側、下流側の振動子で囲まれる流路内の平均
的な流速となる。なお、この演算過程は、計時手段21
での計時結果のあと、流速演算手段22で実施される。
1 / dt = 1 / (tdn−dT) −1 / (tup−dT) = (c + v) / L− (c−v) / L = 2 · v / L Thus, L is a vibrator Since it is a distance between them and is known in advance, the reciprocal of the time difference is used to obtain the flow velocity v of the fluid.
Can be calculated. The flow velocity v of the fluid obtained at this time is an average flow velocity in the flow path surrounded by the upstream and downstream transducers. In addition, this calculation process is performed by the time measuring means 21.
After the time measurement result in (3), it is carried out by the flow velocity calculating means 22.

【0013】次に振動子の受信信号について述べる。図
2に、管状の流路4内の流体の流速分布を示す。一点鎖
線23は直管部5の中心軸を示す。実線25は、流体の
流速vが大きく、流体の流れが乱流状態の時の流速分布
を示す。破線26は、流体の流速vが小さく、流れが層
流状態の時の流速分布を示す。なお、流速分布は中心軸
23上の流速を1.0として、相対的に示している。乱
流状態の時(実線25)、管内の中央部では一様な流速
分布を示し、管壁のごく近傍でのみ流速が低下してい
る。また、層流状態の時(破線26)、管内の中心軸か
ら離れるに従って流速が放物線状に変化している。例え
ば、管内の流れが層流の場合に、上流側の振動子から下
流側の振動子へ超音波を伝播させると、中心軸近傍を伝
播する超音波は最も速く下流の振動子に到達し、管壁近
傍を伝播する超音波は少し遅れて到達することになる。
図3(a)、(b)に、このときの振動子で受信される
超音波の受信波形を模式的に示す。同図(a)は、中心
軸近傍を伝播してきた超音波の受信波形を示し、同図
(b)は、管壁近傍を伝播してきた超音波の受信波形を
示し、この2つの受信波が下流側の受信用振動子で同時
に受信され、合成波が受信信号として出力される。図中
に示したdTは、流路内の流速分布のために到達時間に
差が発生し、その時間差を示している。従って、層流の
場合、時間差dTが発生し、位相差が生じるため、受信
用振動子で受信される、その合成波の振幅は、お互いに
弱め合うため、小さくなる。逆に、流れが乱流の場合、
超音波の到達時間差dTが小さい、もしくは、零である
ため、受信用振動子で受信される、その合成波は、お互
いに強め合うことになる。このようにして、受信された
合成波の振幅から、管内の流体の流速分布を推定でき
る。この流速分布の推定は、振幅検知手段15で検知さ
れた受信波の振幅を用いて、流量補正手段17で実施さ
れ、流量補正係数kを与える。流量補正係数kは、次の
ように与えられる。
Next, the reception signal of the vibrator will be described. FIG. 2 shows the flow velocity distribution of the fluid in the tubular flow path 4. The alternate long and short dash line 23 indicates the central axis of the straight pipe portion 5. A solid line 25 shows the flow velocity distribution when the flow velocity v of the fluid is large and the flow of the fluid is in a turbulent state. The broken line 26 shows the flow velocity distribution when the flow velocity v of the fluid is small and the flow is in a laminar flow state. The flow velocity distribution is shown relative to the flow velocity on the central axis 23 of 1.0. In the turbulent state (solid line 25), a uniform flow velocity distribution is shown in the central portion of the pipe, and the flow velocity decreases only near the pipe wall. Further, in the laminar flow state (broken line 26), the flow velocity changes in a parabolic shape with increasing distance from the central axis in the pipe. For example, when the flow in the pipe is a laminar flow, when an ultrasonic wave is propagated from the oscillator on the upstream side to the oscillator on the downstream side, the ultrasonic wave propagating in the vicinity of the central axis reaches the oscillator on the downstream side fastest, The ultrasonic waves propagating in the vicinity of the tube wall arrive after a short delay.
FIGS. 3A and 3B schematically show reception waveforms of ultrasonic waves received by the transducer at this time. The figure (a) shows the received waveform of the ultrasonic wave which propagated near the central axis, and the figure (b) shows the received waveform of the ultrasonic wave which propagated near the tube wall. At the same time, the receiving transducers on the downstream side receive the combined wave and output it as a received signal. The dT shown in the drawing shows a difference in arrival time due to the flow velocity distribution in the flow channel, and shows the time difference. Therefore, in the case of a laminar flow, a time difference dT is generated and a phase difference is generated, and the amplitudes of the combined waves received by the receiving vibrator weaken each other and become small. Conversely, if the flow is turbulent,
Since the arrival time difference dT of the ultrasonic waves is small or zero, the combined waves received by the receiving transducer strengthen each other. In this way, the flow velocity distribution of the fluid in the pipe can be estimated from the amplitude of the received combined wave. The estimation of the flow velocity distribution is performed by the flow rate correction unit 17 using the amplitude of the received wave detected by the amplitude detection unit 15, and gives the flow rate correction coefficient k. The flow rate correction coefficient k is given as follows.

【0014】k=v/<v> ここで、vは前記流速演算手段22で演算された流体の
流速、<v>は流体の流速分布を考慮した管内の平均流
速であり、一般に、流量補正係数kは、流速に依存する
が約1.02〜1.1程度の値をとる。
K = v / <v> Here, v is the flow velocity of the fluid calculated by the flow velocity calculating means 22, and <v> is the average flow velocity in the pipe in consideration of the flow velocity distribution of the fluid. The coefficient k depends on the flow velocity, but takes a value of about 1.02 to 1.1.

【0015】以上説明したように、流速演算手段22で
演算された流速vと、流量補正手段17で得られた流量
補正係数kとを用い、流量演算手段18で流量Qを次の
様に与える。
As described above, using the flow velocity v calculated by the flow velocity calculating means 22 and the flow rate correction coefficient k obtained by the flow rate correcting means 17, the flow rate calculating means 18 gives the flow rate Q as follows. .

【0016】 Q=<v>・S =(v/k)・S ここで、Sは管状の流路4の断面積を示す。Q = <v> · S = (v / k) · S Here, S represents the cross-sectional area of the tubular flow path 4.

【0017】本発明による超音波流量計測装置では、広
い流量範囲にわたって、流量補正係数kで補正された高
精度な流量を測定することができる。
The ultrasonic flow rate measuring device according to the present invention can measure a highly accurate flow rate corrected by the flow rate correction coefficient k over a wide flow rate range.

【0018】図4は、第2の実施例であり、流速演算手
段22で演算された流体の流速vを予め設定された上限
流速VH、下限流速VLと比較する流速比較手段27を設
けた。
FIG. 4 shows a second embodiment, which is provided with a flow velocity comparison means 27 for comparing the flow velocity v of the fluid calculated by the flow velocity calculation means 22 with preset upper limit flow velocity VH and lower limit flow velocity VL.

【0019】流速比較手段27では、演算された流体の
流速vを上限流速VH、あるいは下限流速VLと比較し、
上限流速VHよりも大きい場合は、乱流とみなし、予め
設定された流量補正係数kHを与えるようにした。同様
に、下限流速VLよりも小さい場合は、層流とみなし、
予め設定された流量補正係数kLを与えるようにした。
従って、演算された流体の流速vが、上限流速VHより
小さく、下限流速VLよりも大きい場合、即ち、層流と
乱流の中間域にあたる遷移領域でのみ、流量補正係数k
を演算処理するようにした。これにより、演算時間を短
縮することができ、効率的となった。
The flow velocity comparing means 27 compares the calculated flow velocity v of the fluid with the upper limit flow velocity VH or the lower limit flow velocity VL,
When the flow velocity is higher than the upper limit flow velocity VH, it is regarded as turbulent flow and a preset flow rate correction coefficient kH is given. Similarly, when it is smaller than the lower limit flow velocity VL, it is regarded as laminar flow,
The flow rate correction coefficient kL set in advance is given.
Therefore, when the calculated flow velocity v of the fluid is smaller than the upper limit flow velocity VH and larger than the lower limit flow velocity VL, that is, only in the transition region which is an intermediate region between the laminar flow and the turbulent flow, the flow rate correction coefficient k
Was calculated. As a result, the calculation time can be shortened and efficiency has been improved.

【0020】図5は第3の実施例であり、振幅検出手段
15で検出された超音波の受信振幅を、予め設定された
上限振幅AH、下限振幅ALと比較する振幅比較手段28
を設けた。振幅比較手段28では、検出された超音波の
受信振幅を、予め設定された上限振幅AH、下限振幅AL
と比較し、上限振幅AHよりも大きい場合は、乱流とみ
なし、予め設定された流量補正係数kHを与えるように
した。同様に、下限振幅ALよりも小さい場合は、層流
とみなし、予め設定された流量補正係数kLを与えるよ
うにした。従って、検出された超音波の受信振幅が上限
振幅AHよりも小さく、下限振幅ALよりも大きい場合、
即ち、層流と乱流の中間域にあたる遷移領域でのみ、流
量補正係数kを演算処理するようにした。これにより、
演算時間を短縮することができ、効率的となった。
FIG. 5 shows a third embodiment, which is an amplitude comparing means 28 for comparing the received amplitude of the ultrasonic wave detected by the amplitude detecting means 15 with preset upper limit amplitude AH and lower limit amplitude AL.
Was provided. In the amplitude comparing means 28, the detected reception amplitudes of the ultrasonic waves are set to preset upper limit amplitude AH and lower limit amplitude AL.
When the amplitude is larger than the upper limit amplitude AH, it is regarded as turbulent flow and a preset flow rate correction coefficient kH is given. Similarly, when it is smaller than the lower limit amplitude AL, it is regarded as a laminar flow and a preset flow rate correction coefficient kL is given. Therefore, when the received amplitude of the detected ultrasonic wave is smaller than the upper limit amplitude AH and larger than the lower limit amplitude AL,
That is, the flow rate correction coefficient k is calculated only in the transition region, which is an intermediate region between the laminar flow and the turbulent flow. This allows
The calculation time can be shortened and it is efficient.

【0021】図6は第4の実施例であり、流速演算手段
22で演算された流体の流速vを予め設定された上限流
速VH、下限流速VLと比較する流速比較手段27を設け
るとともに、振幅検出手段15で検出された超音波の受
信振幅を、予め設定された上限振幅AH、下限振幅ALと
比較する振幅比較手段28を設けた。従って、流体の流
速により予め設定された遷移領域でのみ、且つ、超音波
の受信振幅により予め設定された遷移領域でのみ流量補
正係数kを演算処理するようにした。これにより、演算
時間をより一層短縮することができ、より効率的となっ
た。
FIG. 6 shows a fourth embodiment, which is provided with a flow velocity comparison means 27 for comparing the flow velocity v of the fluid calculated by the flow velocity calculation means 22 with preset upper limit flow velocity VH and lower limit flow velocity VL, and the amplitude. Amplitude comparison means 28 is provided for comparing the received amplitude of the ultrasonic wave detected by the detection means 15 with the preset upper limit amplitude AH and lower limit amplitude AL. Therefore, the flow rate correction coefficient k is calculated only in the transition region preset by the flow velocity of the fluid and only in the transition region preset by the reception amplitude of the ultrasonic wave. As a result, the calculation time can be further shortened and the efficiency has been improved.

【0022】[0022]

【発明の効果】以上の説明から明らかなように本発明の
流量計測装置によれば次の効果が得られる。
As is apparent from the above description, the following effects can be obtained by the flow rate measuring device of the present invention.

【0023】(1)流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、超音波受信振幅検出手段と、前記超音波受信振
幅検出手段に基づく超音波受信振幅から流量補正係数を
演算する流量補正係数演算手段と、前記流速演算手段に
よる流体の流速と前記流量補正係数演算手段による流量
補正係数とから流体の流量を算出する流量演算手段とを
備えたので、広い流量範囲にわたって、流量補正係数k
で補正された高精度な流量を測定することができる。
(1) A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path; Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the fluid flow velocity from the accumulated time of ultrasonic propagation, and ultrasonic receiving Amplitude detection means, flow rate correction coefficient calculation means for calculating a flow rate correction coefficient from the ultrasonic wave reception amplitude based on the ultrasonic wave reception amplitude detection means, fluid flow rate by the flow rate calculation means and flow rate correction by the flow rate correction coefficient calculation means Since the flow rate calculating means for calculating the flow rate of the fluid from the coefficient is provided, the flow rate correction coefficient k can be obtained over a wide flow rate range.
It is possible to measure a highly accurate flow rate corrected by.

【0024】(2)流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、前記演算された流速を予め設定された上限、下
限の流速値と比較する流速比較手段と、超音波受信振幅
検出手段と、前記超音波受信振幅検出手段に基づく超音
波受信振幅から流量補正係数を演算する流量補正係数演
算手段と、前記流速比較手段により比較された流体の流
速と前記流量補正係数演算手段による流量補正係数とか
ら流体の流量を算出する流量演算手段とを備えたので、
広い流量範囲にわたって、流量補正係数kで補正された
高精度な流量を測定することができ、さらに、流速によ
り効率よく演算処理することができる。
(2) A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and the vibrator. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow rate comparing means for comparing the flow rate with preset upper and lower flow rate values, ultrasonic receiving amplitude detecting means, and a flow rate for calculating a flow rate correction coefficient from the ultrasonic receiving amplitude based on the ultrasonic receiving amplitude detecting means. Since the correction coefficient calculation means and the flow rate calculation means for calculating the flow rate of the fluid from the flow rate of the fluid compared by the flow rate comparison means and the flow rate correction coefficient by the flow rate correction coefficient calculation means are provided,
It is possible to measure a highly accurate flow rate corrected by the flow rate correction coefficient k over a wide flow rate range, and further, it is possible to perform an efficient calculation process based on the flow velocity.

【0025】(3)流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、超音波受信振幅検出手段と、前記超音波受信振
幅検出手段に基づく超音波受信振幅を予め設定された上
限、下限の振幅値と比較する振幅比較手段と、前記振幅
比較手段により比較された超音波の振幅から流量補正係
数を演算する流量補正係数演算手段と、前記流速演算手
段による流体の流速と前記流量補正係数演算手段による
流量補正係数とから流体の流量を算出する流量演算手段
とを備えたので、広い流量範囲にわたって、流量補正係
数kで補正された高精度な流量を測定することができ、
さらに、超音波の受信振幅により効率よく演算処理する
ことができる。
(3) A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and the vibrator. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the fluid flow velocity from the accumulated time of ultrasonic propagation, and ultrasonic receiving Amplitude detecting means, amplitude comparing means for comparing the ultrasonic receiving amplitude based on the ultrasonic receiving amplitude detecting means with preset upper and lower limit amplitude values, and from the amplitude of the ultrasonic waves compared by the amplitude comparing means Since the flow rate correction coefficient calculating means for calculating the flow rate correction coefficient and the flow rate calculating means for calculating the flow rate of the fluid from the flow rate of the fluid by the flow rate calculating means and the flow rate correction coefficient by the flow rate correction coefficient calculating means are provided, Over have flow range, it is possible to measure accurate flow rate corrected by the flow rate correction factor k,
Furthermore, it is possible to efficiently perform arithmetic processing based on the reception amplitude of ultrasonic waves.

【0026】(4)流路の上流と下流とに、超音波の伝
播方向と流体の流れ方向とが、平行になるように設置さ
れた超音波を送受信する一対の振動子と、前記振動子の
送信受信の切り換え手段と、前記振動子間相互の超音波
伝達を連続して複数回繰り返し行う繰り返し手段と、超
音波伝播の累積時間から流体の流速を演算する流速演算
手段と、前記演算された流速を予め設定された上限、下
限の流速値と比較する流速比較手段と、超音波受信振幅
検出手段と、前記超音波受信振幅検出手段に基づく超音
波受信振幅を予め設定された上限、下限の振幅値と比較
する振幅比較手段と、前記振幅比較手段により比較され
た超音波の振幅から流量補正係数を演算する流量補正係
数演算手段と、前記流速比較手段により比較された流体
の流速と前記流量補正係数演算手段による流量補正係数
とから流体の流量を算出する流量演算手段とを備えたの
で、広い流量範囲にわたって、流量補正係数kで補正さ
れた高精度な流量を測定することができ、さらに、超音
波の受信振幅と、流体の流速とにより効率よく演算処理
することができる。
(4) A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and the vibrator. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow velocity comparing means for comparing the flow velocity with preset upper and lower flow velocity values, ultrasonic reception amplitude detection means, and ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means. Amplitude comparing means for comparing the flow rate correction coefficient calculating means for calculating a flow rate correction coefficient from the amplitude of the ultrasonic wave compared by the amplitude comparing means, and the flow velocity of the fluid compared by the flow velocity comparing means Flow rate Since the flow rate calculation means for calculating the flow rate of the fluid from the flow rate correction coefficient by the positive coefficient calculation means is provided, it is possible to measure the highly accurate flow rate corrected by the flow rate correction coefficient k over a wide flow rate range. , The received amplitude of ultrasonic waves and the flow velocity of the fluid can be efficiently calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の流量計測装置の制御ブ
ロック図
FIG. 1 is a control block diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置の流速分布図[Fig. 2] Flow velocity distribution map of the device

【図3】同装置の受信信号波形図FIG. 3 is a received signal waveform diagram of the device.

【図4】本発明の第2の実施例の流量計測装置の制御ブ
ロック図
FIG. 4 is a control block diagram of a flow rate measuring device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例の流量計測装置の制御ブ
ロック図
FIG. 5 is a control block diagram of a flow rate measuring device according to a third embodiment of the present invention.

【図6】本発明の第4の実施例の流量計測装置の制御ブ
ロック図
FIG. 6 is a control block diagram of a flow rate measuring device according to a fourth embodiment of the present invention.

【図7】従来の流量計測装置の制御ブロック図FIG. 7 is a control block diagram of a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

4 流路 8 第1振動子 9 第2振動子 15 振幅検出手段 17 流量補正手段 18 流量演算手段 22 流速演算手段 4 flow path 8 1st vibrator 9 2nd vibrator 15 amplitude detection means 17 flow rate correction means 18 flow rate calculation means 22 flow velocity calculation means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】流路の上流と下流とに、超音波の伝播方向
と流体の流れ方向とが、平行になるように設置された超
音波を送受信する一対の振動子と、前記振動子の送信受
信の切り換え手段と、前記振動子間相互の超音波伝達を
連続して複数回繰り返し行う繰り返し手段と、超音波伝
播の累積時間から流体の流速を演算する流速演算手段
と、超音波受信振幅検出手段と、前記超音波受信振幅検
出手段に基づく超音波受信振幅から流量補正係数を演算
する流量補正係数演算手段と、前記流速演算手段による
流体の流速と前記流量補正係数演算手段による流量補正
係数とから流体の流量を算出する流量演算手段とを備え
た流量計測装置。
1. A pair of transducers for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculation means for calculating the flow velocity of fluid from the cumulative time of ultrasonic propagation, and ultrasonic reception amplitude Detection means, flow rate correction coefficient calculation means for calculating a flow rate correction coefficient from the ultrasonic wave reception amplitude based on the ultrasonic wave reception amplitude detection means, fluid flow rate by the flow rate calculation means and flow rate correction coefficient by the flow rate correction coefficient calculation means A flow rate measuring device comprising: a flow rate calculating means for calculating the flow rate of the fluid from
【請求項2】流路の上流と下流とに、超音波の伝播方向
と流体の流れ方向とが、平行になるように設置された超
音波を送受信する一対の振動子と、前記振動子の送信受
信の切り換え手段と、前記振動子間相互の超音波伝達を
連続して複数回繰り返し行う繰り返し手段と、超音波伝
播の累積時間から流体の流速を演算する流速演算手段
と、前記演算された流速を予め設定された上限、下限の
流速値と比較する流速比較手段と、超音波受信振幅検出
手段と、前記超音波受信振幅検出手段に基づく超音波受
信振幅から流量補正係数を演算する流量補正係数演算手
段と、前記流速比較手段により比較された流体の流速と
前記流量補正係数演算手段による流量補正係数とから流
体の流量を算出する流量演算手段とを備えた流量計測装
置。
2. A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow velocity comparison means for comparing the flow velocity with preset upper and lower flow velocity values, ultrasonic reception amplitude detection means, and flow rate correction for calculating a flow rate correction coefficient from the ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means. A flow rate measuring device comprising: coefficient calculating means; and flow rate calculating means for calculating the flow rate of the fluid from the flow rate of the fluid compared by the flow rate comparing means and the flow rate correction coefficient by the flow rate correction coefficient calculating means.
【請求項3】流路の上流と下流とに、超音波の伝播方向
と流体の流れ方向とが、平行になるように設置された超
音波を送受信する一対の振動子と、前記振動子の送信受
信の切り換え手段と、前記振動子間相互の超音波伝達を
連続して複数回繰り返し行う繰り返し手段と、超音波伝
播の累積時間から流体の流速を演算する流速演算手段
と、超音波受信振幅検出手段と、前記超音波受信振幅検
出手段に基づく超音波受信振幅を予め設定された上限、
下限の振幅値と比較する振幅比較手段と、前記振幅比較
手段により比較された超音波の振幅から流量補正係数を
演算する流量補正係数演算手段と、前記流速演算手段に
よる流体の流速と前記流量補正係数演算手段による流量
補正係数とから流体の流量を算出する流量演算手段とを
備えた流量計測装置。
3. A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculation means for calculating the flow velocity of fluid from the cumulative time of ultrasonic propagation, and ultrasonic reception amplitude Detection means, the ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means is a preset upper limit,
Amplitude comparison means for comparing with a lower limit amplitude value, flow rate correction coefficient calculation means for calculating a flow rate correction coefficient from the amplitude of the ultrasonic waves compared by the amplitude comparison means, and fluid flow velocity and the flow rate correction by the flow velocity calculation means. A flow rate measuring device comprising a flow rate calculating means for calculating a flow rate of a fluid from a flow rate correction coefficient by the coefficient calculating means.
【請求項4】流路の上流と下流とに、超音波の伝播方向
と流体の流れ方向とが、平行になるように設置された超
音波を送受信する一対の振動子と、前記振動子の送信受
信の切り換え手段と、前記振動子間相互の超音波伝達を
連続して複数回繰り返し行う繰り返し手段と、超音波伝
播の累積時間から流体の流速を演算する流速演算手段
と、前記演算された流速を予め設定された上限、下限の
流速値と比較する流速比較手段と、超音波受信振幅検出
手段と、前記超音波受信振幅検出手段に基づく超音波受
信振幅を予め設定された上限、下限の振幅値と比較する
振幅比較手段と、前記振幅比較手段により比較された超
音波の振幅から流量補正係数を演算する流量補正係数演
算手段と、前記流速比較手段により比較された流体の流
速と前記流量補正係数演算手段による流量補正係数とか
ら流体の流量を算出する流量演算手段とを備えた流量計
測装置。
4. A pair of vibrators for transmitting and receiving ultrasonic waves, which are installed so that the propagation direction of the ultrasonic waves and the flow direction of the fluid are parallel to each other upstream and downstream of the flow path, and a pair of the vibrators. Transmission / reception switching means, repeating means for continuously repeating ultrasonic transmission between the transducers a plurality of times, flow velocity calculating means for calculating the flow velocity of the fluid from the cumulative time of ultrasonic propagation, and Flow velocity comparison means for comparing the flow velocity with preset flow velocity values of upper and lower limits, ultrasonic reception amplitude detection means, and ultrasonic reception amplitude based on the ultrasonic reception amplitude detection means of preset upper and lower limits. An amplitude comparing means for comparing with an amplitude value, a flow rate correcting coefficient computing means for computing a flow rate correcting coefficient from the amplitude of the ultrasonic wave compared by the amplitude comparing means, and a flow velocity and a flow rate of the fluid compared by the flow velocity comparing means. Corrector Flow rate measuring device provided with a flow rate calculation means for calculating the flow rate of the fluid from the flow correction coefficient by the computing means.
JP00640895A 1995-01-19 1995-01-19 Flow measurement device Expired - Fee Related JP3438371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00640895A JP3438371B2 (en) 1995-01-19 1995-01-19 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00640895A JP3438371B2 (en) 1995-01-19 1995-01-19 Flow measurement device

Publications (2)

Publication Number Publication Date
JPH08193861A true JPH08193861A (en) 1996-07-30
JP3438371B2 JP3438371B2 (en) 2003-08-18

Family

ID=11637552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00640895A Expired - Fee Related JP3438371B2 (en) 1995-01-19 1995-01-19 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3438371B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139356A (en) * 2000-10-31 2002-05-17 Osaka Gas Co Ltd Flow measuring method
WO2011055532A1 (en) * 2009-11-06 2011-05-12 パナソニック株式会社 Ultrasonic flowmeter
JP2016057094A (en) * 2014-09-05 2016-04-21 アズビル株式会社 Ultrasonic flowmeter and method of measuring flow rate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139356A (en) * 2000-10-31 2002-05-17 Osaka Gas Co Ltd Flow measuring method
WO2011055532A1 (en) * 2009-11-06 2011-05-12 パナソニック株式会社 Ultrasonic flowmeter
JP2016057094A (en) * 2014-09-05 2016-04-21 アズビル株式会社 Ultrasonic flowmeter and method of measuring flow rate

Also Published As

Publication number Publication date
JP3438371B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
JP3023569B2 (en) Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium
JPH10122923A (en) Ultrasonic flow meter
RU2660011C1 (en) Method and device for ultrasonic flow method measurement and layout device for controlling ultrasonic flow measurements by practical method
JP2002131105A (en) Ultrasonic flow rate measuring method
WO2005083371A1 (en) Doppler type ultrasonic flowmeter
CN108431554B (en) Fluid measuring device
FI89835C (en) Method and apparatus for determining the velocity of a gas flowing in a pipe
JPH08193861A (en) Flow-rate measuring apparatus
JP2001208584A (en) Flow rate-measuring device
JP4797515B2 (en) Ultrasonic flow measuring device
EP4153950A1 (en) Ultrasonic flow measurement
JPH11351928A (en) Flowmetr and flow rate measuring method
JP4266117B2 (en) Ultrasonic flow meter
JP4759835B2 (en) Flow measuring device
JPH09243421A (en) Flow rate measuring apparatus
JPH0612278B2 (en) Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus
JPH0915012A (en) Ultrasonic wave flowmeter
JPH09287990A (en) Ultrasonic flowmeter
JP2000338123A (en) Ultrasonic floe speed measuring method
JPH08128875A (en) Flow rate measuring instrument
SU1030656A1 (en) Ultrasonic flowmeter
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JP4759829B2 (en) Flow measuring device
JP6354327B2 (en) Ultrasonic flow meter
JP3386334B2 (en) Ultrasonic vortex flowmeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees