JPS62252012A - Compound superconductor wire material and manufacture of thesame - Google Patents

Compound superconductor wire material and manufacture of thesame

Info

Publication number
JPS62252012A
JPS62252012A JP61093281A JP9328186A JPS62252012A JP S62252012 A JPS62252012 A JP S62252012A JP 61093281 A JP61093281 A JP 61093281A JP 9328186 A JP9328186 A JP 9328186A JP S62252012 A JPS62252012 A JP S62252012A
Authority
JP
Japan
Prior art keywords
wire
situ
compound
superconducting wire
stabilizing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61093281A
Other languages
Japanese (ja)
Other versions
JP2520877B2 (en
Inventor
小西 健二郎
清 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61093281A priority Critical patent/JP2520877B2/en
Publication of JPS62252012A publication Critical patent/JPS62252012A/en
Application granted granted Critical
Publication of JP2520877B2 publication Critical patent/JP2520877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内部安定化インサイチュ化合物超電導線材及び
その製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to improvements in internally stabilized in-situ compound superconducting wires and methods for producing the same.

(従来の技術) 一般にインサイチュ化合物超電導線の製造方法としては
、まず化合物超電導線材例えばNb、Sn。
(Prior Art) Generally, as a method for manufacturing an in-situ compound superconducting wire, first a compound superconducting wire such as Nb or Sn is used.

V、Gaの如きA3B型の化合物であり、Nb、V等の
A金廖とCuの如きマ) IJクスとを溶解急冷してA
金属とC4Lとが微細に入組んだ混晶をインサイチュ鋳
塊という。この鋳塊を減面加工するとCuに囲まれたA
金属の細長い繊維群が形成される。このような複合線材
にB金属例えばスズ、ガリウム等をメッキして加熱する
と拡散してA3B化合物超電導体が見られる。
It is an A3B type compound such as V, Ga, etc., and it is made by dissolving and rapidly cooling A3B type compounds such as Nb, V, etc. and IJ gas such as Cu.
A mixed crystal containing a fine mixture of metal and C4L is called an in-situ ingot. When this ingot is subjected to area reduction processing, A surrounded by Cu
A group of elongated metal fibers is formed. When such a composite wire is plated with a B metal such as tin or gallium and heated, it is diffused to form an A3B compound superconductor.

なお上記のマ) リクスとしては銅以外に純度の高いA
7.Ag等である。又メッキ金属としてはCu、Niの
単体金属或はCu−8nのブロンズ等の合金を使用する
In addition to copper, the matrix mentioned above is A, which has a high purity.
7. Ag etc. As the plating metal, single metals such as Cu and Ni or alloys such as Cu-8n bronze are used.

又線材の断面形状は円形、平角形、テープ状いずれでも
よい。
Further, the cross-sectional shape of the wire may be circular, rectangular, or tape-shaped.

従来インサイチュ化合物超%導線は第1図に示す如き線
材即ち安定化金属1の外周に拡散遮蔽層2を設け、更に
その外側にCu −B /A 、 Bのインサイチュ線
材3を被覆しているもの又は第2図に示す如(Cu−I
3/A3B合金よりなるインサイチュ線材3の外周にC
uメッキによる安定化金属層4を設けて加熱したもの又
は第3図に示す如くCu−B/A3B合金よりなるイン
サイチュテープ3の両側部にハンダ層5を介してCuテ
ープによる安定化金属層6を設けたものがある。
Conventional in-situ compound super% conductive wires have a diffusion shielding layer 2 provided on the outer periphery of a wire rod, that is, a stabilizing metal 1, as shown in FIG. 1, and further coated with an in-situ wire rod 3 of Cu-B/A, B on the outside. Or as shown in Figure 2 (Cu-I
3/C on the outer periphery of the in-situ wire 3 made of A3B alloy
A stabilizing metal layer 4 made of U plating is provided and heated, or a stabilizing metal layer 6 made of Cu tape is placed on both sides of an in-situ tape 3 made of Cu-B/A3B alloy with a solder layer 5 interposed therebetween as shown in FIG. There are some that have.

然しなから第1図のものはインサイチュ化合物が表面に
あるため機械的保護が必要である。又表面状態で冷却条
件が決定されるため不安定になシ易い。又第2図のもの
は表面からの冷却に依存するため線材を太径にすること
が出来ない。従って電流容量が小さい。又第3図のもの
はハンダボイドが出来易く安定化金属が有効に作用しな
いと共にインサイチュ線材部の中央の冷却はその厚みに
支配されるため電流容量を大きくすることが出来ない。
However, the one shown in Figure 1 requires mechanical protection because the in-situ compound is on the surface. Also, since the cooling conditions are determined by the surface condition, it is likely to become unstable. Furthermore, the wire rod shown in FIG. 2 cannot be made to have a large diameter because it relies on cooling from the surface. Therefore, the current capacity is small. In addition, in the case of the one shown in FIG. 3, solder voids are easily generated, the stabilizing metal does not work effectively, and the cooling of the center of the in-situ wire portion is controlled by its thickness, so that the current capacity cannot be increased.

(発明が解決しようとする問題点) 本発明は内部安定化インサイチュ化合物@i電導線の製
造方法の改良に係り、所定の形状を有するインサイチュ
化合物超電導線を得んとするものである。
(Problems to be Solved by the Invention) The present invention relates to an improvement in a method for manufacturing an internally stabilized in-situ compound@i conductive wire, and aims to obtain an in-situ compound superconducting wire having a predetermined shape.

(問題点を解決するための手段) 本発明は、インサイチュA3B化合物超電導線材におい
て、線材の内部及び外周部に安定化金属を配置したこと
を特徴とするものである。
(Means for Solving the Problems) The present invention is characterized in that, in an in-situ A3B compound superconducting wire, a stabilizing metal is disposed inside and on the outer periphery of the wire.

又本発明方法はインサイチュA3B化合物超電導線材を
製造するにおいて、インサイチュ複合材の内部に少くと
も1個の孔を穿設し、該孔に安定化金属または拡散障壁
体で被覆した安定化金属を挿入する第1工程と、その表
面に金属メッキを施す第2工程と、押出す第3工程と、
押出材を減面加工後B合本をメッキし、線材内部にA3
B化合物を形成させる第4工程と、線材外表面に接して
安定化金属を付加する第5工程とからなることを特徴と
するものである。
In addition, the method of the present invention includes forming at least one hole inside the in-situ composite material, and inserting a stabilizing metal or a stabilizing metal coated with a diffusion barrier into the hole in producing an in-situ A3B compound superconducting wire. A first step of plating the surface, a second step of applying metal plating to the surface, and a third step of extruding.
After reducing the area of the extruded material, plate the B joint, and add A3 inside the wire.
This method is characterized by comprising a fourth step of forming a B compound, and a fifth step of adding a stabilizing metal in contact with the outer surface of the wire.

(実施例) 実施例(]) 第4図に示す如くインサイチュCu / Vの鋳塊をア
ーク溶解にし製作し、その表面の不均質部分を外削して
均質なCu / V複合体3(40ψ×1 s o、g
)とした。この中心に16ψの孔を穿設し該孔内に厚さ
1mmのNbzを被覆した安定化銅1(15,8ψX1
35A)を挿入し、真空中にて上端面にCuのフタを電
子ビームで封着した。このビレットに厚さ約30μmの
Cuメッキを施した後700°Cに加熱後押出し101
1ψとし更に減面加工を行った後、圧延によってQ、2
11X5uのテープとした。このテープに真空中でGa
メッキを施し500℃で7日間拡散熱処理を行ってテー
プ内にV、Gaを形成させた。然る後テープ表面に約1
5μmの厚さのCuメッキ4を施して本発明化合物超電
導線材をした。
(Example) Example (]) As shown in Fig. 4, an in-situ Cu/V ingot was produced by arc melting, and the non-uniform parts of the surface were externally milled to form a homogeneous Cu/V composite 3 (40ψ ×1 s o, g
). A hole of 16ψ was drilled in the center of the stabilized copper 1 (15,8ψ×1
35A) was inserted, and a Cu lid was sealed on the upper end surface with an electron beam in a vacuum. This billet was plated with Cu to a thickness of about 30 μm, heated to 700°C, and then extruded 101
After reducing the area to 1ψ and further reducing the area, it was rolled to
The tape was 11×5u. Ga was applied to this tape in vacuum.
Plating was applied and diffusion heat treatment was performed at 500° C. for 7 days to form V and Ga within the tape. After that, about 1
A compound superconducting wire of the present invention was prepared by applying Cu plating 4 with a thickness of 5 μm.

比較例(1) 実施例(1)において中心部に孔を設けることのないC
u / V複合体を使用した以外はすべて実施例(1)
と同様にして比較例化合物超電導線材をした。
Comparative example (1) C without a hole in the center in Example (1)
All Example (1) except that u/V complex was used.
A comparative compound superconducting wire was prepared in the same manner as above.

比較例(2) 比較例(1)のコイルを@酋もどしてテープの両面に約
8μmの銅テープを半田で貼付して比較例化合物超電導
線材をえた。
Comparative Example (2) The coil of Comparative Example (1) was returned to its original position, and copper tape of approximately 8 μm was attached to both sides of the tape by soldering to obtain a comparative compound superconducting wire.

斯くして得た本発明化合物超電導線材及び比較例化合物
超電導線材について、これらのテープを各々30mづ\
使用してパンケーキ状とし1通電実験を行った。その結
果は第1表に示す通りである。
Regarding the thus obtained compound superconducting wire of the present invention and comparative example compound superconducting wire, these tapes were each 30 m long.
A one-time energization experiment was conducted using a pancake-shaped sample. The results are shown in Table 1.

第  1  表 上表から明らかな如く本発明品は15 Tまで全く安定
に通電可能であった。しかし比較例品においては7T及
び1oTで激しい7ラツクスジヤンプ現象をおこし、テ
ープが不安定であることを示した。
As is clear from Table 1, the product of the present invention was able to conduct electricity up to 15 T in a completely stable manner. However, in the comparative example, a severe 7-lux jump phenomenon occurred at 7T and 1oT, indicating that the tape was unstable.

なお比較例(2)においては比較例(1)に比して7T
ゥた程度であり、大きな改善は認められなかり九。
Note that in Comparative Example (2), 7T was lower than in Comparative Example (1).
However, no major improvement was observed.

実施例(2) インサイチュCu / Vの鋳塊をアーク溶解して製作
し、その表面の不均質部を外削して均質なCu / V
複合材(409X15(1#)をえた。この中心に16
9の孔を穿設し、該孔内に厚さluのNbを包被した安
定化銅(14ψX13(1#)を挿入し、真空中にて上
端面にCuの蓋を電子ビームで溶着し密封した後、Cu
 / V複合材1の外周に厚さ約30μm0Cuメツキ
を施しビニレットをえた。
Example (2) An in-situ Cu/V ingot was produced by arc melting, and the non-uniform parts of the surface were externally milled to create a homogeneous Cu/V ingot.
I got a composite material (409X15 (1#).In the center of this
A hole of No. 9 was drilled, and a stabilized copper (14ψX13 (1#)) covered with Nb with a thickness of lu was inserted into the hole, and a Cu lid was welded to the upper end surface using an electron beam in a vacuum. After sealing, Cu
/ The outer periphery of the V composite material 1 was plated with 0Cu to a thickness of about 30 μm to obtain vinylet.

このビユレットをAr雰囲気中にて700℃に加熱して
押出し10ψの線材とし、更に減面加工を行って0.2
9の線材をえた。然る後その表面を濃度20−のHNO
,水溶液にて洗浄し、Cu被覆層を除去した。
This billet was heated to 700°C in an Ar atmosphere and extruded into a 10ψ wire rod, which was further reduced in area to 0.2
I got 9 wire rods. After that, the surface was treated with HNO at a concentration of 20-
, and the Cu coating layer was removed by washing with an aqueous solution.

この線材に真空中でGaメッキを施し、500℃にて7
日間拡散熱処理を行りて線材内にV、Gaを形成せしめ
その外側にGaメッキを施して本発明インサイチュV、
Ga超電導線をえた。
This wire was plated with Ga in a vacuum and heated to 500°C for 7
The in-situ V of the present invention is produced by performing a day-long diffusion heat treatment to form V and Ga inside the wire, and then applying Ga plating to the outside thereof.
Ga superconducting wire was obtained.

斯くして得た本発明超電導線を液体He中(4,2K)
で臨界電流密度を測定した結果、磁場10Tで1.8 
X 10’ A/cdという優れた性能を示した。又安
定化銅の全線材断面積に対する占積率を測定した。即ち
HNO,水溶液にて各成分を溶解し、比重を考慮して算
出した結果、目標の12嘩に対し±2%の範囲内にとど
まった。
The thus obtained superconducting wire of the present invention was placed in liquid He (4.2K).
As a result of measuring the critical current density, it is 1.8 in a magnetic field of 10T.
It showed excellent performance of X 10' A/cd. In addition, the space factor of the stabilized copper with respect to the total cross-sectional area of the wire was measured. That is, as a result of dissolving each component in HNO and an aqueous solution and taking specific gravity into consideration, the result remained within a range of ±2% of the target 12%.

実施例(3) 実施例(2)の如くにして押出された109)の線材を
減面加工を施して3ψの線材とした後、その表面を20
哄のHNO,水溶液で洗浄して端波を除去し、真空雰囲
気中で950℃×1時間焼鈍を施してピッチ10uでツ
イスト加工を行い、ロールによる圧延加工に切換えて0
.15 t X 5.3のテープを得た。然る後その両
端面を耳落し加工を行って幅5.0とし、これに真空中
でGaメッキを施し、500℃×7日間の拡散熱処理を
行って本発明インサイチュV、Ga超電テープをえた。
Example (3) The wire rod of 109) extruded as in Example (2) was subjected to area reduction processing to make a 3ψ wire rod, and its surface was reduced to 20
Washing with HNO and aqueous solution to remove edge waves, annealing in a vacuum atmosphere at 950°C for 1 hour, twisting with a pitch of 10u, and switching to rolling with rolls.
.. A tape of 15 t x 5.3 was obtained. Thereafter, both end faces were processed to have a width of 5.0 mm, Ga plating was applied in a vacuum, and diffusion heat treatment was performed at 500°C for 7 days to form the in-situ V, Ga superconductor tape of the present invention. I got it.

斯くして得た本発明超電導テープを液体He中(4,2
K)、テープ長辺に平行な磁場(10T)の下で臨界電
流密度を測定した結果2.lX10”A/dの如く優れ
た性能のものであった。
The thus obtained superconducting tape of the present invention was placed in liquid He (4,2
K), Results of measuring critical current density under a magnetic field (10T) parallel to the long side of the tape 2. The performance was excellent as 1×10”A/d.

又安定化銅の全線材断面積に対する占積率を測定した。In addition, the space factor of the stabilized copper with respect to the total cross-sectional area of the wire was measured.

即ちHNO,水溶液にて各取分を溶解し比重を考慮して
算出した結果、目標の13−に対し±2sの範囲内にと
どまった。
That is, as a result of dissolving each fraction in HNO and aqueous solution and taking specific gravity into consideration, the results remained within the range of ±2 s with respect to the target of 13-.

(効 果) 以上詳述した如く本発明方法によれば安定化銅の占積率
が目m値に極めて近似しうる内部安定化金属を有すると
共に皮むき工程を行うもロスを生ぜしめることなく歩留
のよい超電導線材をうる等顕著な効果を有する。
(Effects) As detailed above, according to the method of the present invention, the space factor of the stabilized copper has an internal stabilizing metal that can be very close to the target m value, and even though the peeling process is performed, no loss is caused. It has remarkable effects such as producing superconducting wire with good yield.

【図面の簡単な説明】 第1図乃至第3図は従来方法によるインサイチ二化合物
超電導線の断面図、第4図は本発明化合物超電導線材の
1例を示す断面図である。 1・・・安定化金属層、2・・・遮蔽層、3・・・安定
化金属層、4・・・安定化金属メッキ層、5・・・ハン
ダ瀬、6・・・安定化金属テープ層。 出願人代理人 弁理士  鈴  江  武  彦第3図 第4図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are cross-sectional views of an in-situ dual compound superconducting wire produced by a conventional method, and FIG. 4 is a cross-sectional view showing an example of the compound superconducting wire of the present invention. DESCRIPTION OF SYMBOLS 1... Stabilizing metal layer, 2... Shielding layer, 3... Stabilizing metal layer, 4... Stabilizing metal plating layer, 5... Soldering layer, 6... Stabilizing metal tape layer. Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)インサイチュA_3B化合物超電導線材において
、線材の内部および外周部に安定化金属を配置したこと
を特徴とする化合物超電導線材。
(1) In-situ A_3B compound superconducting wire, characterized in that a stabilizing metal is arranged inside and on the outer periphery of the wire.
(2)インサイチュA_3B化合物超電導線材を製造す
るにおいて、インサイチュ複合材の内部に少くとも1個
の孔を穿設し、該孔に安定化金属または拡散障壁体で被
覆した安定化金属を挿入する第1工程とその表面に金属
メッキを施す第2工程と押出す第3工程と、押出材を減
面加工後、B元素をメッキし、線材内部にA_3B化合
物を形成させる第4工程と、線材外表面に接して安定化
金属を付加する第5工程とからなることを特徴とする化
合物超電導線材の製造方法。
(2) In producing the in-situ A_3B compound superconducting wire, at least one hole is bored inside the in-situ composite material, and a stabilizing metal or a stabilizing metal coated with a diffusion barrier is inserted into the hole. 1 process, a 2nd process of applying metal plating to the surface, a 3rd process of extruding, a 4th process of plating the extruded material with B element after surface reduction processing, and forming an A_3B compound inside the wire, A method for manufacturing a compound superconducting wire, comprising a fifth step of adding a stabilizing metal in contact with the surface.
JP61093281A 1986-04-24 1986-04-24 Method for producing compound superconducting wire Expired - Lifetime JP2520877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61093281A JP2520877B2 (en) 1986-04-24 1986-04-24 Method for producing compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61093281A JP2520877B2 (en) 1986-04-24 1986-04-24 Method for producing compound superconducting wire

Publications (2)

Publication Number Publication Date
JPS62252012A true JPS62252012A (en) 1987-11-02
JP2520877B2 JP2520877B2 (en) 1996-07-31

Family

ID=14078045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61093281A Expired - Lifetime JP2520877B2 (en) 1986-04-24 1986-04-24 Method for producing compound superconducting wire

Country Status (1)

Country Link
JP (1) JP2520877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261205A (en) * 1988-04-13 1989-10-18 Hitachi Ltd Production of oxide superconductor and apparatus therefor
JPH01294314A (en) * 1988-05-20 1989-11-28 Fujikura Ltd Manufacture of compound type superconductive wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109108A (en) * 1983-11-16 1985-06-14 昭和電線電纜株式会社 Method of producing in-situ method nb3sn superconductive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109108A (en) * 1983-11-16 1985-06-14 昭和電線電纜株式会社 Method of producing in-situ method nb3sn superconductive wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261205A (en) * 1988-04-13 1989-10-18 Hitachi Ltd Production of oxide superconductor and apparatus therefor
JPH01294314A (en) * 1988-05-20 1989-11-28 Fujikura Ltd Manufacture of compound type superconductive wire

Also Published As

Publication number Publication date
JP2520877B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US5134040A (en) Melt formed superconducting joint between superconducting tapes
US3652967A (en) Superconductive magnet
US6543123B1 (en) Process for making constrained filament niobium-based superconductor composite
US4435228A (en) Process for producing NB3 SN superconducting wires
US4665611A (en) Method of fabricating superconductive electrical conductor
JPS6410887B2 (en)
EP0469894B1 (en) Method of forming a joint between superconducting tapes
US3817746A (en) Ductile superconducting alloys
US3372471A (en) Method of manufacturing microwave components
JPS62113306A (en) Complex superconductor and manufacture of the same
JPS5823110A (en) Method of producing nb3sn superconductive wire material
US4367102A (en) Method for the manufacture of a superconductor containing an intermetallic compounds
JPS62252012A (en) Compound superconductor wire material and manufacture of thesame
US7134181B2 (en) Method for producing Nb3Al superconductive wire
US3541680A (en) Method of manufacturing superconducting material
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
JPH05880B2 (en)
JPH0311488B2 (en)
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH0736479B2 (en) Manufacturing method of Nb-Ti superconducting magnetic shield material
JPS60170110A (en) Copper coated nbti superconductive lead
JPH01276511A (en) Oxide superconductive wire rod
JPS5933653B2 (en) Method for producing stabilized superconductor
JPS63294620A (en) Superconduction stabilizing thin plate, its manufacture and use
JPH0358123B2 (en)