JP2002310764A - Flow-rate measuring device - Google Patents

Flow-rate measuring device

Info

Publication number
JP2002310764A
JP2002310764A JP2001110950A JP2001110950A JP2002310764A JP 2002310764 A JP2002310764 A JP 2002310764A JP 2001110950 A JP2001110950 A JP 2001110950A JP 2001110950 A JP2001110950 A JP 2001110950A JP 2002310764 A JP2002310764 A JP 2002310764A
Authority
JP
Japan
Prior art keywords
comparison
cycle
flow
flow rate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001110950A
Other languages
Japanese (ja)
Other versions
JP4759829B2 (en
Inventor
Koichi Takemura
晃一 竹村
Osamu Eguchi
修 江口
Yukio Nagaoka
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001110950A priority Critical patent/JP4759829B2/en
Publication of JP2002310764A publication Critical patent/JP2002310764A/en
Application granted granted Critical
Publication of JP4759829B2 publication Critical patent/JP4759829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a high-accuracy flow-rate measurement which is not influenced by a pressure change in a device which measures the flow rate of a gas or a fluid. SOLUTION: The flow-rate measuring device is constituted in such a way that a comparison reference value to be set by a setting change means and the output of a pulsation detection means used to detect the pressure change in the fluid are compared by a comparison means 12, and that a measurement control means 14 controls the operating time of a first vibrator 2 and a second vibrator 3 as flow-rate detection means according to a drive cycle to be found by their comparison result. Consequently, when the comparison reference value is decided properly, the precise change cycle can be captured, and the high- accuracy flow-rate measurement which is not influenced by the pressure change can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体や気体の流量
を計測する流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a liquid or gas.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置では、圧力
変動が発生した場合であっても正確な流量を求めるため
に様々な提案がなされており、例えば特開平11−44
563号公報に記載されているようなものがあった。図
4を用いてこの種の流量計測装置の動作について説明す
る。
2. Description of the Related Art Various proposals have been made in this type of conventional flow rate measuring apparatus to obtain an accurate flow rate even when a pressure fluctuation occurs.
There was one such as described in JP-A-563. The operation of this type of flow measurement device will be described with reference to FIG.

【0003】図4において、流体流路1に、流量検出手
段としての第1振動子2と第2振動子3が、流れの方向
に対向して取り付けられていて、流量計測手段16がこ
れらふたつの振動子間で超音波の送受信を行い、その時
超音波伝搬に要した時間を用いて流量値を求めている。
このような構成においては、流路1の内部で圧力変動が
発生した場合にはその影響を受けて、流速が変化するた
め正確な流量値を求められない。そのため、圧力検出手
段10が取り付けられており、圧力検出手段10の出力
信号の交流成分が脈動計測手段11に入力されるととも
に、比較手段12で信号レベルのゼロクロス通過点が検
出され、これに同期して、流量計測手段の発停が制御さ
れている。この構成により、圧力周期に合わせて計測時
間を制御し、脈動時の正確な平均流量を求めることが可
能となっていた。
In FIG. 4, a first vibrator 2 and a second vibrator 3 as flow rate detecting means are attached to a fluid flow path 1 so as to oppose each other in the flow direction. The ultrasonic wave is transmitted and received between the transducers, and the flow rate value is obtained using the time required for the ultrasonic wave propagation at that time.
In such a configuration, when a pressure fluctuation occurs inside the flow path 1, the flow rate changes due to the influence of the pressure fluctuation, so that an accurate flow value cannot be obtained. Therefore, the pressure detecting means 10 is attached, the AC component of the output signal of the pressure detecting means 10 is input to the pulsation measuring means 11, and the zero-crossing point of the signal level is detected by the comparing means 12 and synchronized therewith. Thus, the start / stop of the flow rate measuring means is controlled. With this configuration, it has been possible to control the measurement time in accordance with the pressure cycle and to obtain an accurate average flow rate during pulsation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の流量計測装置では、次のような課題があった。すなわ
ち、圧力信号波形は必ずしも、正弦波の様に単純な波形
ではなく、多くの場合は複数の周波数成分が合成された
複雑な波形となっている。また、比較的正弦波に近い波
形であっても、1周期毎の波形を取ると周期やレベルに
多少のばらつきを含んでいる場合もある。そのため、ゼ
ロクロスと同期して計測しても、必ずしも、圧力変動周
期の流量を平均化したことにならないため、正確な平均
流量が求められず、計測精度の点で課題を有していた。
However, the above conventional flow rate measuring device has the following problems. That is, the pressure signal waveform is not necessarily a simple waveform like a sine wave, but is often a complex waveform in which a plurality of frequency components are synthesized. In addition, even if the waveform is relatively close to a sine wave, if the waveform is taken every cycle, the cycle and level may include some variation. Therefore, even if the measurement is performed in synchronization with the zero cross, the flow rate in the pressure fluctuation cycle is not necessarily averaged, so that an accurate average flow rate cannot be obtained, and there is a problem in measurement accuracy.

【0005】本発明は、前記従来の課題を解決するもの
で、圧力変動周期を正確に捉えることにより、流量計測
のタイミングを最適化し、高精度の計測が可能な流量計
測装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a flow rate measuring apparatus capable of optimizing a timing of a flow rate measurement and accurately measuring a pressure fluctuation cycle by accurately grasping a pressure fluctuation period. Aim.

【0006】[0006]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の流量計測装置は、流体の流量を検出
する流量検出手段と、流体の圧力変動を検出する脈動検
出手段と、前記脈動検出手段の出力と設定可能な比較基
準値とを比較する比較手段と、前記比較手段の出力より
脈動周期を計測する周期検出手段と、前記比較手段の比
較基準値を変更する設定変更手段と、前記周期計測手段
で求めた周期に応じて前記流量検出手段の動作時間を制
御する計測制御手段とを備えたものである。
In order to solve the above-mentioned conventional problems, a flow rate measuring device according to the present invention comprises: a flow rate detecting means for detecting a flow rate of a fluid; a pulsation detecting means for detecting a pressure fluctuation of the fluid; Comparison means for comparing the output of the pulsation detection means with a settable comparison reference value; cycle detection means for measuring a pulsation cycle from the output of the comparison means; and setting change means for changing the comparison reference value of the comparison means And measurement control means for controlling the operation time of the flow rate detection means in accordance with the cycle obtained by the cycle measurement means.

【0007】これによって、比較基準値を適切に定める
ことにより、正確な圧力変動周期を捉えて、流量計測の
タイミングを最適化できるので、圧力変動の影響を受け
ない高精度の流量計測を実現するものである。
[0007] Thus, by appropriately determining the comparison reference value, an accurate pressure fluctuation period can be grasped, and the timing of the flow measurement can be optimized. Therefore, a highly accurate flow measurement which is not affected by the pressure fluctuation can be realized. Things.

【0008】[0008]

【発明の実施の形態】請求項1に記載の発明は、流体の
流量を検出する流量検出手段と、流体の圧力変動を検出
する脈動検出手段と、前記脈動検出手段の出力と設定可
能な比較基準値とを比較する比較手段と、前記比較手段
の出力より脈動周期を計測する周期検出手段と、前記比
較手段の比較基準値を変更する設定変更手段と、前記周
期計測手段で求めた周期に応じて前記流量検出手段の動
作時間を制御する計測制御手段とを備えたことにより、
比較基準値を適切に定めることにより、正確な圧力変動
周期を捉えて、流量計測のタイミングを最適化できるの
で、圧力変動の影響を受けない高精度の流量計測を実現
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is a flow rate detecting means for detecting a flow rate of a fluid, a pulsation detecting means for detecting a pressure fluctuation of the fluid, and a comparison which can be set with the output of the pulsation detecting means. Comparison means for comparing with a reference value, cycle detection means for measuring a pulsation cycle from the output of the comparison means, setting change means for changing the comparison reference value of the comparison means, and a cycle obtained by the cycle measurement means. Measurement control means for controlling the operation time of the flow rate detection means accordingly,
By appropriately determining the comparison reference value, an accurate pressure fluctuation cycle can be grasped and the timing of the flow rate measurement can be optimized, so that a highly accurate flow rate measurement not affected by the pressure fluctuation can be realized.

【0009】請求項2に記載の発明は、特に、請求項1
に記載の設定変更手段を、周期検出手段の出力平均値が
小となるに従って比較手段の比較基準値を大とする構成
にすることにより、平均周期が短くて変化勾配の急な波
形であっても、圧力変動の緩やかな点を捉えて周期を検
出できるので、検出周期のばらつきを低減できる。
The invention described in claim 2 is particularly advantageous in claim 1.
The setting change means described in (1) is configured to increase the comparison reference value of the comparison means as the output average value of the cycle detection means becomes smaller, so that the average cycle is short and the waveform has a steep change gradient. Also, since the cycle can be detected by capturing a point where the pressure fluctuation is gentle, variation in the detection cycle can be reduced.

【0010】請求項3に記載の発明は、特に、請求項1
記載の設定変更手段を、周期検出手段の出力が所定値よ
り小さければ比較手段の比較基準値を大とする構成とす
ることにより、短時間で発生した変動を受け付けないの
で、ノイズや圧力波計の中割れの影響を回避して正確な
変動周期を求めることができる。
[0010] The invention described in claim 3 is particularly advantageous in claim 1.
The setting change means described above is configured to increase the comparison reference value of the comparison means when the output of the cycle detection means is smaller than a predetermined value, so that fluctuations occurring in a short time are not accepted. Thus, an accurate fluctuation period can be obtained by avoiding the influence of medium cracking.

【0011】請求項4に記載の発明は、特に、請求項1
記載の設定変更手段を、周期検出手段の出力ばらつきが
大きければ比較手段の比較基準値を大とする構成とする
ことにより、1周期毎のばらつきが大きな波形に対して
も、比較基準値を最適化できるので、正確な圧力周期を
求めることができる。
[0011] The invention described in claim 4 is particularly advantageous in claim 1.
The setting change means described above is configured to increase the comparison reference value of the comparison means if the output variation of the cycle detection means is large, so that the comparison reference value is optimized even for a waveform having a large variation in each cycle. Therefore, an accurate pressure cycle can be obtained.

【0012】請求項5に記載の発明は、特に、請求項1
から4いずれか1項記載の設定変更手段を、比較手段の
出力変化が所定時間以上なければ比較手段の比較基準値
を小とする構成とすることにより、比較基準値を過大に
上昇させることがなくなるため、比較基準値の最適化を
図ることができる。
[0012] The invention described in claim 5 is particularly advantageous in claim 1.
In the configuration changing means according to any one of the above items 4, the comparison reference value of the comparison means is set to be small if the output change of the comparison means does not exceed a predetermined time, whereby the comparison reference value can be excessively increased. Therefore, the comparison reference value can be optimized.

【0013】請求項6に記載の発明は、特に、請求項1
から5いずれか1項記載の計測制御手段の開始停止信号
を比較手段の出力変化点と同期して出力される構成とす
ることにより、圧力変動に対する時間遅れの小さい計測
ができるため、圧力変動に対する追従性を高めることが
できる。
[0013] The invention described in claim 6 is particularly advantageous in claim 1.
5. The configuration in which the start / stop signal of the measurement control means according to any one of (5) to (5) is output in synchronization with the output change point of the comparison means, so that measurement with a small time delay to pressure fluctuation can be performed. Followability can be improved.

【0014】請求項7に記載の発明は、特に、請求項1
から5いずれか1項記載の計測制御手段を周期検出手段
の出力変化点とは非同期で出力される構成とすることに
より、流量計測中の不要信号の影響を回避できるため、
ノイズの影響を受け難い信頼性の高い計測が可能とな
る。
[0014] The invention described in claim 7 is particularly advantageous in claim 1.
By setting the measurement control means according to any one of (5) to (5) to be output asynchronously with the output change point of the cycle detection means, the influence of unnecessary signals during flow rate measurement can be avoided.
Highly reliable measurement that is not easily affected by noise can be performed.

【0015】[0015]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1は本発明の実施例1の流
量計測装置を示すブロック図である。図1において、流
体流路1の途中に流量検出手段として超音波を発信する
第1振動子2と受信する第2振動子3が流れ方向に配置
されている。4は第1振動子2への送信回路、5は第2
振動子3で受信した超音波を信号処理する受信回路で、
6は第1振動子2と第2振動子3の送受信を切換える切
換手段、7は受信回路5で超音波を検知した後第1振動
子2からの送信と第2振動子3での受信を複数回繰り返
す繰り返し手段、8は繰り返し手段7により行われる複
数回の超音波伝搬の所要時間を計測する計時手段、9は
計時測手段8の計測値から流量を求める流量演算手段で
ある。また、10は流路1内の圧力を検出する圧力検出
手段、11は圧力検出手段11の信号出力の交流成分を
コンデンサを介して取り出す脈動検出手段、12は脈動
検出手段により取り出された交流信号と設定電圧とを比
較し、その大小関係を二値信号に変換して出力する比較
手段、13は比較手段12の二値信号の小から大への出
力変化点の間隔を計測し脈動周期を検出する周期検出手
段、14は周波数検出手段13の出力結果に応じて流量
計測時間を制御する計測制御手段、15は比較手段12
の比較基準値を変更する設定変更手段である。
(Embodiment 1) FIG. 1 is a block diagram showing a flow rate measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, a first vibrator 2 for transmitting an ultrasonic wave and a second vibrator 3 for receiving an ultrasonic wave are arranged in the flow direction in the fluid flow path 1 as flow rate detecting means. 4 is a transmitting circuit to the first vibrator 2 and 5 is a second transmitting circuit.
A receiving circuit for processing the ultrasonic waves received by the transducer 3;
6 is a switching means for switching between transmission and reception of the first vibrator 2 and the second vibrator 3, and 7 is a transmission circuit for detecting transmission of ultrasonic waves from the first transducer 2 and reception of the second transducer 3 after detecting the ultrasonic waves. A repetition means for repeating a plurality of times, a time counting means for measuring a time required for a plurality of times of ultrasonic wave propagation performed by the repetition means, and a flow calculation means for obtaining a flow rate from a measured value of the time measurement means. 10 is a pressure detecting means for detecting the pressure in the flow path 1, 11 is a pulsation detecting means for extracting an AC component of the signal output of the pressure detecting means 11 through a capacitor, and 12 is an AC signal extracted by the pulsation detecting means. And a set voltage, and compares the magnitude relationship into a binary signal and outputs the binary signal. The comparator 13 measures the interval between the output change points of the binary signal from small to large, and determines the pulsation cycle. A period detecting means for detecting; a measuring control means for controlling a flow rate measuring time in accordance with an output result of the frequency detecting means;
Is a setting changing means for changing the comparison reference value of the above.

【0017】次に、動作作用について説明する。静止流
体中の音速をc、流体の流れの速さをvとすると、流れ
の順方向の超音波の伝搬速度は(c+v)、逆方向の伝
搬速度は(c−v)となる。振動子2と3の間の距離を
L、超音波伝搬軸と流路の中心軸とがなす角度をθ、流
れの順方向に発信された超音波の伝搬する時間をt1
流れの逆方向に発信された超音波の伝搬する時間をt2
とすると、 t1=L/(c+vcosθ) (1) t2=L/(c−vcosθ) (2) となる。(1)式、(2)式より流速vを求めると、 v=(L/2cosθ)・(1/t1−1/t2) (3) となり、Lとθが既知ならt1、t2を計測して流速vが
求められる。ここで、流路断面積をS、補正係数をKと
すれば、流量Qは Q=K・S・v (4) となる。式(3)、(4)から明らかなように、伝搬時
間を求めることにより流量Qが求められる。一方、流路
1内部に圧力変動が発生している場合には流速vは一定
しないが、周期的な変動が発生している場合には、圧力
変動n周期の間の伝搬時間を計測し、その平均値を求め
れば、変動の影響はキャンセルされて、正確な値を求め
ることができる。
Next, the operation and operation will be described. Assuming that the speed of sound in the stationary fluid is c and the speed of the flow of the fluid is v, the propagation speed of the ultrasonic wave in the forward direction of the flow is (c + v) and the propagation speed in the reverse direction is (cv). The distance between the transducers 2 and 3 is L, the angle between the ultrasonic wave propagation axis and the center axis of the flow path is θ, the propagation time of the ultrasonic wave transmitted in the forward direction of the flow is t 1 ,
The propagation time of the ultrasonic wave transmitted in the opposite direction of the flow is t 2
Then, t 1 = L / (c + vcos θ) (1) t 2 = L / (c−vcos θ) (2) When the flow velocity v is obtained from the equations (1) and (2), v = (L / 2 cos θ) · (1 / t 1 −1 / t 2 ) (3), and if L and θ are known, t 1 and t 2 is measured to determine the flow velocity v. Here, assuming that the flow path cross-sectional area is S and the correction coefficient is K, the flow rate Q is as follows: Q = KSV (4) As is clear from equations (3) and (4), the flow rate Q is obtained by obtaining the propagation time. On the other hand, the flow velocity v is not constant when the pressure fluctuation occurs inside the flow path 1, but when the periodic fluctuation occurs, the propagation time during the pressure fluctuation n cycle is measured, If the average value is obtained, the influence of the fluctuation is canceled, and an accurate value can be obtained.

【0018】次に図2を用いて、計測制御手順について
説明する。脈動検出手段11の出力信号と比較基準値0
Vとの比較処理が比較手段12で行われる。比較手段1
2は脈動検出手段11の交流信号が比較基準値より高け
ればH、低ければLの二値信号を出力する。計測制御手
段14は、比較手段12の立ち上がり波形、すなわち、
出力信号がLからHに変化する変化点t1aと同期して、
繰り返し手段7に対して、繰り返し計測の開始信号を出
力する。この時、切換手段6は、予め第1振動子2を送
信回路4に、第2振動子3を受信回路5に接続して超音
波を流れの順方向に送信した伝搬時間を計測する体制が
取られている。計測制御手段14の開始信号出力を受け
て送受信が開始され、送受信1回が終了する毎に、繰り
返し手段7は送受信の回数をカウントすると共に、送信
回路4に超音波の送信を指示する。繰り返し手段7での
繰り返し計測と平行して、計時手段8では送受信に要し
た時間が計測される。そして、計測制御手段14は、再
び比較手段12の出力がLからHに変化する点t1bで、
計測の停止信号を出力する。計測制御手段14からの停
止信号を受けると、繰り返し手段7は、新たな送受信を
中止する。ここで、計時手段8で計測した伝搬時間と繰
り返し手段7行った送受信の繰り返し回数を元に、流量
演算手段9で流れの順方向の伝搬時間t1を求める。こ
の後、切換手段6は第1振動子2を受信回路5を第2振
動子3に繋ぎ換えることにより流れの逆方向に超音波を
送信した伝搬時間を計測する体制を取る。比較手段12
の信号がLからHに切換わる点t2aおよびt2bで、計測
制御手段14がそれぞれ開始信号、停止信号を出力し、
順方向と同様の手順で、逆方向の計測が行われる。以上
のように求めた順方向、逆方向の伝搬時間を基に、流量
演算手段9では(3)、(4)式を用いて流量Qを求め
る。
Next, the measurement control procedure will be described with reference to FIG. The output signal of the pulsation detecting means 11 and the comparison reference value 0
Comparison processing with V is performed by the comparison means 12. Comparison means 1
2 outputs a binary signal of H if the AC signal of the pulsation detecting means 11 is higher than the comparison reference value, and outputs an L signal if it is lower than the comparison reference value. The measurement control unit 14 calculates the rising waveform of the comparison unit 12,
In synchronization with a transition point t 1a at which the output signal changes from L to H,
A repetition measurement start signal is output to the repetition means 7. At this time, the switching means 6 has a system in which the first transducer 2 is connected to the transmission circuit 4 and the second transducer 3 is connected to the reception circuit 5 to measure the propagation time of transmitting the ultrasonic wave in the forward direction. Has been taken. The transmission / reception is started in response to the start signal output of the measurement control unit 14, and each time one transmission / reception is completed, the repetition unit 7 counts the number of transmission / reception and instructs the transmission circuit 4 to transmit an ultrasonic wave. In parallel with the repetitive measurement by the repetition means 7, the time measurement means 8 measures the time required for transmission and reception. Then, the measurement control unit 14 returns to the point t 1b at which the output of the comparison unit 12 changes from L to H again,
Outputs measurement stop signal. Upon receiving the stop signal from the measurement control means 14, the repetition means 7 stops new transmission and reception. Here, based on the propagation time measured by the timer 8 and the number of repetitions of transmission / reception performed by the repetition unit 7, the flow calculation unit 9 obtains the propagation time t1 in the forward direction of the flow. Thereafter, the switching means 6 takes a system of measuring the propagation time of transmitting the ultrasonic wave in the reverse direction of the flow by connecting the first vibrator 2 to the receiving circuit 5 and the second vibrator 3. Comparison means 12
At points t 2a and t 2b at which the signal of L changes from L to H, the measurement control means 14 outputs a start signal and a stop signal, respectively.
The measurement in the reverse direction is performed in the same procedure as in the forward direction. Based on the forward and backward propagation times determined as described above, the flow rate calculating means 9 calculates the flow rate Q using the equations (3) and (4).

【0019】ここでは、比較手段12における比較基準
値は0Vとしたが、この値は固定されるものではない。
設定変更手段15により脈動波形の発生原因、周期、絶
対レベルに応じて適正な値に設定することにより、周期
検出の精度が向上し、結果として流量計測の精度が向上
する。
Here, the comparison reference value in the comparison means 12 is 0 V, but this value is not fixed.
By setting appropriate values in accordance with the cause, period, and absolute level of the pulsation waveform by the setting change unit 15, the accuracy of period detection is improved, and as a result, the accuracy of flow measurement is improved.

【0020】以上のように、本実施例において、設定変
更手段が比較基準値を適切に定めることにより、正確な
圧力変動周期を捉えて、流量計測のタイミングを最適化
できるので、圧力変動の影響を受けない高精度の流量計
測を実現できる。
As described above, in the present embodiment, by setting the comparison reference value appropriately by the setting changing means, an accurate pressure fluctuation period can be grasped, and the timing of the flow rate measurement can be optimized. High-precision flow measurement that is not affected by noise can be realized.

【0021】特に、周期検出手段13の平均周期が小と
なるに従って、比較手段12の比較基準値を大とするこ
とにより、平均周期が短くて変化勾配の急な波形であっ
ても、圧力変動の緩やかな点を捉えて周期を検出できる
ので、検出周期のばらつきを低減できる。
In particular, by increasing the comparison reference value of the comparison means 12 as the average cycle of the cycle detection means 13 becomes small, even if the average cycle is short and the waveform has a steep change gradient, the pressure fluctuation can be reduced. Since the period can be detected by grasping the gentle points of the above, variations in the detection period can be reduced.

【0022】(実施例2)図3は、本発明の実施例2の
動作を説明するタイミングチャートである。脈動波形が
図2で示したような正弦波であれば、1周期でゼロクロ
スを2回生じるが、図3で示すような波形であったとす
ると、1周期の間に4回ゼロクロスを生じる。以後、こ
のような現象を中割れ現象と称する。比較手段12の比
較基準値の初期値を0とすると、比較手段12の出力は
図の如く変化し、周期検出手段13の検出値がTa、Tb
と交互に変化する。この場合、Taの期間では、圧力平
均値はプラス側、Tbの期間ではマイナス側に振れるた
め、いずれの期間で平均化したとしても流量平均値の真
値を得ることはできない。設定変更手段15は、周期検
出手段15で周期を求める毎に予め定めた所定値T
s(Tb>Ts>Ta)と比較処理を行い、Tsより小さな
値を検出すると、中割れ波形と判断して比較手段12の
比較基準値をV1に変更する。これにより、比較手段1
2の出力は図3後半のように変化し、常に一定周期Tc
が得られるになる。その結果、脈動の影響がキャンセル
されて正確な流量値を求めることができるようになる。
(Embodiment 2) FIG. 3 is a timing chart for explaining the operation of Embodiment 2 of the present invention. If the pulsation waveform is a sine wave as shown in FIG. 2, zero cross occurs twice in one cycle, but if the waveform is as shown in FIG. 3, zero cross occurs four times in one cycle. Hereinafter, such a phenomenon is referred to as a medium cracking phenomenon. Assuming that the initial value of the comparison reference value of the comparison means 12 is 0, the output of the comparison means 12 changes as shown in the figure, and the detection values of the cycle detection means 13 are Ta , Tb.
And alternately. In this case, in the period T a, the pressure average is positive, since the swing in the negative side in a period of T b, it is impossible to obtain the true value of the flow rate average value even when averaged over any given period. The setting change means 15 has a predetermined value T each time the cycle is obtained by the cycle detection means 15.
s (T b> T s> T a) and performs a comparison process, to change when detecting the value smaller than T s, the comparison reference value of the comparison means 12 determines that the medium cracking waveform V 1. Thereby, the comparison means 1
The output of the 2 changes as the second half 3 is always constant period T c
Will be obtained. As a result, the influence of the pulsation is canceled and an accurate flow value can be obtained.

【0023】以上のように、本実施例においては、周期
検出手段の計測周期が所定値より小さければ比較手段の
比較基準値を大とすることで、短時間で発生した変動を
受け付けないので、ノイズや圧力波計の中割れの影響を
回避して正確な変動周期を求めることができる。
As described above, in the present embodiment, if the measurement cycle of the cycle detection means is smaller than the predetermined value, the comparison reference value of the comparison means is set to be large, so that the fluctuation generated in a short time is not accepted. An accurate fluctuation cycle can be obtained by avoiding the influence of noise and cracks in the pressure wave meter.

【0024】また、別の方法として、判定手段16で、
周期のばらつきを基に比較手段12の比較基準値を変更
しても良い。この場合には、圧力周期はほぼ一定であっ
ても、波形周期のばらつきが大きくなるような場合にも
対応して、比較基準値を最適化できるので、正確な圧力
周期を求めることができる。ばらつきを求める方法は一
定期間内の標準偏差を求める方法であっても、最大値と
最小値の差を求める方法であっても良い。
As another method, the determination means 16
The comparison reference value of the comparison means 12 may be changed based on the variation of the period. In this case, even when the pressure cycle is substantially constant, the comparison reference value can be optimized in response to a case where the variation of the waveform cycle becomes large, so that an accurate pressure cycle can be obtained. The method of obtaining the variation may be a method of obtaining a standard deviation within a certain period, or a method of obtaining a difference between a maximum value and a minimum value.

【0025】更に、本実施例においては、比較基準値の
変更度合いが大きすぎると、比較手段12の出力がLの
まま変化しなくなる場合も考えられる。この場合、判定
手段16が所定時間以上、比較手段12の立ち上がり信
号を検出できない場合に、比較基準値を小さく変化させ
れば良い。これによって、比較基準値を過大に上昇させ
ることがなくなるため、比較基準値の最適化を図ること
ができる。
Further, in this embodiment, if the degree of change of the comparison reference value is too large, the output of the comparison means 12 may remain unchanged at L and may not change. In this case, when the determination unit 16 cannot detect the rising signal of the comparison unit 12 for a predetermined time or more, the comparison reference value may be changed slightly. As a result, the comparison reference value is not excessively increased, so that the comparison reference value can be optimized.

【0026】なお、各実施例において、比較手段12の
出力の立ち上がりと同期する構成で説明したが、立ち下
がり信号であっても同様の効果が得られる。立ち上がり
立ち下がりいずれの場合であっても、比較手段12の出
力変化と同期して流量計測を行うことにより、圧力変動
に対する時間遅れの小さい計測ができるため、圧力変動
に対する追従性を高めることができる。
In each of the embodiments, a configuration synchronized with the rising edge of the output of the comparing means 12 has been described. However, the same effect can be obtained with a falling edge signal. In any case of rising and falling, by measuring the flow rate in synchronization with the output change of the comparing means 12, measurement with a small time lag with respect to the pressure fluctuation can be performed, so that the followability to the pressure fluctuation can be improved. .

【0027】また、別の方法として、周期検出手段13
で求めた時間を繰り返し手段13の繰り返し回数に変換
する演算処理を施して、比較信号と非同期で計測する方
法もある。この場合には流量計測手段の動作が、脈動検
出手段や比較手段のノイズで妨げられる危険性がないの
で、流量計測中の不要信号の影響を回避できるため、ノ
イズの影響を受け難い信頼性の高い計測が可能となる。
As another method, the period detecting means 13
There is also a method of performing an arithmetic process of converting the time obtained in the above into the number of repetitions of the repetition means 13 and measuring the time asynchronously with the comparison signal. In this case, there is no danger that the operation of the flow rate measuring means will be hindered by the noise of the pulsation detecting means and the comparing means. Therefore, it is possible to avoid the influence of unnecessary signals during the flow rate measurement. High measurement is possible.

【0028】更に、各実施例は超音波振動子を用いたも
のについて説明したが、それ以外の例えば熱線式のフロ
ーセンサであっても同等の効果が得られる。また、気体
流量の計測装置に限らず、液体流量の計測装置であって
も同等の効果が得られることは言うまでもない。
Further, in each of the embodiments, the description has been given of the one using the ultrasonic vibrator. However, the same effect can be obtained even by using a flow sensor of a hot wire type other than that. Further, it goes without saying that the same effect can be obtained not only with the gas flow rate measuring device but also with the liquid flow rate measuring device.

【0029】[0029]

【発明の効果】以上説明したように本発明の請求項1〜
7に記載の発明によれば、比較基準値を適切に定めるこ
とにより正確な変動周期を捉えることが可能となり、圧
力変動の影響を受けない高精度の流量計測が可能とな
る。
According to the present invention, as described above,
According to the invention described in Item 7, it is possible to capture an accurate fluctuation cycle by appropriately determining the comparison reference value, and it is possible to measure the flow rate with high accuracy without being affected by the pressure fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における流量計測装置のブロ
ック図
FIG. 1 is a block diagram of a flow measurement device according to a first embodiment of the present invention.

【図2】同装置の動作を説明するタイミングチャートFIG. 2 is a timing chart illustrating the operation of the apparatus.

【図3】本発明の実施例2における流量計測装置の動作
を説明するタイミングチャート
FIG. 3 is a timing chart illustrating an operation of the flow rate measuring device according to the second embodiment of the present invention.

【図4】従来の流量計測装置のブロック図FIG. 4 is a block diagram of a conventional flow measuring device.

【符号の説明】[Explanation of symbols]

2 第1振動子(流量検出手段) 3 第2振動子(流量検出手段) 11 脈動検出手段 12 比較手段 13 周期検出手段 14 計測制御手段 15 設定変更手段 2 first vibrator (flow rate detecting means) 3 second vibrator (flow rate detecting means) 11 pulsation detecting means 12 comparing means 13 cycle detecting means 14 measurement controlling means 15 setting changing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長岡 行夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F030 CB09 CD13 CD17 CE04 CE05 2F031 AA03 AC03 2F035 GA02 GA03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukio Nagaoka 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 2F030 CB09 CD13 CD17 CE04 CE05 2F031 AA03 AC03 2F035 GA02 GA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流体の流量を検出する流量検出手段と、
流体の圧力変動を検出する脈動検出手段と、前記脈動検
出手段の出力と設定可能な比較基準値とを比較する比較
手段と、前記比較手段の出力より脈動周期を計測する周
期検出手段と、前記比較手段の比較基準値を変更する設
定変更手段と、前記周期計測手段で求めた周期に応じて
前記流量検出手段の動作時間を制御する計測制御手段と
を備えた流量計測装置。
1. A flow rate detecting means for detecting a flow rate of a fluid,
Pulsation detection means for detecting pressure fluctuation of the fluid, comparison means for comparing the output of the pulsation detection means with a settable reference value, cycle detection means for measuring a pulsation cycle from the output of the comparison means, A flow rate measuring device comprising: a setting changing means for changing a comparison reference value of a comparing means; and a measurement control means for controlling an operation time of the flow rate detecting means according to a cycle obtained by the cycle measuring means.
【請求項2】 設定変更手段は、周期検出手段の出力平
均値が小となるに従って比較手段の比較基準値を大とす
る請求項1に記載の流量計測装置。
2. The flow measuring device according to claim 1, wherein the setting change means increases the comparison reference value of the comparison means as the output average value of the cycle detection means decreases.
【請求項3】 設定変更手段は、周期検出手段の出力が
所定値より小さければ比較手段の比較基準値を大とする
請求項1に記載の流量計測装置。
3. The flow measuring device according to claim 1, wherein the setting change means increases the comparison reference value of the comparison means when the output of the cycle detection means is smaller than a predetermined value.
【請求項4】 設定変更手段は、周期検出手段の出力ば
らつきが大きければ比較手段の比較基準値を大とする請
求項1に記載の流量計測装置。
4. The flow rate measuring device according to claim 1, wherein the setting changing means increases the comparison reference value of the comparing means when the output variation of the cycle detecting means is large.
【請求項5】 設定変更手段は、比較手段の出力変化が
所定時間以上なければ比較手段の比較基準値を小とする
請求項1〜4のいずれか1項に記載の流量計測装置。
5. The flow rate measuring device according to claim 1, wherein the setting change unit decreases the comparison reference value of the comparison unit unless the output change of the comparison unit exceeds a predetermined time.
【請求項6】 計測制御手段の開始停止信号は、比較手
段の出力変化点と同期して出力される請求項1〜5のい
ずれか1項に記載の流量計測装置。
6. The flow measuring device according to claim 1, wherein the start / stop signal of the measurement control means is output in synchronization with an output change point of the comparison means.
【請求項7】 計測制御手段は、周期検出手段の出力変
化点とは非同期で出力される請求項1〜5のいずれか1
項に記載の流量計測装置。
7. The measurement control means according to claim 1, wherein the measurement control means outputs the data asynchronously with an output change point of the cycle detection means.
The flow measurement device according to the item.
JP2001110950A 2001-04-10 2001-04-10 Flow measuring device Expired - Fee Related JP4759829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110950A JP4759829B2 (en) 2001-04-10 2001-04-10 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110950A JP4759829B2 (en) 2001-04-10 2001-04-10 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2002310764A true JP2002310764A (en) 2002-10-23
JP4759829B2 JP4759829B2 (en) 2011-08-31

Family

ID=18962637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110950A Expired - Fee Related JP4759829B2 (en) 2001-04-10 2001-04-10 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4759829B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144563A (en) * 1997-07-29 1999-02-16 Matsushita Electric Ind Co Ltd Apparatus for measuring flow rate
JP2001255185A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Flow rate measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144563A (en) * 1997-07-29 1999-02-16 Matsushita Electric Ind Co Ltd Apparatus for measuring flow rate
JP2001255185A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Flow rate measuring system

Also Published As

Publication number Publication date
JP4759829B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US4480485A (en) Acoustic flowmeter with envelope midpoint tracking
US5035147A (en) Method and system for digital measurement of acoustic burst travel time in a fluid medium
WO2011040027A1 (en) Flow rate measuring device
JPH11287817A (en) Apparatus and method for measuring velocity
JP2001004419A (en) Flowmeter
JP2007187506A (en) Ultrasonic flowmeter
JP2016099116A (en) Ultrasonic flowmeter
JPH047451B2 (en)
JP4835068B2 (en) Fluid flow measuring device
JP3350501B2 (en) Flow measurement device
JP2006308439A (en) Flow measuring device of fluid
JP2002310764A (en) Flow-rate measuring device
JP4759835B2 (en) Flow measuring device
JP2008185441A (en) Ultrasonic flowmeter
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP2002296085A (en) Ultrasonic flowmeter
JP2008014800A (en) Flow measuring instrument
JPH0968569A (en) Ultrasonic sensor
JP5135807B2 (en) Fluid flow measuring device
JP5135806B2 (en) Fluid flow measuring device
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP6568289B2 (en) Ultrasonic flow meter
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JP4671481B2 (en) Ultrasonic flow meter
JP4425414B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees