JP2002139356A - Flow measuring method - Google Patents

Flow measuring method

Info

Publication number
JP2002139356A
JP2002139356A JP2000331646A JP2000331646A JP2002139356A JP 2002139356 A JP2002139356 A JP 2002139356A JP 2000331646 A JP2000331646 A JP 2000331646A JP 2000331646 A JP2000331646 A JP 2000331646A JP 2002139356 A JP2002139356 A JP 2002139356A
Authority
JP
Japan
Prior art keywords
flow rate
coefficient
intercept
flow
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000331646A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsushita
博 松下
Tadayuki Minami
忠幸 南
Shigeru Tagawa
滋 田川
Kazuo Eshita
和雄 江下
Eiji Nakamura
英司 中村
Akio Kono
明夫 河野
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000331646A priority Critical patent/JP2002139356A/en
Publication of JP2002139356A publication Critical patent/JP2002139356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow measuring method capable of measuring the flow of a fluid with accuracy. SOLUTION: A variable X is obtained by substituting the propagation time of an ultrasonic waves in equation [1], and a coefficient K and an intercept C equation [2] are selected according to the variable X. The variable X is substituted in the equation [2] whose coefficient K and the intercept C are selected to obtain a flow Qm per designated time: X=(Tg-Tj)/(Tg×Tj)...[1] Qm=KX+C...[2].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流量を測定する流量測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring method for measuring a flow rate of a gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術】従来、ガスその他の流体の流量を測定す
る方法として、超音波を利用した流量測定方法が知られ
ている。
2. Description of the Related Art Conventionally, as a method for measuring the flow rate of a gas or other fluid, a flow rate measurement method using ultrasonic waves is known.

【0003】かかる流量測定方法の原理を、図4にて説
明すると次のとおりである。図4において、(1)は内
部をガス等の流体が流れる流量測定部としての流量測定
管である。この流量測定管(1)内には、流れ方向に沿
って所定距離を隔てて超音波振動子(2)(3)が配置
されている。この超音波振動子(2)(3)は、駆動パ
ルス発生回路(4)からの駆動パルスにより駆動されて
振動し、超音波を発生送信する一方、送信されてきた超
音波を受信するもので、その超音波振動子(3)(2)
が振動したときの受信波が受信増幅回路(5)から出力
されるものとなされている。
The principle of such a flow rate measuring method will be described below with reference to FIG. In FIG. 4, reference numeral (1) denotes a flow measuring tube as a flow measuring unit in which a fluid such as a gas flows. Ultrasonic vibrators (2) and (3) are arranged in the flow measurement tube (1) at a predetermined distance along the flow direction. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a driving pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. , Its ultrasonic transducers (3) (2)
The received wave when is vibrated is output from the receiving amplifier circuit (5).

【0004】そして、上流側の超音波振動子(2)から
流れに対して順流方向に送信された超音波が下流側の超
音波振動子(3)で受波されるまでの伝搬時間Tjと、
下流側の超音波振動子(3)から流れに対して逆流方向
に送信された超音波が上流側の超音波振動子(2)で受
信されるまでの伝搬時間Tgとに基づいて所定時間当た
りの流量Qsを求める。そして、このような所定時間当
たりの流量Qsの測定を所定時間ごとに行い、それら所
定時間当たりの流量Qsを積算することにより流体全体
の流量Qを求める。
The propagation time Tj until the ultrasonic wave transmitted from the upstream ultrasonic vibrator (2) in the forward direction with respect to the flow is received by the downstream ultrasonic vibrator (3). ,
Per predetermined time based on the propagation time Tg until the ultrasonic wave transmitted from the downstream ultrasonic transducer (3) in the reverse flow direction to the flow is received by the upstream ultrasonic transducer (2). Is obtained. Then, the flow rate Qs per predetermined time is measured every predetermined time, and the flow rate Qs of the entire fluid is obtained by integrating the flow rates Qs per predetermined time.

【0005】なお、図4において、(6)は各超音波振
動子(2)(3)と駆動パルス発生回路(4)及び受信
増幅回路(5)の接続を切替える切替回路であり、まず
駆動パルス発生回路(4)と超音波振動子(2)、超音
波振動子(3)と受信増幅回路(5)を接続して、順流
方向の伝搬時間Tjを測定したのち、該切替回路(6)
の作動により駆動パルス発生回路(4)と超音波振動子
(3)、超音波振動子(2)と受信増幅回路(5)とが
接続されるように切替えて、逆流方向の伝搬時間Tgを
測定するものとなされている。
In FIG. 4, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3), the drive pulse generating circuit (4) and the receiving amplifier circuit (5). The pulse generation circuit (4) is connected to the ultrasonic vibrator (2), and the ultrasonic vibrator (3) is connected to the receiving amplifier circuit (5) to measure the propagation time Tj in the forward flow direction. )
The drive pulse generating circuit (4) and the ultrasonic vibrator (3), and the ultrasonic vibrator (2) and the receiving amplifier circuit (5) are switched so as to be connected by the operation of (1), and the propagation time Tg in the reverse flow direction is changed. It is meant to be measured.

【0006】ところで、前記所定時間当たりの流量Qs
は、具体的には上述の順流方向の超音波の伝搬時間Tj
と逆流方向の超音波の伝搬時間Tgとを下式[3]に代
入することにより算出されていた。そして、下式[3]
の係数Ksおよび切片Csは、流体の流量にかかわらず
常に一定であった。 Qs=Ks×(Tg−Tj)/(Tg×Tj)+Cs・・・[3] Qs:所定時間当たりの流量 Ks:単位換算のための係数 Cs:補正のための切片 Tj:流体の流れに対して順流方向の超音波の伝搬時間 Tg:流体の流れに対して逆流方向の超音波の伝搬時間
By the way, the flow rate Qs per predetermined time is
Is, specifically, the propagation time Tj of the ultrasonic wave in the forward flow direction described above.
And the propagation time Tg of the ultrasonic wave in the reverse flow direction are substituted into the following equation [3]. And the following equation [3]
Was always constant regardless of the flow rate of the fluid. Qs = Ks × (Tg−Tj) / (Tg × Tj) + Cs [3] Qs: flow rate per predetermined time Ks: coefficient for unit conversion Cs: intercept for correction Tj: flow of fluid Propagation time of ultrasonic wave in the forward flow direction Tg: Propagation time of ultrasonic wave in the reverse flow direction to the flow of fluid

【0007】[0007]

【発明が解決しようとする課題】しかしながら、流量測
定装置の特性は流体の流量によって変化するため、上式
[3]のように係数Ksおよび切片Csが一定であるよ
うな画一的な演算では誤差が生じ、流体の流量を精度良
く測定することができないという問題があった。
However, since the characteristics of the flow rate measuring device change with the flow rate of the fluid, a uniform calculation in which the coefficient Ks and the intercept Cs are constant as in the above equation [3] is not performed. There is a problem that an error occurs and the flow rate of the fluid cannot be measured with high accuracy.

【0008】この発明は、上述の問題に鑑みてなされた
ものであって、流体の流量を精度良く測定することがで
きる流量測定方法の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and has as its object to provide a flow rate measuring method capable of accurately measuring the flow rate of a fluid.

【0009】[0009]

【課題を解決するための手段】この発明は、上述の課題
を解決するために、流量測定部を流れる計測流体の流れ
方向に沿って対向状態に超音波振動子を配置し、前記各
超音波振動子から相互に超音波を発生送信するととも
に、送信した超音波を相互に受信し、それら超音波の伝
搬時間に基づいて所定時間当たりの測定流量Qmを求
め、該所定時間当たりの測定流量Qmを積算することに
より流体全体の流量Qを求める流量測定方法において、
前記超音波の伝搬時間を下式[1]に代入することによ
り変数Xを求め、該変数Xに応じて下式[2]の係数K
および切片Cを選定して、それら係数Kおよび切片Cが
選定された下式[2]に前記変数Xを代入することによ
り前記所定時間当たりの流量Qmを求めることを特徴と
する。 X=(Tg−Tj)/(Tg×Tj)・・・[1] Tg:流体の流れに対して逆流方向の超音波の伝搬時間 Tj:流体の流れに対して順流方向の超音波の伝搬時間 Qm=KX+C・・・[2] Qm:所定時間当たりの流量 K:単位換算のための係数 C:補正のための切片 これによれば、流体の流量に応じて上式[2]の係数K
および切片Cを変化させるので、流体の流量による流量
測定装置の特性変化に影響を受けることなく、流体の流
量を精度良く求めることができる。
According to the present invention, in order to solve the above-mentioned problems, ultrasonic transducers are arranged in an opposed state along a flow direction of a measurement fluid flowing through a flow rate measuring section, and each of the ultrasonic transducers is disposed. Ultrasonic waves are mutually generated and transmitted from the transducers, the transmitted ultrasonic waves are mutually received, a measured flow rate Qm per predetermined time is obtained based on the propagation time of the ultrasonic waves, and the measured flow rate Qm per predetermined time is calculated. In the flow rate measuring method for obtaining the flow rate Q of the entire fluid by integrating
A variable X is obtained by substituting the propagation time of the ultrasonic wave into the following equation [1], and a coefficient K of the following equation [2] is determined according to the variable X.
And the intercept C are selected, and the flow rate Qm per predetermined time is obtained by substituting the variable X into the following equation [2] in which the coefficient K and the intercept C are selected. X = (Tg−Tj) / (Tg × Tj) [1] Tg: Propagation time of ultrasonic wave in the reverse flow direction to the flow of fluid Tj: Propagation of ultrasonic wave in the forward flow direction to the flow of fluid Time Qm = KX + C ... [2] Qm: Flow rate per predetermined time K: Coefficient for unit conversion C: Intercept for correction According to this, the coefficient of the above equation [2] according to the fluid flow rate K
In addition, since the intercept C is changed, the flow rate of the fluid can be accurately obtained without being affected by the change in the characteristics of the flow measurement device due to the flow rate of the fluid.

【0010】また、前記係数Kおよび切片Cは、前記変
数Xの範囲に応じて係数および切片が設定された係数・
切片テーブルから選定する場合、前記係数および切片を
簡単かつ確実に選定することができる。
Further, the coefficient K and the intercept C are a coefficient and an intercept set in accordance with the range of the variable X.
When selecting from the intercept table, the coefficient and the intercept can be selected easily and reliably.

【0011】また、前記係数・切片テーブルは、前記変
数Xと測定精度の高い基準器により測定された正規の流
量Qmとの関係に基づいて算出され、かつ前記基準器側
から送信されてたきた係数Kおよび切片Cを設定する場
合、係数・切片テーブルに係数Kおよび切片Cを簡単か
つ確実に設定することができる。
The coefficient / intercept table is calculated based on the relationship between the variable X and a normal flow rate Qm measured by a reference device having high measurement accuracy, and is transmitted from the reference device side. When setting the coefficient K and the intercept C, the coefficient K and the intercept C can be easily and reliably set in the coefficient / intercept table.

【0012】[0012]

【発明の実施の形態】図1は、この発明の一実施形態に
係る流量測定方法を実施する流量測定装置を示すもので
ある。図1において、(1)は流量測定部としての流量
測定管、(2)(3)は流れ方向に沿って所定距離を隔
てて配置された超音波振動子、(4)は駆動パルスを発
生する駆動パルス発生回路、(5)は超音波振動子
(2)(3)で超音波を受信したときに受信波を出力す
る受信増幅回路、(6)は超音波振動子(2)(3)と
駆動パルス発生回路(4)及び受信増幅回路(5)の接
続を切り替える切替回路であり、これらは図4に示した
ものと同じである。なお、超音波振動子(2)から超音
波振動子(3)への方向を流体の順流方向とし、超音波
振動子(3)から超音波振動子(2)への方向を流体の
逆流方向とする。
FIG. 1 shows a flow rate measuring device for implementing a flow rate measuring method according to an embodiment of the present invention. In FIG. 1, (1) is a flow measuring tube as a flow measuring unit, (2) and (3) are ultrasonic vibrators arranged at a predetermined distance along a flow direction, and (4) generates a driving pulse. (5) is a receiving amplifier circuit that outputs a reception wave when ultrasonic waves are received by the ultrasonic vibrators (2) and (3), and (6) is an ultrasonic vibrator (2) (3) ) And a switching circuit for switching the connection between the driving pulse generating circuit (4) and the receiving amplifier circuit (5), which are the same as those shown in FIG. The direction from the ultrasonic vibrator (2) to the ultrasonic vibrator (3) is a forward flow direction of the fluid, and the direction from the ultrasonic vibrator (3) to the ultrasonic vibrator (2) is the reverse flow direction of the fluid. And

【0013】この実施形態では、後述の係数Kiおよび
切片Ciが設定された係数・切片テーブル(7)と、流
体の所定時間当たりの流量Qmを積算的に記憶する全体
流量記憶部(8)と、前記パルス発生回路(4)、受信
増幅回路(5)、切替回路(6)、係数・切片テーブル
(7)および全体流量記憶部(8)などの各部を制御す
るCPU(9)とが設けられている。
In this embodiment, a coefficient / intercept table (7) in which a coefficient Ki and an intercept Ci described later are set, and a total flow rate storage unit (8) for accumulatively storing a flow rate Qm of the fluid per predetermined time are provided. A CPU (9) for controlling the pulse generating circuit (4), a receiving amplifier circuit (5), a switching circuit (6), a coefficient / intercept table (7), and an overall flow rate storage section (8). Have been.

【0014】前記CPU(9)は、大きく分けて、超音
波の伝搬時間Tj、Tgを測定する測定処理と、所定時
間当たりの流量Qmを算出する演算処理と、該所定時間
当たりの流量Qmを積算的に記憶することにより流体全
体の流量Qを求める積算処理とを実行する機能を備えて
いる。
The CPU (9) is roughly divided into a measurement process for measuring the propagation times Tj and Tg of the ultrasonic wave, a calculation process for calculating the flow rate Qm per predetermined time, and a process for calculating the flow rate Qm per predetermined time. And a function of executing an integrating process for obtaining the flow rate Q of the entire fluid by storing the integrated amount.

【0015】前記測定処理について具体的に説明する
と、CPU(9)により切替回路(6)を制御すること
によって、駆動パルス発生回路(4)と超音波振動子
(2)、超音波振動子(3)と受信増幅回路(5)をそ
れぞれ接続して、順流方向の伝搬時間tjを測定したの
ち、再びCPU(9)により切替回路(6)を制御する
ことによって、駆動パルス発生回路(4)と超音波振動
子(3)、超音波振動子(2)と受信増幅回路(5)が
それぞれ接続されるように切替えて、逆流方向の伝搬時
間tgを測定する。この伝搬時間tj、tgの測定は、
受信増幅回路(5)から出力される受信波が所定のレベ
ルに達した時点またはその後のゼロクロス時点を受信時
点として、超音波の送信時点からその受信時点までの時
間をクロック波などを利用して求める。
More specifically, the measurement process will be described. By controlling the switching circuit (6) by the CPU (9), the drive pulse generation circuit (4), the ultrasonic vibrator (2), and the ultrasonic vibrator ( 3) and the receiving amplifier circuit (5) are connected to each other, and after measuring the propagation time tj in the forward flow direction, the switching circuit (6) is again controlled by the CPU (9), whereby the drive pulse generating circuit (4) And the ultrasonic vibrator (3), and the ultrasonic vibrator (2) and the receiving amplifier circuit (5) are switched so as to be respectively connected, and the propagation time tg in the reverse flow direction is measured. The measurement of the propagation times tj and tg is
The time from when the ultrasonic wave is transmitted to the time when the received wave output from the reception amplifier circuit (5) reaches a predetermined level or after the zero-cross time is used as a reception time using a clock wave or the like. Ask.

【0016】前記演算処理について具体的に説明する
と、上述の測定処理において測定された順流方向の超音
波の伝搬時間Tjと、逆流方向の超音波の伝搬時間Tg
とをそれぞれ下式[1]に代入することによって変数X
を求める。 X=(Tg−Tj)/(Tg×Tj)・・・[1] Tg:流体の流れに対して逆流方向の超音波の伝搬時間 Tj:流体の流れに対して順流方向の超音波の伝搬時間 そして、上式[1]により求められた変数Xに応じて、
下式[2]の係数Kiと切片Ciを選定する。この実施
形態では、下表1に示すように、変数Xの範囲に応じて
係数および切片が設定された係数・切片テーブルに基づ
いて、前記係数Kiおよび切片Ciを選定する。例え
ば、変数XがX2≦X<X3の範囲内にある場合は、前
記係数・切片テーブルに基づいて係数K2および切片C
2を選定する。
More specifically, the arithmetic processing will be described. The propagation time Tj of the ultrasonic wave in the forward flow direction measured in the above-described measurement processing and the propagation time Tg of the ultrasonic wave in the backward flow direction are measured.
Are substituted into the following equation [1] to obtain the variable X
Ask for. X = (Tg−Tj) / (Tg × Tj) [1] Tg: Propagation time of ultrasonic wave in the reverse flow direction to the flow of fluid Tj: Propagation of ultrasonic wave in the forward flow direction to the flow of fluid Time And, according to the variable X obtained by the above equation [1],
The coefficient Ki and the intercept Ci of the following equation [2] are selected. In this embodiment, as shown in Table 1 below, the coefficient Ki and the intercept Ci are selected based on a coefficient / intercept table in which the coefficient and the intercept are set according to the range of the variable X. For example, when the variable X is within the range of X2 ≦ X <X3, the coefficient K2 and the intercept C are determined based on the coefficient / intercept table.
Select 2.

【0017】[0017]

【表1】 [Table 1]

【0018】そして、前記変数Xを、係数Kiおよび切
片Ciが選定された下式[2]に代入することによって
所定時間当たりの流量Qmを算出する。 Qm=KiXi+Ci・・・[2] Qm:所定時間当たりの流量 Ki:単位換算のための係数 Ci:補正のための切片 この係数・切片テーブルのKiおよびCiは、該流量測
定装置の製造段階または検定段階において、変数Xi
と、精度が高い基準器によって測定された所定時間当た
りの正規流量Qmとの関係をあらかじめ調べておいて、
上式[2]において変数Xiから正規流量Qmがほとん
ど誤差なく算出されるべく、最適な値となるように設定
される。特に切片Ciについては、流量が0の場合の補
正の意味を持つので、流量無しを検知して調整したもの
を設定する。
Then, the flow rate Qm per predetermined time is calculated by substituting the variable X into the following equation [2] in which the coefficient Ki and the intercept Ci are selected. Qm = KiXi + Ci [2] Qm: Flow rate per predetermined time Ki: Coefficient for unit conversion Ci: Intercept for correction Ki and Ci in the coefficient / intercept table are used in the manufacturing stage of the flow rate measuring device or In the test phase, the variables Xi
And the relationship between the normal flow rate Qm per predetermined time measured by a highly accurate reference device, and
In the above equation [2], the normal flow rate Qm is set to be an optimal value so that the normal flow rate Qm can be calculated with almost no error from the variable Xi. In particular, the intercept Ci has a meaning of correction when the flow rate is 0, and therefore, a value adjusted by detecting no flow rate is set.

【0019】なお、所定時間当たりの流量Qmが上式
[2]により算出されるのは、以下の理由による。すな
わち、超音波振動子(2)から送信された超音波が超音
波振動子(3)に受信されるまでの伝搬時間tjは、 tj=L/(c+V)・・・[3] L:測定管の長さ c:超音波の速度 V:流体の速度 とあらわされ、また、超音波振動子(3)から送信され
た超音波が超音波振動子(2)に受信されるまでの伝搬
時間tgは、 tg=L/(c−V)・・・[2] とあらわされ、これら[1][2]式より流体の速度V
は、 V=L/2×(Tg−Tj)/(Tj×Tg)・・・[4] となる。
The reason why the flow rate Qm per predetermined time is calculated by the above equation [2] is as follows. That is, the propagation time tj until the ultrasonic wave transmitted from the ultrasonic vibrator (2) is received by the ultrasonic vibrator (3) is tj = L / (c + V) (3) L: measurement Length of tube c: velocity of ultrasonic wave V: velocity of fluid, and propagation time until ultrasonic wave transmitted from ultrasonic vibrator (3) is received by ultrasonic vibrator (2) tg is expressed as tg = L / (c−V) (2). From these equations [1] and [2], the fluid velocity V
V = L / 2 × (Tg−Tj) / (Tj × Tg) (4)

【0020】従って、所定時間当たりの流量Qmは、 Qm=V×S×t =(L×S×t)/2×(Tg−Tj)/(Tj×Tg)・・・[5] V:流速 S:測定管の断面積 t:所定時間(例えば2秒) となるから、上式[5]において、(L×S×t)/2
を係数Kiとし、さらに補正のための係数Ciを付加す
れば、上式[2]の演算式が得られる。
Therefore, the flow rate Qm per predetermined time is as follows: Qm = V × S × t = (L × S × t) / 2 × (Tg−Tj) / (Tj × Tg) (5) Since the flow velocity S: the cross-sectional area of the measuring tube t: a predetermined time (for example, 2 seconds), (L × S × t) / 2 in the above equation [5]
Is a coefficient Ki, and a coefficient Ci for correction is added, whereby the operation equation of the above equation [2] is obtained.

【0021】前記積算処理について具体的に説明する
と、上述の演算処理において算出された所定時間当たり
の流量Qmを所定時間ごとに全体流量記憶部(8)に積
算的に記憶する。
More specifically, the integration process is described in which the flow rate Qm per predetermined time calculated in the above-described calculation process is cumulatively stored in the entire flow rate storage unit (8) every predetermined time.

【0022】次に、図1に示した装置による流量測定方
法を、図2および図3に示すフローチャートを用いて説
明する。なお、以下の説明および図面では「ステップ」
を「S」と略記する。
Next, a flow rate measuring method using the apparatus shown in FIG. 1 will be described with reference to flowcharts shown in FIGS. In the following description and drawings, “step”
Is abbreviated as “S”.

【0023】まず、S1の測定処理において、CPU
(9)により切替回路(6)を制御することによって、
駆動パルス発生回路(4)と超音波振動子(2)、超音
波振動子(3)と受信増幅回路(5)をそれぞれ接続し
て、順流方向の伝搬時間tjを測定したのち、再びCP
U(9)により切替回路(6)を制御することによっ
て、駆動パルス発生回路(4)と超音波振動子(3)、
超音波振動子(2)と受信増幅回路(5)がそれぞれ接
続されるように切替えて、逆流方向の伝搬時間tgを測
定し、S2の演算処理に進む。なお、順流方向の伝搬時
間tjと逆流方向の伝搬時間tgは、それぞれ1個ずつ
測定するものとしてもよいし、あるいはそれぞれ複数個
ずつ測定して平均化してもよい。
First, in the measurement process of S1, the CPU
By controlling the switching circuit (6) by (9),
The drive pulse generation circuit (4) and the ultrasonic vibrator (2), the ultrasonic vibrator (3) and the receiving amplifier circuit (5) are connected to each other, and the forward flow time tj is measured.
By controlling the switching circuit (6) by U (9), the drive pulse generation circuit (4) and the ultrasonic vibrator (3)
The ultrasonic transducer (2) and the receiving amplifier circuit (5) are switched so as to be connected to each other, the propagation time tg in the reverse flow direction is measured, and the process proceeds to S2. The propagation time tj in the forward flow direction and the propagation time tg in the backward flow direction may be measured one by one, or a plurality of each may be measured and averaged.

【0024】S2の演算処理では、図3のフローチャー
トに示すように、S21にて、上述の測定処理で測定さ
れた順流方向の伝搬時間tjと逆流方向の伝搬時間tg
とを、それぞれ上式[1]に代入することにより変数X
を算出し、S22に進む。
In the calculation process of S2, as shown in the flowchart of FIG. 3, in S21, the propagation time tj in the forward flow direction and the propagation time tg in the backward flow direction measured in the above-described measurement process are measured.
To the variable X by substituting
Is calculated, and the process proceeds to S22.

【0025】S22では、i=0となるように初期設定
を行い、S23に進む。
In S22, initialization is performed so that i = 0, and the flow advances to S23.

【0026】S23では、変数Xが「X<X1」を満た
すか否かを判定し、満たさない場合は(S23でN
O)、S24に進み、iに1を加算して、再びS23に
戻り、変数Xが「X<Xi」を満たすまでS23および
S24の処理を繰り返す。
In S23, it is determined whether or not the variable X satisfies "X <X1".
O), proceed to S24, add 1 to i, return to S23 again, and repeat the processing of S23 and S24 until the variable X satisfies “X <Xi”.

【0027】一方、S23において「X<Xi」を満た
した場合は(S23でYES)、S25に進み、上表1
に示す変数・切片テーブルから「Xi−1≦X<Xi」
のときの係数Kiおよび切片Ciを選定し、S26に進
む。
On the other hand, if "X <Xi" is satisfied in S23 (YES in S23), the process proceeds to S25, and Table 1 shown in FIG.
"Xi-1≤X <Xi" from the variable / intercept table shown in FIG.
Then, the coefficient Ki and the intercept Ci are selected, and the process proceeds to S26.

【0028】S26では、変数Xを、係数Kiおよび切
片Ciが選定された上式[2]に代入することにより所
定時間当たりの流量Qmを算出し、S3の積算処理に進
む。
In S26, the flow rate Qm per predetermined time is calculated by substituting the variable X into the above equation [2] in which the coefficient Ki and the intercept Ci are selected, and the flow proceeds to the integration processing in S3.

【0029】S3の積算処理では、上述の演算処理にお
いて算出された所定時間当たりの流量Qmを全体流量記
憶部(8)に積算的に記憶する。この全体流量記憶部
(8)に記憶された流体全体の流量Qは、必要に応じて
図示略の表示部に表示される。
In the integrating process in S3, the flow rate Qm per predetermined time calculated in the above-described calculating process is integratedly stored in the overall flow rate storage unit (8). The flow rate Q of the entire fluid stored in the total flow rate storage unit (8) is displayed on a display unit (not shown) as necessary.

【0030】この流量測定方法によれば、上式[1]に
より求められた変数Xに応じて上式[2]の係数Kiお
よび切片Ciを変化させるので、流体の特性変化にかか
わらず流体の流量を精度よく求めることができる。
According to this flow rate measuring method, the coefficient Ki and the intercept Ci of the above equation [2] are changed in accordance with the variable X obtained by the above equation [1]. The flow rate can be determined accurately.

【0031】なお、この実施形態では、係数・切片テー
ブルをCPU(9)とは別に記憶するものとしたが、C
PU(9)のROM(Read Only Memor
y:データ読み出し専用メモリ)に記憶してもよい。
In this embodiment, the coefficient / intercept table is stored separately from the CPU (9).
PU (9) ROM (Read Only Memory)
y: data read-only memory).

【0032】また、前記係数・切片テーブル(7)は、
前記変数Xと測定精度の高い基準器により測定された正
規の流量Qmとの関係に基づいて算出され、かつ前記基
準器側から送信されてたきた係数Kiおよび切片Ciが
設定されるものとしてもよい。これによれば、係数・切
片テーブルに係数Kiおよび切片Ciを簡単かつ確実に
設定することができる。
The coefficient / intercept table (7)
The coefficient Ki and the intercept Ci, which are calculated based on the relationship between the variable X and the normal flow rate Qm measured by the reference device with high measurement accuracy and transmitted from the reference device, may be set. Good. According to this, the coefficient Ki and the intercept Ci can be easily and reliably set in the coefficient / intercept table.

【0033】また、変数Xの各範囲の係数Kiおよび切
片Ciは、その係数Kiおよび切片Ciにより構成され
る上式[2]と、それに隣接する変数Xの範囲の係数K
i±1および切片Ci±1により構成される上式[2]
との境界部が一致し、変数Xの各範囲の上式[2]が連
続した折れ線となるように設定されるのが望ましい。
The coefficient Ki and the intercept Ci of each range of the variable X are calculated by the above equation [2] constituted by the coefficient Ki and the intercept Ci, and the coefficient K of the range of the variable X adjacent thereto.
The above equation [2] composed of i ± 1 and intercept Ci ± 1
Is preferably set so that the boundary portion of the variable X coincides and the above equation [2] in each range of the variable X becomes a continuous polygonal line.

【0034】また、変数Xの各範囲ごとに係数Kiおよ
び切片Ciを段階的に設定するするものとしたが、変数
Xに応じて係数Kiおよび切片Ciを連続的に設定して
もよい。
Although the coefficient Ki and the intercept Ci are set stepwise for each range of the variable X, the coefficient Ki and the intercept Ci may be set continuously according to the variable X.

【0035】[0035]

【発明の効果】請求項1に係る発明によれば、上式
[1]により求められた変数Xに応じて上式[2]の係
数および切片を変化させるので、流体の特性変化にかか
わらず流体の流量を精度よく求めることができる。
According to the first aspect of the present invention, the coefficient and intercept of the above equation [2] are changed according to the variable X obtained by the above equation [1]. The flow rate of the fluid can be accurately determined.

【0036】請求項2に係る発明によれば、前記係数お
よび切片を簡単かつ確実に選定することができる。
According to the second aspect of the present invention, the coefficient and the intercept can be easily and reliably selected.

【0037】請求項3に係る発明によれば、係数・切片
テーブルに係数Kおよび切片Cを簡単かつ確実に設定す
ることができる。
According to the third aspect of the present invention, the coefficient K and the intercept C can be easily and reliably set in the coefficient / intercept table.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施するための流量測定装置の一例
を示すブロック図である。
FIG. 1 is a block diagram showing an example of a flow measuring device for carrying out the present invention.

【図2】図1の流量測定装置の全体の動作を示すフロー
チャートである。
FIG. 2 is a flowchart showing the overall operation of the flow measuring device of FIG.

【図3】図2の演算処理の動作を示すフローチャートで
ある。
FIG. 3 is a flowchart illustrating an operation of a calculation process in FIG. 2;

【図4】従来の流量測定装置を示すブロック図である。FIG. 4 is a block diagram showing a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

1・・・流量測定管 2、3・・・超音波振動子 4・・・パルス発生回路 5・・・受信増幅回路 6・・・切替回路 7・・・係数・切片テーブル 8・・・全体流量記憶部 DESCRIPTION OF SYMBOLS 1 ... Flow measuring tube 2, 3 ... Ultrasonic transducer 4 ... Pulse generation circuit 5 ... Reception amplification circuit 6 ... Switching circuit 7 ... Coefficient / intercept table 8 ... Whole Flow rate storage unit

フロントページの続き (72)発明者 南 忠幸 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 田川 滋 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 江下 和雄 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 中村 英司 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 河野 明夫 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 保田 哲也 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 Fターム(参考) 2F035 DA19 DA22 DA23 Continued on the front page (72) Inventor Tadayuki Minami 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (72) Inventor Shigeru Tagawa 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Osaka Gas stock Inside the company (72) Inventor Kazuo Eshita 10 Kaneda-machi, Shimogyo-ku, Kyoto-shi Kansai Gas Meter Co., Ltd. (72) Inventor Eiji Nakamura 10 Kanoda-jigada-cho, Shimogyo-ku, Kyoto Kansai Gas Meter Co., Ltd. 72) Inventor: Akio Kono, Kansai Gas Meter Co., Ltd. (10) Kansai Gas Meter Co., Ltd. (10) Kansai Gas Meter Co., Ltd. (72) Inventor Tetsuya Yasuda Tetsuya Kadota Town, Shimogyo Ward, Kyoto City 2F035 DA19 DA22 DA23

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流量測定部を流れる計測流体の流れ方向
に沿って対向状態に超音波振動子を配置し、前記各超音
波振動子から相互に超音波を発生送信するとともに、送
信した超音波を相互に受信し、それら超音波の伝搬時間
に基づいて所定時間当たりの測定流量Qmを求め、該所
定時間当たりの測定流量Qmを積算することにより流体
全体の流量Qを求める流量測定方法において、 前記超音波の伝搬時間を下式[1]に代入することによ
り変数Xを求め、該変数Xに応じて下式[2]の係数K
および切片Cを選定して、それら係数Kおよび切片Cが
選定された下式[2]に前記変数Xを代入することによ
り前記所定時間当たりの流量Qmを求めることを特徴と
する流量測定方法。 X=(Tg−Tj)/(Tg×Tj)・・・[1] Tg:流体の流れに対して逆流方向の超音波の伝搬時間 Tj:流体の流れに対して順流方向の超音波の伝搬時間 Qm=KX+C・・・[2] Qm:所定時間当たりの流量 K:単位換算のための係数 C:補正のための切片
An ultrasonic transducer is disposed in an opposed state along a flow direction of a measurement fluid flowing through a flow measuring unit, and ultrasonic waves are generated and transmitted from each ultrasonic transducer, and the transmitted ultrasonic waves are transmitted. Are mutually received, a measured flow rate Qm per predetermined time is obtained based on the propagation times of the ultrasonic waves, and a flow rate measuring method of obtaining the flow rate Q of the entire fluid by integrating the measured flow rate Qm per predetermined time, A variable X is obtained by substituting the propagation time of the ultrasonic wave into the following equation [1], and a coefficient K of the following equation [2] is determined according to the variable X.
A flow rate measuring method for determining the flow rate Qm per predetermined time by substituting the variable X into the following equation [2] in which the coefficient K and the intercept C are selected. X = (Tg−Tj) / (Tg × Tj) [1] Tg: Propagation time of ultrasonic wave in the reverse flow direction to the flow of fluid Tj: Propagation of ultrasonic wave in the forward flow direction to the flow of fluid Time Qm = KX + C ... [2] Qm: Flow rate per predetermined time K: Coefficient for unit conversion C: Intercept for correction
【請求項2】 前記係数Kおよび切片Cは、前記変数X
の範囲に応じて係数および切片が設定された係数・切片
テーブルから選定する請求項1に記載の流量測定方法。
2. The coefficient K and the intercept C are defined by the variable X
The flow rate measuring method according to claim 1, wherein the coefficient and the intercept are selected from a coefficient / intercept table in which the coefficient and the intercept are set according to the range.
【請求項3】 前記係数・切片テーブルは、前記変数X
と測定精度の高い基準器により測定された正規の流量Q
mとの関係に基づいて算出され、かつ前記基準器側から
送信されてたきた係数Kおよび切片Cが設定される請求
項2に記載の流量測定方法。
3. The coefficient / intercept table stores the variable X
And the normal flow rate Q measured by a standard with high measurement accuracy
The flow rate measuring method according to claim 2, wherein the coefficient K and the intercept C calculated based on the relationship with m and transmitted from the reference device side are set.
JP2000331646A 2000-10-31 2000-10-31 Flow measuring method Pending JP2002139356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331646A JP2002139356A (en) 2000-10-31 2000-10-31 Flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331646A JP2002139356A (en) 2000-10-31 2000-10-31 Flow measuring method

Publications (1)

Publication Number Publication Date
JP2002139356A true JP2002139356A (en) 2002-05-17

Family

ID=18807958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331646A Pending JP2002139356A (en) 2000-10-31 2000-10-31 Flow measuring method

Country Status (1)

Country Link
JP (1) JP2002139356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185914A (en) * 2012-03-07 2013-09-19 National Institute Of Advanced Industrial & Technology Method for measuring steam flow rate, and heat supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344512A (en) * 1989-07-12 1991-02-26 Tokyo Gas Co Ltd Fluidic flowmeter
JPH08193861A (en) * 1995-01-19 1996-07-30 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JPH11232582A (en) * 1998-02-12 1999-08-27 Saginomiya Seisakusho Inc Two-line type measured quantity transmitter and two-line type flow rate transmitter, their control method, and record medium where control program is recorded
JPH11304559A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH11351928A (en) * 1998-06-08 1999-12-24 Yazaki Corp Flowmetr and flow rate measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344512A (en) * 1989-07-12 1991-02-26 Tokyo Gas Co Ltd Fluidic flowmeter
JPH08193861A (en) * 1995-01-19 1996-07-30 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JPH11232582A (en) * 1998-02-12 1999-08-27 Saginomiya Seisakusho Inc Two-line type measured quantity transmitter and two-line type flow rate transmitter, their control method, and record medium where control program is recorded
JPH11304559A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH11351928A (en) * 1998-06-08 1999-12-24 Yazaki Corp Flowmetr and flow rate measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185914A (en) * 2012-03-07 2013-09-19 National Institute Of Advanced Industrial & Technology Method for measuring steam flow rate, and heat supply system

Similar Documents

Publication Publication Date Title
WO1996012933A1 (en) Flow rate measurement method and ultrasonic flow meter
JP2002131105A (en) Ultrasonic flow rate measuring method
JP2006208360A (en) Device for measuring transfer time
JP2866332B2 (en) Ultrasonic flow meter
JP2003106882A (en) Flow measuring instrument
JP2002139356A (en) Flow measuring method
JP2004069524A (en) Flow rate measuring apparatus
JPH11351928A (en) Flowmetr and flow rate measuring method
JP4689879B2 (en) Ultrasonic flow velocity measurement method
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP3838209B2 (en) Flow measuring device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP4689903B2 (en) Ultrasonic flow velocity measurement method
JP2002116073A (en) Method for measuring flow rate
JP2000338123A (en) Ultrasonic floe speed measuring method
JP4689904B2 (en) Ultrasonic flow velocity measurement method
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP4366753B2 (en) Ultrasonic flow meter
JP2008175668A (en) Fluid flow measuring device
JP2008175667A (en) Fluid flow measuring device
JP3945530B2 (en) Flow measuring device
JP2005077197A (en) Apparatus for measuring flow rate
JP2000180229A (en) Phase-locked ultrasonic flowmeter
JP3399938B2 (en) Flow measurement method and ultrasonic flow meter
JP2001324362A (en) Ultrasonic flow velocity measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019