JPH09283812A - Manufacture of nb-ti superconducting multi-layer plate - Google Patents

Manufacture of nb-ti superconducting multi-layer plate

Info

Publication number
JPH09283812A
JPH09283812A JP8089177A JP8917796A JPH09283812A JP H09283812 A JPH09283812 A JP H09283812A JP 8089177 A JP8089177 A JP 8089177A JP 8917796 A JP8917796 A JP 8917796A JP H09283812 A JPH09283812 A JP H09283812A
Authority
JP
Japan
Prior art keywords
layer
plate
alloy
normal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8089177A
Other languages
Japanese (ja)
Other versions
JP3544781B2 (en
Inventor
Ikuo Ito
郁夫 伊藤
Hiroaki Otsuka
広明 大塚
Mitsuru Sawamura
充 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08917796A priority Critical patent/JP3544781B2/en
Publication of JPH09283812A publication Critical patent/JPH09283812A/en
Application granted granted Critical
Publication of JP3544781B2 publication Critical patent/JP3544781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a superconducting multi-layer plate by depositing one or more layers formed by coating normal conductive metal material around a single layer of Nb-Ti alloy material covered by a sheet of Nb, Ta or the like, then after a heat process with a particular process rate and at a particular temperature, performing another heat process at a particular temperature and for a particular period, and repeating the cooling process at a particular process rate. SOLUTION: A single layer of Nb-Ti alloy material 1 covered with a sheet of Nb, Ta or the like, is inserted into a case 2 of normal conductive metal material, and the case 2 is weld-sealed, to obtain an Nb-Ti single-layer clad slab 4. The slab 4 is subjected to a surface reducing process including a heat process with a process rate of 30-98% and at 500-1000 deg.C for composite integration. Further, the slab 4 is subjected to another process with a process rate of 30-98% and at 600 deg.C or lower. Thereafter, a heat process at 300-450 deg.C and with a holding period of 1-168 hours and a cooling process with a process rate of 30-98% are alternately repeated 6 times or less, to form an Nb-Ti superconducting multi-layer plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Nb−Ti系合金
超電導材料の有する完全反磁性、磁束トラップ、電気抵
抗ゼロでの高電流密度を有する通電能力等の優れた特性
を利用し、超電導磁気シールド、超電導永久マグネッ
ト、超電導通電材料等として優れた能力を有する超電導
多層板を、低コストで製造でき、かつ特性の大幅な向上
も図ることができるNb−Ti系合金超電導多層板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes superconducting magnetism by utilizing excellent characteristics such as perfect diamagnetism, magnetic flux trap, and current carrying ability with high current density at zero electric resistance, which Nb-Ti alloy superconducting material has. TECHNICAL FIELD The present invention relates to a method for producing an Nb—Ti alloy superconducting multilayer plate capable of producing a superconducting multilayer plate having excellent ability as a shield, a superconducting permanent magnet, a superconducting conductive material, etc. at low cost and also capable of significantly improving the characteristics. It is a thing.

【0002】[0002]

【従来の技術】従来、Nb−Ti系超電導多層板の製造
方法としては、高導電金属からなる筐体状または円筒状
中空体中に、Nb、TaまたはNb−Ta合金のシート
または箔で被覆したNb−Ti系合金の板を、少なくと
も1層前記高導電金属の板と交互に積層するよう充填
し、充填率を60%以上としてから前記高導電金属で端
部をふさぎ、内部を真空状態にして溶接密封して一体化
複合体とし、この一体化複合体に加工率30〜98%、
温度500〜1000℃の熱間加工を施した後、300
〜450℃の温度で保持時間が1〜168時間の熱処理
と、加工率が30〜98%である冷間加工を6回以上繰
り返し施して板状または箱状の製品をつくるという方法
が、特許第1790043号「Nb−Ti系超電導磁気
シールド材及びその製造方法」、および「I. Itoh et a
l., Cryogenics, 35, 403(1995) 」等で知られている。
2. Description of the Related Art Conventionally, as a method for producing an Nb-Ti-based superconducting multilayer plate, a housing-shaped or cylindrical hollow body made of a highly conductive metal is coated with a sheet or foil of Nb, Ta or Nb-Ta alloy. At least one layer of the above-mentioned Nb-Ti alloy plate is filled so as to be alternately laminated with the above-mentioned plate of the high-conductivity metal, and the filling rate is set to 60% or more, and then the end is covered with the high-conductivity metal, and the inside is vacuumed Welded and sealed to form an integrated composite, and the integrated composite has a processing rate of 30 to 98%,
After hot working at a temperature of 500-1000 ° C, 300
Patented is a method of making a plate-shaped or box-shaped product by repeatedly performing heat treatment at a temperature of ~ 450 ° C for a holding time of 1 to 168 hours and cold working at a working rate of 30 to 98% six times or more. No. 1790043 "Nb-Ti based superconducting magnetic shield material and its manufacturing method", and "I. Itoh et a
L., Cryogenics, 35, 403 (1995) ”and the like.

【0003】また、Nb−Ti系合金の最重要超電導特
性の一つである臨界電流密度(Jc)は、bcc構造を
有するβ相中に、hcp構造を有するα−Ti析出物が
微細に分散することによって大幅に向上することが知ら
れている。α−Tiの時効析出のための最適な熱処理温
度は300〜450℃の範囲にあるといわれ、この温度
範囲である程度の長時間熱処理を行うことでα−Ti相
が析出してくる。これ以上の温度では析出物の微細分散
は不可能で粗大化してしまい、かつ600℃以上ではα
−Ti析出物は分解してしまうとされている。また、J
c の向上にはα−Ti析出物だけでなく、転位網や格子
欠陥も重要であることが知られている。これらは冷間加
工によって結晶中に導入されるものであるが、β相の回
復または再結晶する温度領域では消失してしまう。これ
ら転位網等とα−Ti析出物を適当にミックスさせる方
法として、適当な加工率の冷間加工と上記の熱処理を何
回か繰り返すことで、Jc が大きく増大することも知ら
れるようになってきた。
The critical current density (Jc), which is one of the most important superconducting properties of Nb-Ti type alloys, is that α-Ti precipitates having an hcp structure are finely dispersed in a β phase having a bcc structure. It is known that by doing so, it can be greatly improved. The optimum heat treatment temperature for aging precipitation of α-Ti is said to be in the range of 300 to 450 ° C., and α-Ti phase is precipitated by performing heat treatment for a long time within this temperature range. If the temperature is higher than this, fine dispersion of the precipitate is impossible and the particles become coarse.
-Ti precipitates are said to decompose. Also, J
It is known that not only α-Ti precipitates but also dislocation networks and lattice defects are important for improving c. These are introduced into the crystal by cold working, but disappear in the temperature range where the β phase is recovered or recrystallized. As a method of appropriately mixing these dislocation networks and α-Ti precipitates, it has become known that Jc is greatly increased by repeating cold working at an appropriate working ratio and the above heat treatment several times. Came.

【0004】これらのものがJc を向上させる理由とし
て、以下のような説明がなされている。超電導体中に超
電導電流が流れる時、当然磁場が発生するが、Nb−T
i系合金のような第2種超電導体では、Bc1(下部臨界
磁場)以上の磁場中では、磁場は量子磁束単位の渦糸状
の束になって超電導体中に侵入してくる。これを第2種
超電導体の混合状態という。Nb−Ti系合金ではBc1
は数10G(ガウス)と低く、実用的な磁場はすべてB
c1を超えて超電導体中に侵入してくるといってよい。こ
の時の磁場は超電導電流と直交するので、フレミングの
法則に従って両者のいずれとも直角にローレンツ力が働
き、何の抵抗力もなければ磁束フローがなだれ状に発生
して電気抵抗の発生となり、発熱して超電導状態は瞬時
に常電導状態に遷移してしまう。これをクエンチとい
う。しかしこの磁束フローは、超電導体中に分散する適
当なサイズと分布密度を有する常電導相が量子磁束渦糸
のフローのストッパー(ピン止め点という)となり、超
電導状態を維持することが可能となる。これがより高い
電流密度まで維持可能であればJc の高い、特性のすぐ
れた超電導材料といえる。
The following explanation is given as the reason why these materials improve Jc. When a superconducting current flows in a superconductor, a magnetic field is naturally generated, but Nb-T
In a type II superconductor such as an i-based alloy, in a magnetic field of Bc1 (lower critical magnetic field) or higher, the magnetic field enters a vortex-shaped bundle of quantum magnetic flux units and enters the superconductor. This is called a mixed state of the second type superconductor. Bc1 for Nb-Ti alloys
Is as low as several 10 G (Gauss), and all practical magnetic fields are B
It can be said that it penetrates into the superconductor beyond c1. Since the magnetic field at this time is orthogonal to the superconducting current, Lorentz force acts at right angles to both of them according to Fleming's law, and if there is no resistance force, magnetic flux flow will occur in an avalanche shape and electrical resistance will occur, causing heat generation. Therefore, the superconducting state instantly transits to the normal conducting state. This is called a quench. However, in this magnetic flux flow, the normal-conducting phase having an appropriate size and distribution density dispersed in the superconductor serves as a flow stopper (called pinning point) of the quantum magnetic flux vortex, and the superconducting state can be maintained. . If this can maintain a higher current density, it can be said to be a superconducting material with high Jc and excellent characteristics.

【0005】すなわち、Nb−Ti系合金ならば、既述
のα−Ti析出物、転位網、格子欠陥のようなものがピ
ン止め点となっていると一般的に認識されている。ま
た、転位網、格子欠陥は析出相を形成する原子移動を助
け、析出の駆動力になるとも言われ、二重の意味で重要
である。したがって前述のように、特性を向上させるた
めには、Nb−Ti系合金において、最後の溶体化処理
または再結晶化焼鈍後の、製品に至るまでの冷間加工比
(最後の溶体化または再結晶時のNbTi厚さ/製品中
のNbTi厚さ)を向上させる必要がある。
That is, in the case of Nb-Ti type alloys, it is generally recognized that the above-mentioned α-Ti precipitates, dislocation networks and lattice defects are pinning points. Further, it is said that the dislocation network and the lattice defects assist the movement of atoms forming the precipitation phase and serve as a driving force for the precipitation, and are important in a double sense. Therefore, as described above, in order to improve the characteristics, in the Nb-Ti based alloy, after the final solution treatment or recrystallization annealing, the cold working ratio (final solution treatment or recrystallization It is necessary to improve (NbTi thickness during crystallization / NbTi thickness in product).

【0006】しかし、従来の製造方法においては、工業
的圧延設備での加工を考えると、加工比102 オーダー
程度が限界であった。例えば、NbTi30層のクラッ
ド時のNbTiシートおよび銅シートの板厚がどちらも
3mmであった場合、最外層の銅厚さは通常10倍程度が
望ましいので、クラッド材全体の厚さは最低でも約24
0mmになる。熱間圧延を加工率50%施したとすると、
クラッド材厚さは120mmとなり、製品厚さ1mmの場
合、その冷間加工比は120にしかならない。
However, in the conventional manufacturing method, considering the processing in the industrial rolling equipment, the processing ratio is limited to about 10 2 order. For example, when the NbTi sheet and the copper sheet both have a thickness of 3 mm when clad with 30 layers of NbTi, the outermost layer of copper is usually desired to have a thickness of about 10 times. 24
It becomes 0 mm. If hot rolling is applied at a processing rate of 50%,
The clad material thickness is 120 mm, and when the product thickness is 1 mm, the cold working ratio is only 120.

【0007】[0007]

【発明が解決しようとする課題】特許第1790043
号にあるNb−Ti系超電導多層板には、Nb−Ti層
数の倍数の拡散バリヤー層が必要である。バリヤーとし
て最適な素材であるNbまたはTaはレアメタルであ
り、極めて高価である。拡散バリヤーという性格上、そ
の必要とされる厚さは製造条件にもよるがきわめて小さ
くて足りる。例えば、350℃でのNb中のTi原子拡
散速度は1.5×10-16 m/hrであるといわれ、100
hrその温度に保定しても1.5×10-13 m =1.5×
10-3オングストロームと1原子間距離にもはるかに満
たない程度である。すなわち、バリヤー厚さは相当に小
さくても十分であり、Nb素材量も減って素材コストも
低くなるはずである。ところが複合クラッド時のNbま
たはTaシートは厚さが箔状になって薄くなるほど加工
コストが上昇し、高価なものになる。例えば、Nb箔で
は箔の幅にもよるが、50μm以下になると単位重量当
り単価は100μm以上のシートの数倍〜1桁程度高く
なる。
Problems to be Solved by the Invention Patent No. 1790043
The Nb-Ti-based superconducting multilayer plate described in No. 1 requires a diffusion barrier layer which is a multiple of the number of Nb-Ti layers. Nb or Ta, which is the most suitable material as a barrier, is a rare metal and is extremely expensive. Due to the nature of the diffusion barrier, the required thickness is extremely small, depending on the manufacturing conditions. For example, the diffusion rate of Ti atoms in Nb at 350 ° C. is said to be 1.5 × 10 −16 m / hr, and 100
hr Even if held at that temperature, 1.5 × 10 -13 m = 1.5 ×
It is much less than 10 −3 angstrom and the distance between one atom. That is, it is sufficient that the barrier thickness is considerably small, the amount of Nb material is reduced, and the material cost should be reduced. However, the Nb or Ta sheet at the time of composite clad becomes more expensive as the thickness becomes foil-like and the processing cost rises. For example, in the case of Nb foil, depending on the width of the foil, when the thickness is 50 μm or less, the unit price per unit weight is several times to one digit higher than that of a sheet having 100 μm or more.

【0008】従来製造方法では、バリヤーを挿入するの
が、多層クラッドスラブをクラッド組立てする段階であ
るので、例えば銅比2程度、NbTi層数が30層の場
合、圧延機等の制約からくるクラッドスラブの最大厚さ
を約300mmとすると、NbTi板の厚さは3mm程度と
なり、バリヤー厚さは、コストとの兼ね合いで実際に必
要な厚さの何桁も大きいものとなっていた。
In the conventional manufacturing method, the barrier is inserted at the stage of assembling the multi-layered clad slab. Therefore, for example, when the copper ratio is about 2 and the number of NbTi layers is 30, the clad resulting from the restrictions of the rolling mill or the like. If the maximum thickness of the slab is about 300 mm, the thickness of the NbTi plate is about 3 mm, and the barrier thickness is many orders of magnitude larger than the thickness actually required in consideration of cost.

【0009】また、上記特許第1790043号では、
両金属層の良好な金属接合を得るために、複合体に加工
率30〜98%、500〜1000℃の温度での熱間加
工を施すとしているが、より高温側で金属が軟化してい
る方が接合しやすい。したがって、クラッド材の複合一
体化、すなわち各金属界面にて十分な金属的接合が得ら
れるためには、NbTi超電導材料のJc を向上させる
最重要因子であるα−Ti析出物、転位網や格子欠陥が
その役割を大幅に減少させてしまうか、または消失さえ
してしまう危険性のある温度領域まで加熱されてしまっ
ていた。
Further, in the above-mentioned Japanese Patent No. 1790043,
In order to obtain good metal bonding of both metal layers, the composite is subjected to hot working at a working rate of 30 to 98% and a temperature of 500 to 1000 ° C, but the metal softens at higher temperatures. It is easier to join. Therefore, α-Ti precipitates, dislocation networks and lattices, which are the most important factors for improving the Jc of NbTi superconducting materials, are required for the composite integration of the clad materials, that is, sufficient metallurgical bonding to be obtained at each metal interface. The defects had been heated to a temperature range where they could significantly reduce their role or even disappear.

【0010】すなわち、上記特許第1790043号に
よれば、多層に積層する前のNb−Ti系合金板は、熱
間加工の後、冷間加工(主として冷間圧延)によって板
加工されるとしている。この際、相当の加工率の圧延に
よって導入された転位網、格子欠陥が組織中に蓄積され
ている。ところが従来法では、この後多層に積層した複
合材料の金属接合を得るために熱間加工(主として熱間
圧延)を実施し、その時の500〜1000℃の温度で
の加熱によって、せっかく蓄積された転位網、格子欠陥
は大幅に減少するか、さらには消失せざるをえなかっ
た。したがって従来法では、多層クラッド工程以前に、
Nb−Ti系合金組織中に導入された転位網、格子欠陥
を十分利用することはほとんど不可能で、以後に導入さ
れた分を利用しているにすぎなかった。
That is, according to the above-mentioned Japanese Patent No. 1790043, the Nb-Ti alloy plate before being laminated in multiple layers is subjected to hot working and then cold working (mainly cold rolling). . At this time, dislocation networks and lattice defects introduced by rolling with a considerable working rate are accumulated in the structure. However, in the conventional method, hot working (mainly hot rolling) was then performed in order to obtain metal bonding of the composite material laminated in multiple layers, and heating at a temperature of 500 to 1000 ° C. at that time accumulated the charge. Dislocation networks and lattice defects were greatly reduced or even disappeared. Therefore, in the conventional method, before the multilayer clad process,
It was almost impossible to fully utilize the dislocation network and lattice defects introduced into the Nb-Ti based alloy structure, and only the components introduced afterward were utilized.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(1)まず図1(a)にも示すように、厚さの大きい1
層のNb−Ti系合金材料1の周囲に、Nb、Taまた
はNb−Ta合金のシートまたは箔3を被覆し、そのま
た周囲に常電導金属材料2を被覆する。この方法として
は上記常電導金属材料からなる筐体2に、Nb、Taま
たはNb−Ta合金のシートまたは箔を被覆した1層の
Nb−Ti系合金材料を挿入し、筐体中を真空にしてか
ら溶接接合させて密封し、Nb−Ti単層クラッドスラ
ブを得る。本スラブに加工率30〜98%、温度500
〜1000℃での熱間加工を含む減面加工を施して複合
一体化させる。減面加工法としては熱間、温間、冷間で
の圧延、または熱間、温間、冷間でのプレス鍛造等があ
る。また、HIP、CIPのような方法も有効である。
さらには前記各種加工法を順次組み合わせた方法もあ
る。これらの方法で減面加工した後、図2に示すよう
に、中身がNb−Ti系合金1で、表層が常電導金属
2、それらの界面にNb、TaまたはNb−Ta合金の
層3が介在する3層構造のクラッド板4ができるが、こ
の最表面に存在する酸化スケールや油、汚れといった不
純物は一切除去して清浄にした後、図1(b)に示すよ
うに、所望の層数だけ切り分けて板厚方向に積層し、常
電導金属からなる筐体2に挿入した後、筐体中を真空に
してから溶接して密封し、多層クラッドスラブを得る。
本スラブに再び加工率30〜98%、温度600℃以下
での加工を施した後、300〜450℃の温度で保持時
間が1〜168時間の熱処理と、加工率が30〜98%
である冷間加工を6回以下交互に繰り返し施して、板状
または箔状とし、図3に示すようなNb−Ti系超電導
多層板5を得る。減面加工法としては既述の方法があ
る。
(1) First, as shown in FIG.
A sheet or foil 3 of Nb, Ta or Nb-Ta alloy is coated around the Nb-Ti based alloy material 1 of the layer, and also around it is coated with a normal conducting metal material 2. As this method, one layer of Nb-Ti based alloy material coated with a sheet or foil of Nb, Ta or Nb-Ta alloy is inserted into the casing 2 made of the normal conducting metal material, and the inside of the casing is evacuated. After that, they are welded and hermetically sealed to obtain a Nb-Ti single layer clad slab. This slab has a processing rate of 30-98% and a temperature of 500
Surface-reduction processing including hot processing at 1000 ° C is applied to form a composite integration. Examples of the surface-reduction processing method include hot, warm, and cold rolling, and hot, warm, and cold press forging. Also, methods such as HIP and CIP are effective.
Further, there is also a method in which the various processing methods are sequentially combined. After surface-reduction processing by these methods, as shown in FIG. 2, the content is Nb-Ti based alloy 1, the surface layer is normal conducting metal 2, and the layer 3 of Nb, Ta or Nb-Ta alloy is at their interface. An intervening clad plate 4 having a three-layer structure is formed. After removing impurities such as oxide scale, oil, and dirt existing on the outermost surface of the clad plate 4 and cleaning the clad plate 4, as shown in FIG. After being cut into a number and laminated in the plate thickness direction and inserted into the casing 2 made of normal conducting metal, the inside of the casing is evacuated and then welded and sealed to obtain a multilayer clad slab.
After subjecting the slab to processing at a processing rate of 30 to 98% and a temperature of 600 ° C or lower, heat treatment at a temperature of 300 to 450 ° C for a holding time of 1 to 168 hours and a processing rate of 30 to 98%.
The above cold working is alternately repeated 6 times or less to form a plate or foil, and the Nb-Ti-based superconducting multilayer plate 5 as shown in FIG. 3 is obtained. As the surface-reduction processing method, there is the above-mentioned method.

【0012】3層構造のクラッド板4ができる時、最初
その全周が常電導金属で被覆されているので、減面加工
後も全周が常電導金属で被覆されている。通常、切り分
けた箇所以外の、例えば板の側面等は常電導金属で覆わ
れたままであるが、そのままで積層してもよいし、常電
導金属だけの端末部分(通常、耳という)は切断除去し
た後に積層してもどちらでもよい。図1(b)には耳を
除去した場合を示しているが、通常こちらの方が筐体中
の限られたスペースを有効利用できる。
When the clad plate 4 having a three-layer structure is formed, the entire circumference is initially covered with the normal-conductivity metal, so that the whole circumference is covered with the normal-conductivity metal even after the surface reduction processing. Normally, except for the cut-off parts, for example, the sides of the plate are still covered with the normal-conducting metal, but they may be stacked as they are, or the end part (normally called the ear) made of only the normal-conducting metal is cut and removed. Either of them may be laminated after being formed. FIG. 1B shows a case where the ears are removed, but normally, this can effectively use the limited space in the housing.

【0013】ここで常電導金属層は本発明の超電導材料
の超電導安定性を確保するため、及び超電導材料を多層
に分割するための隔壁材として必要なもので、一般的に
使用されているものであるが、Cu、Al等の高導電金
属またはCu−Ni合金等の高抵抗金属があげられる。
超電導材料の分割とは、超電導体内に発生し、その超電
導特性を破壊する主要因の一つである単位体積当りのヒ
ステリシス損失を低減するための有効な手段として知ら
れている方法である。静磁場(直流磁場)中または変化
速度の小さい変動磁場中での使用に際してはCu、Al
等の高導電金属が望ましく、変化速度の大きい変動磁場
(交流磁場やパルス磁場)中ではCu−Ni合金等の高
抵抗金属が望ましい。常電導金属中に生じる渦電流起因
の発熱が小さい前者の条件下では高導電金属が超電導安
定化に役立つが、渦電流問題が深刻になる後者の条件下
では高抵抗金属が望ましくなる。
Here, the normal-conducting metal layer is necessary as a partition material for ensuring the superconducting stability of the superconducting material of the present invention and for dividing the superconducting material into multiple layers, which is generally used. Examples thereof include high conductive metals such as Cu and Al or high resistance metals such as Cu-Ni alloys.
The division of the superconducting material is a method known as an effective means for reducing the hysteresis loss per unit volume, which is one of the main factors that occur in the superconductor and destroy the superconducting characteristics. Cu, Al when used in a static magnetic field (DC magnetic field) or in a fluctuating magnetic field with a small change rate
A high conductive metal such as Cu is preferable, and a high resistance metal such as a Cu—Ni alloy is preferable in a changing magnetic field (AC magnetic field or pulse magnetic field) having a large change rate. Under the former condition where the heat generation due to the eddy current generated in the normal conducting metal is small, the highly conductive metal helps stabilize the superconductivity, but under the latter condition where the eddy current problem becomes serious, the high resistance metal is desirable.

【0014】(2)(1)と同様に3層構造のNb−T
i単層クラッド板をつくり、図4(a)に示すように、
所望の層数だけ切り分けて板厚方向に積層し、かつその
最上下面には常電導金属板2を積層した後、そのすべて
の界面を真空に保ちつつ各積層界面の端部を溶接して密
封し、(1)と同様に再び減面加工を施して複合一体化
させ、図4(b)に示すようなNb−Ti系超電導多層
板5′を得る。減面および熱処理の加工法は(1)に同
じ。
(2) Nb-T having a three-layer structure as in (1)
Making a single-layer clad plate, as shown in Fig. 4 (a),
After cutting the desired number of layers and stacking them in the plate thickness direction, and stacking the normal conducting metal plate 2 on the top and bottom surfaces, weld the ends of each stacking interface while keeping all the interfaces in vacuum and seal. Then, the surface is reduced again in the same manner as in (1) to make a composite integration, and an Nb-Ti based superconducting multilayer plate 5'as shown in FIG. 4 (b) is obtained. The processing methods for surface reduction and heat treatment are the same as in (1).

【0015】[0015]

【発明の実施の形態】本発明によれば、図1(a)に示
すように、スタート時の1層のNb−Ti系合金材料の
板厚に対する、界面に挿入する拡散バリヤー金属のシー
トまたは箔の厚さの比率をはるかに小さくすることが可
能である。すなわち従来法では、図6に示すように、減
面加工されて厚さの小さくなった複数のNb−Ti系合
金板と常電導金属板を交互に積層し、その全界面に拡散
バリヤー金属のシートまたは箔を挿入した多層積層体を
常電導金属材料からなる筐体に挿入していた。図1
(a)および図1(b)に示す筐体の高さ(クラッド材
の厚さ)制限は圧延機等の設備上の制約から受けるの
で、本発明でも従来法でも同等である。したがって、拡
散バリヤー金属のシートまたは箔の厚さが同じ場合、N
b−Ti系合金板の厚さは本発明の方がはるかに大きく
できるので、最終製品が同一厚さ、構造の多層板である
場合、同じ厚さのNb−Ti系合金層に対し、拡散バリ
ヤー層厚を最大2桁程度小さくすることが可能となり、
高コストの極薄箔加工を利用することなく拡散バリヤー
金属材料の使用量を大幅に減らすことが可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, as shown in FIG. 1 (a), a sheet of diffusion barrier metal to be inserted at the interface with respect to the plate thickness of one layer of Nb-Ti based alloy material at the start or It is possible to make the foil thickness ratio much smaller. That is, in the conventional method, as shown in FIG. 6, a plurality of Nb-Ti alloy plates and normal conductive metal plates, which have been reduced in surface thickness and have a reduced thickness, are alternately laminated, and a diffusion barrier metal of all the interfaces is formed. The multilayer laminate having the sheet or foil inserted therein has been inserted into a casing made of a normal conducting metal material. FIG.
The height restriction (thickness of the clad material) of the casing shown in (a) and FIG. 1 (b) is affected by the restriction on the equipment such as a rolling mill, and is the same in the present invention and the conventional method. Therefore, if the thickness of the diffusion barrier metal sheet or foil is the same, N
Since the thickness of the b-Ti alloy plate can be much larger in the present invention, when the final product is a multilayer plate having the same thickness and structure, diffusion is performed with respect to the Nb-Ti alloy layer having the same thickness. It is possible to reduce the barrier layer thickness by up to 2 digits,
It is possible to significantly reduce the amount of diffusion barrier metal material used without utilizing high-cost ultra-thin foil processing.

【0016】また本発明によれば、全製造工程で2回の
クラッド工程が入るが、その1回目の単層クラッドは図
1(a)、図5(a)に示すような方法がある。また2
回目の多層クラッドは図1(b)、図4(a)に示すよ
うな方法がある。1回目の単層クラッドの時は、従来法
同様、異種金属層間、すなわちNb−Ti系合金板と常
電導金属板、および拡散バリヤー金属との各金属間を金
属的に接合させるために、温度500〜1000℃、望
ましくは600〜1000℃で熱間加工を施す必要があ
る。この温度領域ではNb−Ti超電導材料のJc を向
上させる最重要因子であるα−Ti析出物や、転位網、
格子欠陥は、大幅に減少するか、または消失さえしてし
まう危険性があったわけであるが、本発明ではこの段階
ではNb−Ti組織中に上記重要因子のいずれもほとん
ど導入されていないので、その危険性はほとんどないと
いえる。Nb−Ti系合金板の厚さが相当に大きい段階
なので、熱間加工だけで済み、あえて冷間加工を必要と
しないか、あっても従来法に比べてごくわずかで済むか
らである。
Further, according to the present invention, the clad process is carried out twice in the entire manufacturing process, and the first single-layer clad has a method as shown in FIGS. 1 (a) and 5 (a). Also 2
There is a method as shown in FIG. 1B and FIG. At the time of the first single-layer clad, as in the conventional method, in order to metallically bond the dissimilar metal layers, that is, the Nb-Ti alloy plate and the normal-conducting metal plate, and the diffusion barrier metal, metal It is necessary to perform hot working at 500 to 1000 ° C, preferably 600 to 1000 ° C. In this temperature range, α-Ti precipitates, dislocation networks, which are the most important factors for improving Jc of Nb-Ti superconducting materials,
Lattice defects had the risk of being significantly reduced or even disappeared, but in the present invention, since none of the above-mentioned important factors were introduced into the Nb-Ti structure at this stage, It can be said that there is almost no danger. Since the thickness of the Nb-Ti alloy plate is considerably large, only the hot working is required, and the cold working is not required, or even if it is, it is very small compared with the conventional method.

【0017】しかし、図1(b)、図4(a)を見て容
易にわかる通り、2回目の多層クラッドの時はCu、A
l、Cu−Ni合金等の常電導金属層同士の界面しかな
く、これらは1回目の異種金属界面に比べ、大幅に低い
加熱温度での熱間圧延等の加工でも容易に良好な金属接
合を得ることが可能である。すなわち、600℃以下の
温度領域でも十分である。この温度領域であれば、Nb
−Ti系合金中のα−Ti析出物や、転位網、格子欠陥
の消失がほとんどないか、あってもかなりわずかで済
む。Jc 低下の原因となるα−Ti析出物の粗大化とい
う問題は起こりうるが、加熱の保定時間を問題ない範囲
で短くすることは可能であり、回避しうる。したがっ
て、従来法ではほとんど活用できなかった、1回目と2
回目のクラッド工程間で実施された冷間圧延等の加工に
よって導入された転位網、格子欠陥の大部分を、2回目
の多層クラッド以降の冷間圧延加工に重畳させたり、熱
処理によるα−Ti相析出に役立てることが可能にな
り、Jc の大幅な向上をもたらすことが可能になるもの
である。
However, as can be easily seen from FIGS. 1 (b) and 4 (a), Cu and A are used in the second multi-layer cladding.
l, there is only an interface between normal-conducting metal layers such as Cu-Ni alloys, etc., and these are easy to perform good metal joining even by processing such as hot rolling at a significantly lower heating temperature than the first dissimilar metal interface. It is possible to obtain. That is, a temperature range of 600 ° C. or lower is sufficient. In this temperature range, Nb
There is little or no loss of α-Ti precipitates, dislocation networks, and lattice defects in —Ti alloys. Although the problem of coarsening of α-Ti precipitates that causes a decrease in Jc may occur, it is possible and avoidable to shorten the holding time of heating within a range that does not cause a problem. Therefore, the first and second
Most of the dislocation networks and lattice defects introduced by the processing such as cold rolling performed between the second cladding steps are superimposed on the cold rolling processing after the second multilayer cladding, and α-Ti by heat treatment is used. It is possible to use it for phase precipitation, and it is possible to bring about a great improvement in Jc.

【0018】[0018]

【実施例】【Example】

(実施例1)図1(a)に示すように、厚さ50mmt の
Nb−Ti合金厚板1の全周囲に、厚さ0.1mmtのN
bシート3を被覆し、高さ100mmtの銅箱2に挿入
し、真空中で電子ビーム溶接によって密封して単層クラ
ッド材を作製した。その箱を600℃の熱間圧延によっ
て500mmtにした後、冷間圧延によって3mmtとし
た。図2にその単層クラッド板4を示すが、図1(b)
に示すように、同じ形状の角板20枚に切断して積層
し、高さ100mmtの銅箱2に挿入し、再び真空中で電
子ビーム溶接によって密封して多層クラッド材を作製し
た。その箱を400℃の熱間圧延によって50mmtにし
た後、冷間圧延とα−Ti相析出のための熱処理を行っ
て図3に示すような厚さ1mmtの多層板5を得た。
(Embodiment 1) As shown in FIG. 1A, a Nb-Ti alloy plate 1 having a thickness of 50 mmt is entirely surrounded by N having a thickness of 0.1 mmt.
The b-sheet 3 was covered, inserted into a copper box 2 having a height of 100 mmt, and sealed by electron beam welding in vacuum to produce a single-layer clad material. The box was hot-rolled at 600 ° C. to 500 mmt and then cold-rolled to 3 mmt. The single layer clad plate 4 is shown in FIG.
As shown in (4), 20 rectangular plates having the same shape were cut and laminated, inserted into a copper box 2 having a height of 100 mmt, and sealed again by electron beam welding in vacuum to produce a multilayer clad material. The box was hot-rolled at 400 ° C. to 50 mmt, then cold-rolled and heat-treated for α-Ti phase precipitation to obtain a multilayer plate 5 having a thickness of 1 mmt as shown in FIG.

【0019】また、比較のための従来法として、厚さ5
0mmtのNb−Ti合金厚板を600℃の熱間圧延によ
って25mmtにした後、冷間圧延によって1.5mmtと
し、そのNb−Ti合金板を同じ形状の角板20枚に切
断して同じ厚さ、形状の銅板19枚と交互に積層し、か
つ厚さ0.1mmtのNbシートをすべての界面に挿入し
た積層体を厚さ100mmtの銅箱に挿入し、真空中で電
子ビーム溶接によって密封して多層クラッド材を作製し
た。以後、上記同様の条件で同じ構造を有する厚さ1mm
tの多層板とした。
As a conventional method for comparison, a thickness of 5
A 0 mmt Nb-Ti alloy thick plate is hot rolled at 600 ° C to 25 mmt, and then cold rolled to 1.5 mmt, and the Nb-Ti alloy plate is cut into 20 rectangular plates of the same shape to obtain the same thickness. Then, the laminated body, which is formed by alternately laminating 19 shaped copper plates and inserting Nb sheets with a thickness of 0.1 mm at all interfaces, is inserted into a copper box with a thickness of 100 mm and sealed by electron beam welding in a vacuum. Then, a multilayer clad material was produced. After that, the thickness is 1mm with the same structure under the same conditions as above.
It was a multilayer board of t.

【0020】両者の超電導特性を比較するため、「I. I
toh et al., Cryogenics, 35, 403(1995) 」に示した方
法(四端子法)にて磁場中でのJc 測定を行った。ここ
において印加磁場はNb−Ti層に対して平行に印加
し、通電電流は磁場に垂直および圧延方向に垂直の場合
の結果である。
In order to compare the superconducting characteristics of both, "I. I
Toh et al., Cryogenics, 35, 403 (1995) ”(four-terminal method) was used to measure Jc in a magnetic field. Here, the applied magnetic field is applied in parallel to the Nb-Ti layer, and the applied current is the result when the applied current is perpendicular to the magnetic field and perpendicular to the rolling direction.

【0021】それによれば、従来法のJc は、印加磁場
2Tで2.5×103 A/mm2 、6Tで0.9×103 A/
mm2 であった。それに対し、本発明のJc は2Tで4.
5×103 A/mm2 、6Tで1.5×103 A/mm2 と、2
Tで8割、6Tで約7割向上した。
According to this, the Jc of the conventional method is 2.5 × 10 3 A / mm 2 at an applied magnetic field of 2T and 0.9 × 10 3 A / mm 2 at an applied magnetic field of 6T.
It was mm 2. On the other hand, the Jc of the present invention is 2T and 4.
5 × 10 3 A / mm 2 , 6T 1.5 × 10 3 A / mm 2 , 2
It improved by 80% at T and about 70% at 6T.

【0022】(実施例2)図4(a)に示すように、実
施例1と同様の方法で厚さ3mmtのNb−Ti単層クラ
ッド板4を同じ形状の角板20枚に切断し、それを積層
した最上下面に厚さ20mmtの銅板2を積層した後、真
空中で各界面の周囲の端部を電子ビーム溶接6によって
密封して多層クラッド材を作製した。以後、図4(b)
に示すように、実施例1と同じ方法で同一構造を有する
厚さ1mmtの多層板5′とした。この板のJc 特性を実
施例1と同様の方法で測定したところ、ほぼ同等のJc
値を得た。
Example 2 As shown in FIG. 4A, the Nb-Ti single-layer clad plate 4 having a thickness of 3 mmt was cut into 20 square plates having the same shape by the same method as in Example 1. After stacking a copper plate 2 having a thickness of 20 mmt on the top and bottom surfaces of the stacked layers, the edges around each interface were sealed by electron beam welding 6 in vacuum to produce a multilayer clad material. After that, FIG. 4 (b)
As shown in FIG. 5, a 1 mm thick multilayer plate 5'having the same structure as in Example 1 was obtained. When the Jc characteristics of this plate were measured by the same method as in Example 1, the Jc characteristics were almost the same.
Value.

【0023】(実施例3)図1(a)に示すように、厚
さ50mmtのNb−Ti合金厚板1の全周囲に、厚さ
0.1mmtのNbシート3を被覆し、厚さ100mmtの
銅箱2に挿入し、真空中で電子ビーム溶接によって密封
して単層クラッド材を作製した。その箱を600℃の熱
間圧延によって500mmtにした後、冷間圧延によって
3mmtとし、その単層クラッド板を同じ形状の角板20
枚に切断して積層し、厚さ100mmtの銅箱に挿入し、
再び真空中で電子ビーム溶接によって密封して多層クラ
ッド材を作製した。その箱を400℃の熱間圧延によっ
て50mmtにした後、冷間圧延とα−Ti相析出のため
の熱処理を適宜行って1mmtとした。この時のNb−T
i1層の厚さに対するNbバリヤー層の厚さの比率は最
初と同様約0.2%であった。これは従来法で作製した
全く同じ構造を有するNbバリヤー層の厚さの1/33
であった。またNbシートの価格はどちらも同じなの
で、拡散バリヤーに関わるコストもほぼ1/33に低減
した。さらにはバリヤー層厚が薄くなったことによる拡
散効果の劣化は見られなかった。
(Embodiment 3) As shown in FIG. 1 (a), the entire circumference of a 50 mm thick Nb-Ti alloy plate 1 is covered with a 0.1 mm thick Nb sheet 3 to a thickness of 100 mmt. Was inserted into the copper box 2 and sealed by electron beam welding in vacuum to produce a single-layer clad material. The box was hot-rolled at 600 ° C. to 500 mmt and then cold-rolled to 3 mmt, and the single-layer clad plate was a square plate 20 of the same shape.
Cut into sheets, stack, and insert into a 100 mm thick copper box.
It was sealed again by electron beam welding in vacuum to produce a multilayer clad material. The box was hot-rolled at 400 ° C. to 50 mmt, and then cold-rolled and heat-treated for α-Ti phase precipitation were appropriately performed to 1 mmt. Nb-T at this time
The ratio of the thickness of the Nb barrier layer to the thickness of the i1 layer was about 0.2% as at the beginning. This is 1/33 of the thickness of the Nb barrier layer having the exact same structure prepared by the conventional method.
Met. In addition, since the price of both Nb sheets is the same, the cost related to the diffusion barrier has been reduced to almost 1/33. Further, the diffusion effect was not deteriorated due to the reduced barrier layer thickness.

【0024】[0024]

【発明の効果】本発明によれば、従来法に比べ、最も重
要な超電導特性の一つであるJc を大幅に向上させるこ
とが可能になり、コスト、特性向上の両面からきわめて
多大な効果を有することは明らかである。また高価な金
属であるNb、Ta、Nb−Ta合金等の拡散バリヤー
金属材料の使用に関し、そのコストを変えることなく1
桁以上低減することが可能になった。
According to the present invention, Jc, which is one of the most important superconducting properties, can be greatly improved as compared with the conventional method, and an extremely great effect can be obtained from the aspects of both cost and property improvement. It is clear to have. In addition, regarding the use of diffusion barrier metal materials such as Nb, Ta, and Nb-Ta alloys, which are expensive metals, without changing the cost, 1
It has become possible to reduce orders of magnitude.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明における、拡散バリヤー金属シ
ートまたは箔を被覆した、1層のNb−Ti系合金板
を、常電導金属からなる筐体に挿入して作製する単層ク
ラッドスラブ、(b)は本発明における、複数の単層ク
ラッド板を常電導金属からなる筐体に挿入して作製する
多層クラッドスラブ。
FIG. 1 (a) is a single-layer clad slab prepared by inserting one layer of Nb-Ti based alloy sheet coated with a diffusion barrier metal sheet or foil into a casing made of normal conducting metal according to the present invention. , (B) is a multilayer clad slab according to the present invention, which is produced by inserting a plurality of single-layer clad plates into a casing made of a normal conductive metal.

【図2】本発明における複合一体化された単層クラッド
板。
FIG. 2 is a composite integrated single layer clad plate according to the present invention.

【図3】本発明における複合一体化された多層クラッド
板。
FIG. 3 is a composite integrated multilayer clad plate according to the present invention.

【図4】(a)は本発明における、複数の単層クラッド
板を厚さ方向に積層し、さらにその最上下面に常電導金
属板を積層した後、その全界面を真空に保ちながら、そ
の周囲の端部を溶接密封して作製する多層クラッドスラ
ブ、(b)は本発明における、図4(a)における多層
クラッドスラブを複合一体化させて作製された多層クラ
ッド板。
FIG. 4 (a) is a view showing that a plurality of single-layer clad plates according to the present invention are laminated in the thickness direction, a normal conducting metal plate is further laminated on the upper and lower surfaces thereof, and all the interfaces thereof are kept in vacuum. A multi-layer clad slab manufactured by welding and sealing the peripheral edges, and (b) is a multi-layer clad plate manufactured by composite-integrating the multi-layer clad slab in FIG. 4 (a) according to the present invention.

【図5】(a)は本発明における、拡散バリヤー金属シ
ートまたは箔を被覆した、1層のNb−Ti系合金板
と、その幅広両面に常電導金属板を積層し、その全界面
を真空に保ちながら、その周囲の端部を溶接密封して作
製された単層クラッドスラブ、(b)は本発明におけ
る、図5(a)における単層クラッドスラブを複合一体
化させて作製された単層クラッド板。
FIG. 5 (a) is a diagram showing a single layer of Nb—Ti alloy plate coated with a diffusion barrier metal sheet or foil and a normal conducting metal plate on both sides of the diffusion barrier metal sheet according to the present invention. The single-layer clad slab manufactured by welding and sealing the peripheral edges of the single-layer clad slab shown in FIG. 5 (a) according to the present invention. Layer clad plate.

【図6】従来法における、拡散バリヤー金属シートまた
は箔を被覆した、複数のNb−Ti系合金板と、複数の
常電導金属板を交互に積層して得た積層体を、常電導金
属からなる筐体に挿入して作製する多層クラッドスラ
ブ。
FIG. 6 shows a laminated body obtained by alternately laminating a plurality of Nb—Ti alloy plates coated with a diffusion barrier metal sheet or foil and a plurality of normal conducting metal plates in a conventional method from a normal conducting metal. A multi-layer clad slab that is made by inserting it into an enclosure.

【符号の説明】[Explanation of symbols]

1 Nb−Ti系合金材 2 常電導金属板 3 拡散バリヤー金属シートまたは箔 4 図1(a)を加工して複合一体化された単層クラ
ッド板 4′ 図5(a)を加工して複合一体化された単層クラ
ッド板 5 図1(b)を加工して複合一体化された多層クラ
ッド板 5′ 図5(b)を加工して複合一体化された多層クラ
ッド板 6 溶接箇所
DESCRIPTION OF SYMBOLS 1 Nb-Ti type | system | group alloy material 2 Normal conductive metal plate 3 Diffusion barrier metal sheet or foil 4 Single-layer clad plate integrated by processing FIG. 1 (a) 4'Processing FIG. 5 (a) and compounding Integrated single-layer clad plate 5 Multi-layer clad plate integrated by processing Fig. 1 (b) 5'Multi-layer clad plate integrated by processing Fig. 5 (b) 6 Welding location

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年5月21日[Submission date] May 21, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【発明が解決しようとする課題】特許第1790043
号にあるNb−Ti系超電導多層板には、Nb−Ti層
数の倍数の拡散バリヤー層が必要である。バリヤーとし
て最適な素材であるNbまたはTaはレアメタルであ
り、極めて高価である。拡散バリヤーという性格上、そ
の必要とされる厚さは製造条件にもよるがきわめて小さ
くて足りる。例えば、350℃でのNb中のTi原子拡
散速度は1.5×10-16 m/hrであるといわれ、100
0hrその温度に保定しても1.5×10-13 m =1.5
×10-3オングストロームと1原子間距離にもはるかに
満たない程度である。すなわち、バリヤー厚さは相当に
小さくても十分であり、Nb素材量も減って素材コスト
も低くなるはずである。ところが複合クラッド時のNb
またはTaシートは厚さが箔状になって薄くなるほど加
工コストが上昇し、高価なものになる。例えば、Nb箔
では箔の幅にもよるが、50μm以下になると単位重量
当り単価は100μm以上のシートの数倍〜1桁程度高
くなる。
Problems to be Solved by the Invention Patent No. 1790043
The Nb-Ti-based superconducting multilayer plate described in No. 1 requires a diffusion barrier layer which is a multiple of the number of Nb-Ti layers. Nb or Ta, which is the most suitable material as a barrier, is a rare metal and is extremely expensive. Due to the nature of the diffusion barrier, the required thickness is extremely small, depending on the manufacturing conditions. For example, the diffusion rate of Ti atoms in Nb at 350 ° C. is said to be 1.5 × 10 −16 m / hr, and 100
Even if held at that temperature for 0 hr, 1.5 × 10 -13 m = 1.5
It is much less than the distance between one atom and × 10 -3 angstrom. That is, it is sufficient that the barrier thickness is considerably small, the amount of Nb material is reduced, and the material cost should be reduced. However, Nb during composite cladding
Alternatively, the Ta sheet becomes more expensive because the processing cost increases as the thickness becomes foil-like and becomes thinner. For example, in the case of Nb foil, depending on the width of the foil, when the thickness is 50 μm or less, the unit price per unit weight is several times to one digit higher than that of a sheet having 100 μm or more.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】[0024]

【発明の効果】本発明によれば、従来法に比べ、最も重
要な超電導特性の一つであるJc を大幅に向上させるこ
とが可能になり、コスト、特性向上の両面からきわめて
多大な効果を有することは明らかである。また高価な金
属であるNb、Ta、Nb−Ta合金等の拡散バリヤー
金属材料の使用に関し、そのコストを1桁以上低減する
ことが可能になった。
According to the present invention, Jc, which is one of the most important superconducting properties, can be greatly improved as compared with the conventional method, and an extremely great effect can be obtained from the aspects of both cost and property improvement. It is clear to have. Further, regarding the use of a diffusion barrier metal material such as an expensive metal such as Nb, Ta, or Nb-Ta alloy, it has become possible to reduce the cost by one digit or more .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 1 Nb−Ti系合金材 2 常電導金属板 3 拡散バリヤー金属シートまたは箔 4 図1(a)を加工して複合一体化された単層クラ
ッド板 4′ 図5(a)を加工して複合一体化された単層クラ
ッド板 5 図1(b)を加工して複合一体化された多層クラ
ッド板 5′ 図4(a)を加工して複合一体化された多層クラ
ッド板 6 溶接箇所
[Description of Reference Signs] 1 Nb-Ti alloy material 2 Normal-conducting metal plate 3 Diffusion barrier metal sheet or foil 4 Single-layer clad plate compositely integrated by processing FIG. 1 (a) 4 ′ FIG. 5 (a) A single-layer clad plate which is processed into a composite and integrated 5 A multi-layered clad plate which is processed into a composite and integrated in FIG. 1 (b) 5 ′ A composite clad plate which is processed into a composite and integrated in FIG. 4 (a) 6 welding points

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1層のNb−Ti系合金層
と、少なくとも1層の常電導金属層が交互に積層され、
かつ前記Nb−Ti系合金層と常電導金属層の間にはす
べてNb、TaまたはNb−Ta合金のバリヤー層が存
在する構造を有するNb−Ti系超電導多層板の製造方
法において、Nb、TaまたはNb−Ta合金のシート
または箔で被覆した、1層のNb−Ti系合金材料の周
囲に常電導金属材料を被覆し、加工率30〜98%、温
度500〜1000℃での熱間加工を含む減面加工を施
して複合一体化させた後、該複合材料を少なくとも1層
以上積層し、常電導金属からなる筐体に挿入した後、筐
体中を真空にしてから筐体を溶接接合させて密封し、こ
の一体化複合体に加工率30〜98%、温度600℃以
下での熱間加工を施した後、300〜450℃の温度で
保持時間が1〜168時間の熱処理と、加工率が30〜
98%である冷間加工を6回以下交互に繰り返し施し
て、板状または箔状とし、Nb−Ti系超電導多層板を
得ることを特徴とする製造方法。
1. At least one Nb—Ti based alloy layer and at least one normal conductive metal layer are alternately laminated,
In the method for producing an Nb-Ti-based superconducting multilayer plate having a structure in which a barrier layer of Nb, Ta or an Nb-Ta alloy exists between the Nb-Ti-based alloy layer and the normal-conducting metal layer, Nb, Ta Alternatively, one layer of Nb-Ti based alloy material coated with a sheet or foil of Nb-Ta alloy is coated with a normal conducting metal material, and hot working is performed at a working rate of 30 to 98% and a temperature of 500 to 1000 ° C. After surface-reducing is performed to integrate the composite, at least one layer of the composite material is laminated and inserted into a case made of normal conducting metal, and then the case is evacuated and then the case is welded. After joining and sealing, the integrated composite is subjected to hot working at a working rate of 30 to 98% and a temperature of 600 ° C. or less, and then a heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours. , Processing rate is 30 ~
A process for producing a Nb-Ti-based superconducting multilayer plate, which comprises repeatedly performing cold working of 98% repeatedly 6 times or less to form a plate or foil.
【請求項2】 少なくとも1層のNb−Ti系合金層
と、少なくとも1層の常電導金属層が交互に積層され、
かつ前記Nb−Ti系合金層と常電導金属層の間にはす
べてNb、TaまたはNb−Ta合金のバリヤー層が存
在する構造を有するNb−Ti系超電導多層板の製造方
法において、Nb、TaまたはNb−Ta合金のシート
または箔で被覆した、1層のNb−Ti系合金材料の周
囲に常電導金属材料を被覆し、加工率30〜98%、温
度500〜1000℃での熱間加工を含む減面加工を施
して複合一体化させた後、該複合材料を少なくとも1層
以上積層し、積層界面を真空に保ちつつ各積層界面の端
部を溶接接合させて密封し、この一体化複合体に加工率
30〜98%、温度600℃以下での熱間加工を施した
後、300〜450℃の温度で保持時間が1〜168時
間の熱処理と、加工率が30〜98%である冷間加工を
6回以下交互に繰り返し施して板状または箔状とし、N
b−Ti系超電導多層板を得ることを特徴とする製造方
法。
2. At least one Nb—Ti based alloy layer and at least one normal conductive metal layer are alternately laminated,
In the method for producing an Nb-Ti-based superconducting multilayer plate having a structure in which a barrier layer of Nb, Ta or an Nb-Ta alloy exists between the Nb-Ti-based alloy layer and the normal-conducting metal layer, Nb, Ta Alternatively, one layer of Nb-Ti based alloy material coated with a sheet or foil of Nb-Ta alloy is coated with a normal conducting metal material, and hot working is performed at a working rate of 30 to 98% and a temperature of 500 to 1000 ° C. After performing surface reduction processing including, to make a composite integrated, at least one layer of the composite material is laminated, and the ends of the respective laminated interfaces are weld-bonded and sealed while keeping the laminated interfaces in a vacuum. After subjecting the composite to hot working at a working rate of 30 to 98% and a temperature of 600 ° C. or less, heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours and a working rate of 30 to 98%. Alternating cold work less than 6 times Applied returns a plate-like or foil-like, N
A manufacturing method characterized by obtaining a b-Ti-based superconducting multilayer plate.
JP08917796A 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board Expired - Fee Related JP3544781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08917796A JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08917796A JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Publications (2)

Publication Number Publication Date
JPH09283812A true JPH09283812A (en) 1997-10-31
JP3544781B2 JP3544781B2 (en) 2004-07-21

Family

ID=13963494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08917796A Expired - Fee Related JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Country Status (1)

Country Link
JP (1) JP3544781B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857558B2 (en) * 2002-02-27 2005-02-22 Ferry, Iii Robert Thomas Metal lamination method and structure
JP2005219478A (en) * 2004-01-09 2005-08-18 Nippon Steel Corp Clad plate and its production method
JP2006185925A (en) * 1996-03-19 2006-07-13 Nippon Steel Corp MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185925A (en) * 1996-03-19 2006-07-13 Nippon Steel Corp MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE
US6857558B2 (en) * 2002-02-27 2005-02-22 Ferry, Iii Robert Thomas Metal lamination method and structure
JP2005219478A (en) * 2004-01-09 2005-08-18 Nippon Steel Corp Clad plate and its production method

Also Published As

Publication number Publication date
JP3544781B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US3534459A (en) Composite superconducting elements
Huang et al. An efficient approach for superconducting joint of YBCO coated conductors
US5174831A (en) Superconductor and process of manufacture
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
JP6704589B2 (en) Precursor wire for Nb3Al superconducting wire and Nb3Al superconducting wire
US3310862A (en) Process for forming niobium-stannide superconductors
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
RU2436199C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
US20080274371A1 (en) Composite substrates for high temperature superconductors having improved properties
JP4142770B2 (en) NbTi superconducting multilayer rolled plate and method for producing the same
JPH0294498A (en) Nb-ti superconductive magnetic shielding material and its manufacture
JPH0736479B2 (en) Manufacturing method of Nb-Ti superconducting magnetic shield material
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP5650098B2 (en) Rolled copper foil for superconducting film formation
JPH0714442A (en) Nbti superconducting wire for palse or ac
JPH02177217A (en) Manufacture of nb3al superconducting wire
JP2002194454A (en) METHOD FOR MANUFACTURING Nb-Ti ALLOY BY PACK ROLLING, AND Nb-Ti ALLOY
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture
JP2003332645A (en) Superconducting composite magnetic shielding material
RU2441300C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
JP2002192354A (en) METHOD FOR PRODUCING NbAl ALLOY BY LAMINATION ROLLING
JP4113031B2 (en) NbTi superconducting multilayer board and manufacturing method thereof
JPH0355011B2 (en)
RU2436198C1 (en) COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees