JPS63294615A - Compound superconduction stabilizing thin plate and its manufacture - Google Patents

Compound superconduction stabilizing thin plate and its manufacture

Info

Publication number
JPS63294615A
JPS63294615A JP62128401A JP12840187A JPS63294615A JP S63294615 A JPS63294615 A JP S63294615A JP 62128401 A JP62128401 A JP 62128401A JP 12840187 A JP12840187 A JP 12840187A JP S63294615 A JPS63294615 A JP S63294615A
Authority
JP
Japan
Prior art keywords
copper
layer
niobium
superconductor
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62128401A
Other languages
Japanese (ja)
Inventor
Teruo Noguchi
野口 照夫
Hiroshi Okubo
博司 大久保
Masahiro Kodera
小寺 正裕
Takeshi Ogasawara
武 小笠原
Yoichi Matsubara
洋一 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP62128401A priority Critical patent/JPS63294615A/en
Publication of JPS63294615A publication Critical patent/JPS63294615A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable a compound superconduction stabilizing thin plate having a wide width costlessly by providing a copper-tin or copper-gallium alloy layer, a superconductor layer composed of niobium or niobium-titanium or vanadium, and a stabilizing metal layer composed of metal good conductors of copper, silver, aluminum etc. CONSTITUTION:Niobium (or niobium containing a small quantity of titanium) 2' and 3' are explosively bonded in both sides of a copper-tin (tin density of 5-15 weight %) alloy 1'. Or vanadium is explosively bonded in both sides of a copper-gallium alloy (gallium density of 10-20 atomic density). Furthermore, metal good conductors 4, and 5, for stabilizing of copper, silver, aluminum, etc. are explosively bonded in both sides of a cladding material of niobium/ copper-tin/niobium or vanadium/copper-gallium/vanadium formed in the first process. This enables a large thin plate to be easily obtained and a compound superconduction stabilizing thin plate obtained which has a good adherence between a superconduction layer and each stabilizing metal layer, and a good electric and thermal conductivity between the superconduction layer and the stabilizing metal layers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化合物超電導安定化薄板およびその製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound superconducting stabilized thin plate and a method for producing the same.

[従来の技術] 近年、大型の超電導マグネットを使用する機器、例えば
核磁気共鳴断層撮影装置や単結晶引上用超電導マグネッ
ト装置等は益々増える傾向にあり、そのような超電導マ
グネットに超電導薄板が稽成部材として用いられている
。また上述のような大型マグネットの漏れ磁界は周囲の
エレクトロニクスや生物に悪影響を及ぼす恐れが出てき
ている。
[Prior art] In recent years, the number of devices that use large superconducting magnets, such as nuclear magnetic resonance tomography devices and superconducting magnet devices for pulling single crystals, has been increasing. It is used as a component. Furthermore, there is a fear that the leakage magnetic field from large magnets as described above may have an adverse effect on surrounding electronics and living things.

これらの不要磁場を遮蔽するため鉄や磁性金属による磁
気遮蔽はもちろん可能であるが、非常に厚い壁としなけ
ればならず、病院や研究室の床の耐加重を越えることも
しばしばある。
Magnetic shielding using iron or magnetic metal is of course possible in order to shield these unnecessary magnetic fields, but the walls must be extremely thick, often exceeding the load capacity of the floors in hospitals and laboratories.

ところで、超電導体は、反磁性物質であるので、磁束線
を強引に曲げて超電導体の後方を磁界から効率よく遮蔽
することができることは知られている。
By the way, since a superconductor is a diamagnetic substance, it is known that the rear of the superconductor can be efficiently shielded from a magnetic field by forcibly bending the lines of magnetic flux.

このような目的に使用され得る化合物超電導薄板を製作
する方法として従来以下の方法が知られている0例えば
Nb3Snの場合には、■スズ洛中に浸漬して表面にス
ズを付着させたNb薄板を950℃前後の不活性雰囲気
中で反応熱処理してNbとスズの境界にNb3Snを生
成させた後さらにその両表面に銅箔をはんだ付けする方
法;■銅−スズ丸棒、ニオブパイプ、銅パイプをこの順
に中心から同軸に配置した複合ベレットを押し出し、線
引等で加工した後、平圧延を施して薄板に形成し、これ
を750℃前後の温度で真空または不活性雰囲気中で熱
処理してニオブと銅−スズ合金の界面にNb3Snを反
応生成させる方法。
The following methods are conventionally known as methods for manufacturing compound superconducting thin plates that can be used for such purposes. For example, in the case of Nb3Sn, ■Nb thin plates are immersed in a tin solution to adhere tin to the surface. A method in which copper foil is soldered to both surfaces of Nb3Sn by reaction heat treatment in an inert atmosphere at around 950°C to generate Nb3Sn at the boundary between Nb and tin; ■ Copper-tin round bar, niobium pipe, copper pipe In this order, the composite pellets arranged coaxially from the center are extruded, processed by wire drawing, etc., then flat rolled to form a thin plate, which is then heat treated in a vacuum or inert atmosphere at a temperature of around 750°C to produce niobium A method of reacting and producing Nb3Sn at the interface between copper and tin alloy.

またV3Gaの場合には上記各方法においてスズの代わ
りにそれぞれにバナジウムおよびガリウムが使用され得
る。
In the case of V3Ga, vanadium and gallium can be used instead of tin in each of the above methods.

[発明が解決しようとする問題点] 上述のような従来の方法において、前者の方法では、広
い福のニオブをスズ浴中に浸漬したり、熱処理しなりす
ることは実際の作業上容易でなく、また広い銅箔をはん
だ付けすることも実用的ではなく、しかもそれらを実施
する装置は大がかりとなり高価なものとなる。また、後
者の方法では幅が広い薄板を製作するのには不適当であ
る。すなわち十分な密着性を得るためにはビレットから
平圧延までの加工率を大きくする必要があり、このため
平圧延直前のビレット直径が小さくならざるを得す、そ
の結果十分に大きなりラッド板を得ることには限界があ
った。
[Problems to be Solved by the Invention] In the conventional method as described above, in the former method, it is not easy to immerse a large amount of niobium in a tin bath or to heat treat it to make it pliable. Moreover, it is not practical to solder a wide copper foil, and the equipment for carrying out the soldering is large-scale and expensive. Furthermore, the latter method is unsuitable for manufacturing wide thin plates. In other words, in order to obtain sufficient adhesion, it is necessary to increase the processing rate from billet to flat rolling, and for this reason, the diameter of the billet immediately before flat rolling has to be reduced, and as a result, the diameter of the billet just before flat rolling has to be reduced. There were limits to what you could get.

そこで本発明の目的は、このような従来技術の問題点を
解決して安価に幅の広い化合物超電導安定化薄板および
その製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and provide an inexpensive and wide compound superconducting stabilized thin plate and a method for manufacturing the same.

[問題点を解決するための手段] 上記の目的を達成するために、本発明による化合物超電
導安定化薄板は、銅−スズ(スズ濃度5〜15重量%)
または銅−ガリウム(ガリウム濃度10〜20原子%)
合金層と、この金属層の両側に爆着され、上記合金層と
共に超電導体金属間化合物境界層を形成するニオブまた
はニオブ−チタン(チタン濃度0.1〜2原子%)また
はバナジウムからなる超電導体層と、上記各超電導体層
の外側に爆着または圧接された両側に銅、銀、アルミニ
ウム等の金属良導体から成る安定化金属層とを有し、所
要の厚さに加工し熱処理して五P!薄板として梧成した
ことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the compound superconducting stabilizing thin plate according to the present invention is made of copper-tin (tin concentration 5 to 15% by weight).
or copper-gallium (gallium concentration 10-20 at%)
an alloy layer, and a superconductor made of niobium, niobium-titanium (titanium concentration 0.1 to 2 at%), or vanadium, which is explosively deposited on both sides of this metal layer and forms a superconductor intermetallic compound boundary layer together with the alloy layer. and a stabilizing metal layer made of a good metal conductor such as copper, silver, aluminum, etc. on both sides, which is explosively bonded or press-bonded to the outside of each superconductor layer, and is processed to the required thickness and heat-treated. P! It is characterized by being formed as a thin plate.

また本発明の別の特徴によれば、化合物超電導安定化薄
板の製造方法は銅−スズ(スズ濃度5〜15重量%)合
金の両側にニオブまたはニオブ−チタン(チタン濃度0
.1〜2原子%)の超電導体を爆着し、さらにその両外
側に銅、銀、アルミニウム等の安定化用金属良導体を爆
着または圧接することによりこれら銅−スズ合金と、ニ
オブまなはニオブーヂクン超電導体と、安定化用金属良
導体とを互いに強固に接合し、こうして得られた五層体
を鍛造、圧延その他の機械加工により所望の厚さに加工
し、その後500℃〜750℃の温度で30分〜200
時間熱処理することから成る。
According to another feature of the present invention, the method for manufacturing a compound superconducting stabilized thin plate includes niobium or niobium-titanium (titanium concentration 0%) on both sides of a copper-tin (tin concentration 5-15% by weight) alloy.
.. By explosively bonding a superconductor (1 to 2 atomic%) and further bonding or pressure-welding a good stabilizing metal conductor such as copper, silver, or aluminum to both outer sides of the superconductor, these copper-tin alloys and niobium mana or niobium are bonded. The superconductor and the stabilizing metal good conductor are firmly bonded to each other, and the five-layer body thus obtained is processed to a desired thickness by forging, rolling or other machining, and then heated at a temperature of 500°C to 750°C. 30 minutes ~ 200
It consists of a time heat treatment.

さらに本発明の別の特徴によれば、化合物超電導安定化
薄板の製造法は、銅−ガリウム(ガリウム濃度10〜2
0原子%)合金の両側にバナジウムの超電導体を爆着し
、さらにその両外側に銅、銀、アルミニウム等の安定化
用金属良導体を爆着または圧接することによりこれら銅
−ガリウム合金と、バナジウム超電導体と安定化用金属
良導体とを互いに強固に接合し、こうして得られた五層
体を鍛造、圧延その他の機械加工により所望の厚さに加
工し、その71500℃〜750℃の温度で30分〜2
00時間熱処理することから成る。
According to yet another feature of the invention, the method for producing the compound superconducting stabilizing thin plate comprises copper-gallium (gallium concentration 10-2
By explosively bonding a vanadium superconductor on both sides of the alloy (0 atomic%) and then explosively bonding or pressure-bonding a stabilizing metal good conductor such as copper, silver, or aluminum to both outer sides, these copper-gallium alloys and vanadium The superconductor and the stabilizing metal good conductor are firmly bonded to each other, and the five-layer body thus obtained is processed to a desired thickness by forging, rolling or other machining, and then heated at a temperature of 71,500°C to 750°C for 30 minutes. minutes ~ 2
00 hours of heat treatment.

好ましくは、上記合金および超電導体と上記安定化用金
属良導体との厚さの比は1:1〜1:20の範囲に選定
され得る。
Preferably, the thickness ratio of the alloy or superconductor to the stabilizing metal good conductor may be selected in the range of 1:1 to 1:20.

[作    用  コ 本発明の方法によれば第一工程では銅−スズ(スズ濃度
5〜15重量%)合金を中にしてその両側にニオブ(ま
たは少量のチタンを含むニオブ)が爆着される。または
銅−ガリウム台金(ガリウム濃度10〜20H子%)の
両側にバナジウムが爆着される。第二工程では第一工程
で形成されたニオブ/銅−スズ/ニオブまたはバナジウ
ム/銅−ガリウム/バナジウムのクラツド材の両側にさ
らに銅、銀、アルミニウム等の安定化用金属良導体が爆
着される。
[Function] According to the method of the present invention, in the first step, niobium (or niobium containing a small amount of titanium) is explosively deposited on both sides of a copper-tin (tin concentration: 5 to 15% by weight) alloy. . Alternatively, vanadium is explosively deposited on both sides of a copper-gallium base metal (gallium concentration 10 to 20 H%). In the second step, a good stabilizing metal conductor such as copper, silver, or aluminum is further explosively bonded to both sides of the niobium/copper-tin/niobium or vanadium/copper-gallium/vanadium clad material formed in the first step. .

以上の工程において良導体(#l、 !、アルミニウム
等)と銅−スズまたは銅−ガリウム合金とは直接に隣り
合って接してはならない、すなわち後の工程で安定化用
金属良導体中にスズやガリウムが拡散して良導体の電気
伝導度や熱伝導度が低下するのを防止するようにされる
In the above process, the good conductor (#l, !, aluminum, etc.) and the copper-tin or copper-gallium alloy must not come into direct contact next to each other. This is to prevent the electrical conductivity and thermal conductivity of the good conductor from decreasing due to diffusion.

このようにして得られた、例えば銅/ニオブ/銅−スズ
/ニオブ/Iの五層クラツド材を鍛造、圧延等によって
機械加工され、所望の厚さ例えば0.05〜1Ill+
に形成される。この加工工程の間に何度かの焼きなまし
を行う必要があるが、ニオブと銅−スズ合金との界面で
ニオブ−スズの反応が起こらない温度で中間焼鈍するこ
とが必要である。
The thus obtained five-layer clad material, for example, copper/niobium/copper-tin/niobium/I, is machined by forging, rolling, etc. to a desired thickness, for example, 0.05 to 1 Ill+.
is formed. Although it is necessary to perform several annealing operations during this processing step, it is necessary to carry out intermediate annealing at a temperature at which a niobium-tin reaction does not occur at the interface between the niobium and the copper-tin alloy.

所望の熱さに加工した五層クラッド薄板は真空中まなは
不活性雰囲気中において、500℃〜150°Cの温度
で30分〜200時間の反応熱処理され、それによって
ニオブと銅−スズとの界面においてニオブ−スズを拡散
反応させ、超電導金属間化合物Nb3Snが形成される
The five-layer clad sheet processed to the desired temperature is subjected to a reaction heat treatment in vacuum or in an inert atmosphere at a temperature of 500°C to 150°C for 30 minutes to 200 hours, thereby forming the niobium and copper-tin interface. niobium-tin undergoes a diffusion reaction to form a superconducting intermetallic compound Nb3Sn.

なお銅−スズ、ニオブにかえてバナジウムを用いること
により、Nb  Snにかわってv3Gaを得ることが
できる。
Note that by using vanadium instead of copper-tin or niobium, v3Ga can be obtained instead of NbSn.

[実   施   例] 以下添付図面を参照して本発明の実施例について説明す
る。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

第1図および第2図には本発明による方法の一実施例を
示し、厚さ 1.7+m@−13重量%スズ合金板1の
両側に厚さ1圓のニオブ板2.3をまず爆着し、さらに
その両面に厚さ10mの銅板4.5をそれぞれ爆着して
200x 300mの厚板を形成した。
1 and 2 show an embodiment of the method according to the present invention, in which niobium plates 2.3 with a thickness of 1 round are first bombarded on both sides of a tin alloy plate 1 with a thickness of 1.7+m@-13% by weight. A 200 x 300 m thick plate was formed by explosively bonding 4.5 copper plates each having a thickness of 10 m on both sides of the plate.

この厚板を圧延加工と中間焼鈍とを繰り返して厚さ1 
m 、福200maの薄板に形成しこれをI X 1O
−5Torr以上の真空中で700℃、24時間の熱処
理を行った。その結果第2図に示すように銅−13重量
%スズ合金層1′と、ニオブ層2’ 、3’と、銅層4
’、5’と、銅−13重置火スズ合金層1′および各ニ
オブ層2’、3’間にそれぞれ反応生成された Nb3
Sn! 6.7とから成る化合物超電導安定化薄板が得
られた。この場合反応生成した各Nb3Sn層6.7の
厚さは5〜10μmであった。
This thick plate is repeatedly rolled and intermediately annealed to a thickness of 1
m, formed into a thin plate of Fuku 200 m, and then I
Heat treatment was performed at 700° C. for 24 hours in a vacuum of −5 Torr or higher. As a result, as shown in FIG. 2, a copper-13% by weight tin alloy layer 1', niobium layers 2' and 3', and a copper layer 4
', 5', and the copper-13 superimposed pyrotin alloy layer 1' and each niobium layer 2', 3'.
Sn! A compound superconducting stabilized thin plate consisting of 6.7 was obtained. In this case, the thickness of each Nb3Sn layer 6.7 produced by the reaction was 5 to 10 μm.

こうして得られた幅広の薄板から幅5鴎、長さ50mの
試料を作り、その超電導臨界電流密度を磁界中4.2に
で測定したところ次表の結果が得られた。
A sample with a width of 5 m and a length of 50 m was made from the thus obtained wide thin plate, and its superconducting critical current density was measured at 4.2 m in a magnetic field, and the results shown in the following table were obtained.

次にこのようにして構成された化合物超電導安定化薄板
の使用例について説明する。
Next, an example of use of the compound superconducting stabilizing thin plate constructed in this manner will be described.

まず第3図を参照して磁気遮蔽体として使用する場合に
ついて説明すると、上記実施例に従って製作した化合物
超電導安定化薄板を切り抜いて直径10aaの円板8形
成し、これを4.2にの液体ヘリウム中に置き、磁界印
加用超電導マグネット9を用いて円板8に垂直に磁界を
印加した。この円板8に接して前後にホール素子10.
11を配置し、磁界を測定しなところ、円板後方の磁界
は、前方の磁界が0.5Tを越えるまで、ゼロであった
。このことは、実施例に従って製作したNb3Sn化合
物薄板が0.5Tの磁界まで磁気遮蔽をなし得たことを
意味する。これらの例で銅層の厚さは重要な要素であり
、(上記実施例では最終状態において0.04m+)、
超電導体が磁気的に安定な動作をするよう最適な厚さと
する必要がある。上の例ではシールド体としての薄板を
4.2にの液体ヘリウム中に浸漬したが、Nb3Snは
、その超電導臨界温度Tcが17°に〜18°にである
ので冷凍器を用いて冷却することも可能であり、磁気シ
ールドパネルのように構成することもできる。
First, to explain the case of using it as a magnetic shielding body with reference to FIG. 3, the thin compound superconducting stabilizing plate produced according to the above embodiment is cut out to form a disk 8 with a diameter of 10 aa, and this is immersed in liquid of 4.2. The disk 8 was placed in helium, and a magnetic field was applied perpendicularly to the disk 8 using a superconducting magnet 9 for applying a magnetic field. Hall elements 10 are attached to the front and back of this disk 8.
11 and measured the magnetic field, the magnetic field behind the disk was zero until the magnetic field in front exceeded 0.5T. This means that the Nb3Sn compound thin plate manufactured according to the example was able to provide magnetic shielding up to a magnetic field of 0.5T. In these examples the thickness of the copper layer is an important factor (0.04 m+ in the final state in the example above);
The thickness must be optimal so that the superconductor operates in a magnetically stable manner. In the above example, the thin plate serving as the shield body was immersed in liquid helium at step 4.2, but since Nb3Sn has a superconducting critical temperature Tc of 17° to 18°, it must be cooled using a refrigerator. It is also possible to configure it like a magnetic shield panel.

また第4図〜第6図には本発明の化合物超電導安定化薄
板を用いて超電導マグネットを製作する例を示す。
Further, FIGS. 4 to 6 show an example of manufacturing a superconducting magnet using the compound superconducting stabilizing thin plate of the present invention.

第4図の例では、本発明の幅広の薄板を幅5〜10mに
スリット加工してテープ状条片とし、このテープ状条片
を図示したようにパンケーキのように重ね巻きして単位
マグネットモジュールを形成し、この単位マグネットモ
ジュールを複数個重ねることによってソレノイドマグネ
ットが構成される。
In the example shown in Fig. 4, the wide thin plate of the present invention is slit to a width of 5 to 10 m to form a tape-like strip, and the tape-like strip is wound in layers like a pancake as shown in the figure to form a unit magnet. A solenoid magnet is constructed by forming a module and stacking a plurality of unit magnet modules.

また第5図の例では、安定化金属良導体の厚さを最速化
して、大電流密度(10^/am2以上)でマグネット
の運転ができる大電流幅広超電導体マグネットとし構成
されている。
In the example shown in FIG. 5, the thickness of the stabilizing metal good conductor is maximized to form a large current wide superconducting magnet that can operate at a large current density (10^/am2 or more).

さらに第6図の例では、本発明の化合物H電導覆板を図
示したように切り抜いてとツター型マグネットの単位円
板を製作し、円板を複数枚重ねて連続する電流経路をな
すように電気接続することによってビッタ−型マグネッ
トが構成される。
Furthermore, in the example shown in FIG. 6, a unit disk of a tutar-shaped magnet is manufactured by cutting out the compound H conductive cover plate of the present invention as shown in the figure, and a plurality of disks are stacked to form a continuous current path. A bitter type magnet is constructed by electrical connection.

[発明の効果] 以上説明してきたように本発明によれば、中心の合金と
、その両側の超電導合金体と、さらにその外側の銅、銀
、アルミニウム等の良導体(安定化金属)とを爆着、圧
接等によって接合した後、圧延工程に入るので十分に大
きな爆着五層クラッド厚板(またはブロック)に基いて
加工することができ、大きな薄板を容易に得ることがで
き、また超電導体層と各安定止金JF、)aとの密着が
非常に良く、しかもはんだ等を使用しないため超電導体
層と安定化金属層との間の電気および熱の伝導が良い、
従って本発明による化合物超電導安定化薄板は磁界シー
ルド手段として安価で有効な手段となり、また超電導マ
グネットを構成するのに使用した場合には高い電流密度
で運転することができる。
[Effects of the Invention] As explained above, according to the present invention, the central alloy, the superconducting alloy bodies on both sides, and the good conductors (stabilizing metals) such as copper, silver, and aluminum on the outside can be exploded. After bonding by bonding, pressure welding, etc., the rolling process begins, so that it can be processed based on a sufficiently large explosion-bonded five-layer clad plate (or block), and large thin plates can be easily obtained. The adhesion between the layer and each stabilizing metal layer (JF, )a is very good, and since no solder is used, the conduction of electricity and heat between the superconductor layer and the stabilizing metal layer is good.
Therefore, the compound superconducting stabilizing thin plate according to the present invention is an inexpensive and effective means for magnetic field shielding, and can be operated at high current densities when used to construct a superconducting magnet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による化合物超電導安定化薄板を構成す
る各部材を示す概略斜視図、第2図は本発明の方法によ
って形成された化合物超電導安定化薄板の構造を示す部
分拡大断面図、第3図〜第6図は本発明による化合物超
電導安定化薄板の異なる使用例を示す概略図である。 図   中 1′:銅−13重置火スズ合金層 2’、3’:ニオブ層 4′、5′ :f!4層 6.7:NbaSn層 矛1図 十3 図 矛4図     矛5図 矛6図
FIG. 1 is a schematic perspective view showing each member constituting the compound superconducting stabilizing thin plate according to the present invention, FIG. 2 is a partially enlarged sectional view showing the structure of the compound superconducting stabilizing thin plate formed by the method of the present invention, and FIG. 3 to 6 are schematic diagrams showing different examples of use of the compound superconducting stabilizing thin plate according to the present invention. In the figure 1': Copper-13 layered tin alloy layer 2', 3': Niobium layer 4', 5': f! 4th layer 6.7: NbaSn layer 1 Figure 13 Figure 4 Figure 5 Figure 6 Figure

Claims (1)

【特許請求の範囲】 1、銅−スズ(スズ濃度5〜15重量%)または銅−ガ
リウム(ガリウム濃度10〜20原子%)合金層と、こ
の金属層の両側に爆着され、上記合金層と共に超電導体
金属間化合物境界層を形成するニオブまたはニオブ−チ
タン(チタン濃度0.1〜2原子%)またはバナジウム
から成る超電導体層と、上記各超電導体層の外側に爆着
または圧接された銅、銀、アルミニウム等の金属良導体
から成る安定化金属層とを有し、所要の厚さに加工し熱
処理して五層薄板として構成したことを特徴とする化合
物超電導安定化薄板。 2、内側の上記合金層および超電導体層と外側の上記安
定化金属層との厚さの比が1:1〜1:20である特許
請求の範囲第1項に記載の化合物超電導安定化薄板。 3、銅−スズ(スズ濃度5〜15重量%)合金の両側に
ニオブまたはニオブ−チタン(チタン濃度0.1〜2原
子%)の超電導体を爆着し、さらにその両外側に銅、銀
、アルミニウム等の安定化用金属良導体を爆着または圧
接することによりこれら銅−スズ合金と、ニオブまたは
ニオブ−チタン超電導体と、安定化用金属良導体とを互
いに強固に接合し、こうして得られた五層体を鍛造、圧
延その他の機械加工により所望の厚さに加工し、その後
500℃〜750℃の温度で30分〜200時間熱処理
して成ることを特徴とする化合物趙電導安定化薄板製造
法。 4、上記合金および超電導体と上記安定化用金属良導体
との厚さの比が1:1〜1:20の範囲である特許請求
の範囲第3項に記載の化合物超電導安定化薄板製造法。 5、銅−ガリウム(ガリウム濃度10〜20原子%)合
金の両側にバナジウムの超電導体を爆着し、さらにその
両外側に銅、銀、アルミニウム等の安定化用金属良導体
を爆着または圧接することによりこれら銅−ガリウム合
金と、バナジウム超電導体と安定化用金属良導体とを互
いに強固に接合し、こうして得られた五層体を鍛造、圧
延その他の機械加工により所望の厚さに加工し、その後
500℃〜750℃の温度で30分〜200時間熱処理
して成ることを特徴とする化合物超電導安定化薄板製造
法。 6、上記合金および超電導体と上記安定化用金属良導体
との厚さの比が1:1〜1:20の範囲である特許請求
の範囲第5項に記載の化合物超電導安定化薄板製造法。
[Claims] 1. A copper-tin (tin concentration: 5 to 15% by weight) or copper-gallium (gallium concentration: 10 to 20 atomic%) alloy layer, which is explosively deposited on both sides of this metal layer, A superconductor layer consisting of niobium, niobium-titanium (titanium concentration 0.1 to 2 at%), or vanadium, which together form a superconductor intermetallic compound boundary layer, and a superconductor layer that is explosively bonded or pressure-welded to the outside of each superconductor layer. 1. A compound superconducting stabilizing thin plate comprising a stabilizing metal layer made of a good metal conductor such as copper, silver, or aluminum, processed to a required thickness and heat treated to form a five-layer thin plate. 2. The compound superconducting stabilizing thin plate according to claim 1, wherein the thickness ratio of the inner alloy layer and superconductor layer to the outer stabilizing metal layer is 1:1 to 1:20. . 3. Superconductors of niobium or niobium-titanium (titanium concentration 0.1 to 2 at%) are explosively bonded to both sides of the copper-tin (tin concentration 5 to 15% by weight) alloy, and copper and silver are further deposited on both sides of the alloy. The copper-tin alloy, the niobium or niobium-titanium superconductor, and the stabilizing metal good conductor are firmly bonded to each other by explosive bonding or pressure welding with a good stabilizing metal conductor such as aluminum. Manufacture of a compound-based conductive stabilized thin plate characterized by processing a five-layer body to a desired thickness by forging, rolling or other machining, and then heat-treating it at a temperature of 500°C to 750°C for 30 minutes to 200 hours. Law. 4. The method for producing a compound superconducting stabilized thin plate according to claim 3, wherein the thickness ratio of the alloy or superconductor to the stabilizing metal good conductor is in the range of 1:1 to 1:20. 5. A vanadium superconductor is explosively bonded to both sides of the copper-gallium (gallium concentration 10 to 20 at%) alloy, and a good stabilizing metal conductor such as copper, silver, or aluminum is bonded or pressure-bonded to both outer sides of the superconductor. By this, the copper-gallium alloy, the vanadium superconductor, and the stabilizing metal good conductor are firmly bonded to each other, and the five-layer body thus obtained is processed to a desired thickness by forging, rolling, or other machining. A method for producing a compound superconducting stabilized thin plate, which is then heat-treated at a temperature of 500°C to 750°C for 30 minutes to 200 hours. 6. The method for producing a compound superconducting stabilized thin plate according to claim 5, wherein the thickness ratio of the alloy or superconductor to the stabilizing metal good conductor is in the range of 1:1 to 1:20.
JP62128401A 1987-05-27 1987-05-27 Compound superconduction stabilizing thin plate and its manufacture Pending JPS63294615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128401A JPS63294615A (en) 1987-05-27 1987-05-27 Compound superconduction stabilizing thin plate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128401A JPS63294615A (en) 1987-05-27 1987-05-27 Compound superconduction stabilizing thin plate and its manufacture

Publications (1)

Publication Number Publication Date
JPS63294615A true JPS63294615A (en) 1988-12-01

Family

ID=14983881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128401A Pending JPS63294615A (en) 1987-05-27 1987-05-27 Compound superconduction stabilizing thin plate and its manufacture

Country Status (1)

Country Link
JP (1) JPS63294615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742566A (en) * 2017-10-26 2018-02-27 华北电力大学 A kind of superconducting magnet based on NbTi superconduction ring plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742566A (en) * 2017-10-26 2018-02-27 华北电力大学 A kind of superconducting magnet based on NbTi superconduction ring plates

Similar Documents

Publication Publication Date Title
JPS63233577A (en) Superconducting magnetic shielding body
US4043028A (en) Method of fabricating composite superconductors
US3309179A (en) Hard superconductor clad with metal coating
US3534459A (en) Composite superconducting elements
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
US3331041A (en) Superconductor device for shielding or collecting magnetic fields
EP0469894B1 (en) Method of forming a joint between superconducting tapes
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture
US3458293A (en) Metallic laminated superconductors
US3310862A (en) Process for forming niobium-stannide superconductors
JPH0471112A (en) Manufacture of aluminum stabilized super conductor
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
CA1042640A (en) Method for stabilizing a superconductor
US5843584A (en) Superconductive article and method of making
JPS63294620A (en) Superconduction stabilizing thin plate, its manufacture and use
GB2257437A (en) Method for forming triniobium tin superconductor
JPH065342A (en) Superconducting wire connecting method
JP2557442B2 (en) Oxide superconducting wire
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
JP3143932B2 (en) Superconducting wire manufacturing method
GB1160566A (en) Improvements in Superconductors and process for making same
JPH0355011B2 (en)
JPS61289608A (en) Manufacture of compound base superconductive magnet coil
JPS62252012A (en) Compound superconductor wire material and manufacture of thesame
JPH01241781A (en) Connection configuration of oxide-superconductor and connection method thereof