JPH0736479B2 - Manufacturing method of Nb-Ti superconducting magnetic shield material - Google Patents

Manufacturing method of Nb-Ti superconducting magnetic shield material

Info

Publication number
JPH0736479B2
JPH0736479B2 JP1275539A JP27553989A JPH0736479B2 JP H0736479 B2 JPH0736479 B2 JP H0736479B2 JP 1275539 A JP1275539 A JP 1275539A JP 27553989 A JP27553989 A JP 27553989A JP H0736479 B2 JPH0736479 B2 JP H0736479B2
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic shield
cold working
shield material
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1275539A
Other languages
Japanese (ja)
Other versions
JPH03136400A (en
Inventor
昭一 松田
繁 南野
郁夫 伊藤
庸宏 清水
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1275539A priority Critical patent/JPH0736479B2/en
Priority to CA 2028242 priority patent/CA2028242C/en
Priority to DE1990628172 priority patent/DE69028172T2/en
Priority to AU64889/90A priority patent/AU629062B2/en
Priority to EP19900120193 priority patent/EP0424835B1/en
Publication of JPH03136400A publication Critical patent/JPH03136400A/en
Priority to US07/809,040 priority patent/US5373275A/en
Publication of JPH0736479B2 publication Critical patent/JPH0736479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はNb-Ti系超電導磁気シールド材の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an Nb-Ti based superconducting magnetic shield material.

(従来の技術) 従来、超電導を利用した磁気シールド材として第1種超
電導体及び第2種超電導体が用いられていた。両者は磁
場の強さによって使い分けられ、第1種超電導体はマイ
スナー効果によりかなり低い磁場までではあるが完全に
磁気シールドすることができる。第2種超電導体は下部
臨界磁場(HC1)と上部臨界磁場(HC2)を有し、HC1
ではかなり低い磁場ではあるがマイスナー効果により完
全磁気シールドすることができる。HC1からHC2の間では
超電導状態と常電導状態の混合状態となり磁気シールド
を行うことができるが、HC2がきわめて高く高磁場の磁
気シールドも可能である。
(Prior Art) Conventionally, type 1 superconductors and type 2 superconductors have been used as magnetic shield materials utilizing superconductivity. Both are properly used depending on the strength of the magnetic field, and the Type 1 superconductor can be completely magnetically shielded by the Meissner effect, although at a considerably low magnetic field. The second-type superconductor has a lower critical magnetic field (H C1 ) and an upper critical magnetic field (H C2 ), and although it is a fairly low magnetic field up to H C1 , it can be completely magnetically shielded by the Meissner effect. Between H C1 and H C2, a magnetic shield can be performed in a mixed state of a superconducting state and a normal conducting state, but H C2 is extremely high and a magnetic field with a high magnetic field is also possible.

従来、第2種超電導体であるNb-Ti系超電導材を用いた
磁気シールド材は、単独では超電導特性が不安定なため
CuやAlの高導電金属を被覆したり、交互に積層した構造
を有し、一般的にテープ状やシート状の形状をしてい
た。
Conventionally, the magnetic shielding material using the Nb-Ti-based superconducting material, which is a type 2 superconductor, has unstable superconducting characteristics by itself.
It had a structure in which it was coated with a highly conductive metal such as Cu or Al, or was alternately laminated, and was generally in the shape of a tape or sheet.

(発明が解決しようとする課題) Nb-Ti系合金においては、磁気シールド特性は超電導体
内部に浸入してきた磁束を析出粒子や転位網のようなピ
ン止め点で捉える力が強いほど高くなる。特に、適切な
熱処理と冷間加工の組合せによってα−Tiの微細粒の析
出が最適な大きさと分布で行われると、磁気シールド特
性は大巾に向上する。
(Problems to be Solved by the Invention) In Nb-Ti based alloys, the magnetic shield property increases as the force to catch the magnetic flux that has penetrated into the superconductor at pinning points such as precipitated particles and dislocation networks increases. Particularly, when the precipitation of α-Ti fine particles is performed with an optimum size and distribution by a combination of appropriate heat treatment and cold working, the magnetic shield characteristics are greatly improved.

一方、超電導材には超電導特性を安定化させるためにCu
やAl等の高導電金属を密着させることが必要である。こ
れは、超電導板内部への磁束の急激な浸入によって発熱
が生じるが、高導電金属板が超電導板の両側に密着して
いることによってすみやかに外部の液体ヘリウム中に放
散させることができることによる。高導電金属を密着さ
せたのちに上記のような磁気シールド特性向上のための
熱処理を行うと、両者間に金属元素の拡散を生じて界面
に脆い金属間化合物、たとえばCu/Nb-Ti超電導材におい
てはCu-Ti化合物等を形成し、その後の加工が不可能に
なったり、わずかな歪みにも材料破壊を生じたりする。
また、超電導材の成分組成が変化して超電導特性が劣化
したり、高導電金属中に不純物元素が拡散して導電性が
悪くなり、安定化特性が低下したりもする。
On the other hand, for superconducting materials, Cu is used to stabilize the superconducting properties.
It is necessary to adhere a highly conductive metal such as Al or Al. This is because heat is generated due to the rapid penetration of magnetic flux into the superconducting plate, but the highly conductive metal plates are in close contact with both sides of the superconducting plate so that they can be quickly diffused into the external liquid helium. When a heat treatment for improving the magnetic shield characteristics as described above is performed after the highly conductive metal is adhered, an intermetallic compound brittle at the interface due to diffusion of a metal element between the two, for example, Cu / Nb-Ti superconducting material In, a Cu-Ti compound or the like is formed, and subsequent processing becomes impossible, or even a slight strain causes material destruction.
Further, the composition of the superconducting material may change to deteriorate the superconducting property, or the impurity element may diffuse into the highly conductive metal to deteriorate the conductivity, resulting in deterioration of the stabilizing property.

したがって、従来利用されてきた高導電金属と超電導材
の薄膜を交互に複合一体化させた構造の磁気シールド材
では、複合一体化後に熱処理を行うことはほぼ不可能で
あり、さらなる磁気シールド特性の向上は望めなかっ
た。
Therefore, it is almost impossible to perform heat treatment after composite integration with a magnetic shield material having a structure in which thin films of a high-conductivity metal and a superconducting material that have been conventionally used are alternately combined and integrated. I couldn't expect any improvement.

そこで、従来超電導材のみにあらかじめ適切な熱処理ま
たは加工を施した後、半田付け、クラッド、または蒸
着,スパッタリング、メッキ等を行うことも試みられた
が,半田付けの場合その導電率がCuやAlに比してあまり
良好でないため安定化特性が劣っていた。さらにはその
機械的強度も低く、密着強度が劣っていた。また、クラ
ッドはある程度の熱間で加工を行わないとその金属的密
着性が良くならないが,不必要な熱が加わるためせっか
くNb-Ti中に析出した微細粒子が分解してしまい、磁気
シールド特性が低下してしまうという問題があった。さ
らに、蒸着、スパッタリング、メッキ等の方法では比較
的容易に付着させることができ、密着性もまあまあであ
るが、薄膜に適し、厚く十分な量を付着させるには時間
がかかりすぎる、コストがかさむ、多層化が容易でない
等の問題があった。
Therefore, it has been attempted to perform soldering, cladding, vapor deposition, sputtering, plating, etc. after subjecting a superconducting material to appropriate heat treatment or processing in advance, but in the case of soldering, the conductivity is Cu or Al. The stability was poor because it was not so good. Furthermore, its mechanical strength was low and the adhesion strength was poor. In addition, the metallic adhesion of the clad does not improve unless it is hot-processed to some extent, but unnecessary heat is added to decompose the fine particles precipitated in Nb-Ti, which results in magnetic shielding properties. However, there was a problem that Furthermore, deposition, sputtering, plating, etc. can be applied relatively easily, and the adhesion is also moderate, but it is suitable for thin films, and it takes too much time to deposit a thick and sufficient amount, and the cost is low. There are problems such as being bulky and not being easy to form multiple layers.

またNb-Ti系超電導線材の場合、時効熱処理を行ってα
−Ti粒子を析出させた後に冷間加工を行って析出粒子を
引き延ばし、同時に導入される転位網と一緒に磁束のピ
ン止め点とするので比較的高磁場に適していた。そこで
Nb-Ti系超電導磁気シールド材においても上記のような
時効熱処理および冷間加工を施したが、線材と異なり、
厚さにもよるがかなり低磁場の範囲ですでにシールド能
力を失ってしまっていた。
In the case of Nb-Ti based superconducting wire, aging heat treatment
-Since the Ti particles were precipitated, cold working was performed to elongate the precipitated particles, which together with the dislocation network introduced at the same time serve as pinning points for the magnetic flux, which was suitable for relatively high magnetic fields. Therefore
The Nb-Ti based superconducting magnetic shield material was also subjected to the aging heat treatment and cold working as described above, but unlike the wire material,
Although it depends on the thickness, it had already lost its shielding ability in the low magnetic field range.

上記課題に鑑み、本発明は高導電金属を自由な体積比率
でNb-Ti系合金超電導材に複合一体化させることでき、
両者交互の多層化も容易で、複合一体化させて良好な金
属的密着性を得た後に適当な熱処理または加工を行うこ
とが可能であり、それによってより一層高い磁気シール
ド特性を有するNb-Ti系超電導磁気シールド材の製造方
法を提供するものである。
In view of the above problems, the present invention is capable of composite-integrating a highly conductive metal into a Nb-Ti alloy superconducting material at a free volume ratio,
Both layers can be easily laminated in multiple layers, and it is possible to perform suitable heat treatment or processing after combining them to obtain good metallic adhesion, and as a result, Nb-Ti with even higher magnetic shielding properties can be obtained. A method for manufacturing a superconducting magnetic shield material.

(課題を解決するための手段) 本発明は、少なくとも1層の導電率の高い金属Cuまたは
AlとNb-Ti系合金とが交互に積層されているNb-Ti系超電
導磁気シールド材の製造方法において、前記導電率の高
い金属からなる筐体状または円筒状中空体中にNbまたは
Taの箔で被覆したNb-Ti系合金の板を少なくとも1層以
上前記導電率の高い金属と交互に積層するよう充填し、
充填率を60%以上としてから前記中空体の端部をふさ
ぎ、内部を真空状態にして溶接密封し一体化複合体と
し、この一体化複合体に加工率30〜98%、温度500〜100
0℃の熱間加工を施し、300〜450℃の温度で1回当りの
保持時間が1〜168時間の熱処理と1回当りの加工率が3
0〜98%の冷間加工を6回以下交互に繰り返し施して板
状または箔状とした後、300〜450℃の温度で保持時間が
1〜1000時間の最終熱処理を施すことを特徴とするNb-T
i系超電導磁気シールド材の製造方法である。最終熱処
理を施した後、加工率が2%以上30%未満の冷間加工を
施すことは好ましい。
(Means for Solving the Problem) The present invention is directed to at least one layer of highly conductive metal Cu or
Al and Nb-Ti alloy is alternately laminated Nb-Ti in the method of manufacturing a superconducting magnetic shield material, Nb or in a housing-like or cylindrical hollow body made of a metal with high conductivity
At least one layer of Nb-Ti alloy plate coated with Ta foil is filled so as to be alternately laminated with the metal having high conductivity,
After the filling rate is 60% or more, the end of the hollow body is closed, the inside is evacuated, and the interior is welded and sealed to form an integrated composite. The integrated composite has a processing rate of 30 to 98% and a temperature of 500 to 100.
Hot working at 0 ℃, heat treatment at a temperature of 300-450 ℃ for 1 to 168 hours, and processing rate of 3
It is characterized in that 0 to 98% of cold working is alternately repeated up to 6 times to form a plate or foil, and then a final heat treatment is performed at a temperature of 300 to 450 ° C. and a holding time of 1 to 1000 hours. Nb-T
This is a method for manufacturing an i-based superconducting magnetic shield material. After the final heat treatment, it is preferable to perform cold working with a working rate of 2% or more and less than 30%.

(作用) 以下、図面を用いて本発明の作用を詳細に説明する。(Operation) Hereinafter, the operation of the present invention will be described in detail with reference to the drawings.

第3図に示すように、通常Nb-Ti系合金層とCuまたはAl
の層を交互に多数積層した多層構造を有する板状または
箔状の超電導磁気シールド材は単層の同一構造の超電導
磁気シールド材に比べて大巾にシールド特性が向上す
る。
As shown in Fig. 3, the Nb-Ti alloy layer and Cu or Al are usually used.
The plate-shaped or foil-shaped superconducting magnetic shield material having a multi-layer structure in which a number of layers are alternately laminated has a significantly improved shield characteristic as compared with a single-layer superconducting magnetic shield material having the same structure.

そのことは次のような理由が挙げられる。シールド特性
が高いのはすなわちピン止め力が大きいからであるが、
一層の厚さが小さい方が何らかの理由で有効なピンが多
数導入されている。これは本発明の場合、より冷間での
加工率が大きくなってピンとなる析出物の析出駆動力が
増大したものと考えられる。また、多層の方がフラック
スジャンプによる局所的な発熱があっても冷却効率が高
く、安定性にもすぐれる。そのために最適なのが本発明
の製造方法である。その中ではCu-TiまたはAl-Ti化合物
が生成しうる温度でのかなりの長時間の熱処理が必要で
あるが、この化合物が生成するとすでに述べたように加
工性が全く悪くなり、その後の良好な加工が不可能にな
る。ここで高導電金属層とNb-Ti系合金層との間に存在
するNbまたはTaのバリヤー層は、熱処理中における両者
間の金属元素の拡散をほとんど防止することができ、し
たがって本発明による磁気シールド材においては良好な
加工性を保ちつつ高い磁気シールド特性を得ることがで
きる。加工性が良いためシールド材の厚さを数10μオー
ダーまで薄くすることができ、シールド材の軽量化が図
れる上に、シールド材単位面積当りの材料費も低減させ
ることができる。
The reasons are as follows. The reason why the shield property is high is that the pinning force is large,
A large number of pins having a smaller thickness have been introduced for some reason. This is considered to be because in the case of the present invention, the cold working rate is increased and the precipitation driving force of the precipitates that become the pins is increased. In addition, the multi-layer has a higher cooling efficiency even if there is a local heat generation due to the flux jump, and is excellent in stability. The manufacturing method of the present invention is optimal for that purpose. Among them, a fairly long heat treatment is required at a temperature at which Cu-Ti or Al-Ti compound can be formed, but when this compound is formed, the workability is completely deteriorated as described above, and the subsequent good Processing becomes impossible. Here, the barrier layer of Nb or Ta existing between the high-conductivity metal layer and the Nb-Ti-based alloy layer can almost prevent the diffusion of the metal element between them during the heat treatment, and thus the magnetic layer according to the present invention can be prevented. With the shield material, high magnetic shield characteristics can be obtained while maintaining good workability. Since the workability is good, the thickness of the shield material can be reduced to the order of several tens of μ, and the weight of the shield material can be reduced and the material cost per unit area of the shield material can be reduced.

また、第1図(b)に示すように導電率の高い金属の筐
体状の中空体3の中にNb-Ti系合金の板1と導電率の高
い金属の板4を交互に積層する方法であるので、両者の
体積比率を自由に選ぶことができ、多層化も容易でその
層数も自由に増やすことができる。Nb-Ti系合金の板を
1層のみ挿入する場合を第1図(a)に示す。ここで中
空体3内部の充填率を60%以上とするのは、60%未満で
は加工初期に各部材にゆがみが生じ、密着性が悪くなっ
たり材料破壊が生じたりするからである。中空体3の形
状としては、第1図にあるような筐体状のほかに第6図
に示すような円筒状のもの等も可能である。
Further, as shown in FIG. 1 (b), the Nb-Ti alloy plate 1 and the metal plate 4 having high conductivity are alternately laminated in the hollow body 3 having a metal structure having high conductivity. Since this is a method, it is possible to freely select the volume ratio of the both, it is easy to make multiple layers, and the number of layers can be increased freely. FIG. 1 (a) shows the case where only one layer of Nb-Ti alloy plate is inserted. Here, the filling rate inside the hollow body 3 is set to 60% or more because when it is less than 60%, each member is distorted in the initial stage of processing, resulting in poor adhesion and material destruction. As for the shape of the hollow body 3, in addition to the housing shape as shown in FIG. 1, a cylindrical shape as shown in FIG. 6 and the like are also possible.

また、第1図(a)及び(b)に示すように、Nb-Ti系
合金の板1は全表面にNbまたはTaの箔2を巻回被覆して
おり、これが熱間加工や熱処理の際Nb-Ti系合金と導電
率の高い金属間の拡散バリヤーとなり、Cu-Tiのような
有害な化合物の形成を防止するため良好な加工性を有
し、かつ十分な熱処理を行って高い磁気シールド特性を
得ることができる。
Further, as shown in FIGS. 1 (a) and 1 (b), the Nb-Ti alloy plate 1 has a Nb or Ta foil 2 wound and coated on the entire surface, which is used for hot working and heat treatment. In this case, it becomes a diffusion barrier between the Nb-Ti alloy and the metal with high conductivity, has good workability to prevent the formation of harmful compounds such as Cu-Ti, and has a high magnetic property by sufficient heat treatment. The shield characteristic can be obtained.

また、第2図(a)及び(b)に示すように筐体状の中
空体3の端部に蓋5をし、内部を真空にして電子ビーム
溶接等で密封するので、その後の熱間加工や熱処理の際
に内部酸化することがなく、各部材間の良好な金属的密
着性が得られて加工性の良い一体化複合体が得られる。
Further, as shown in FIGS. 2 (a) and 2 (b), a lid 5 is attached to the end of the housing-shaped hollow body 3 and the inside is evacuated and sealed by electron beam welding or the like. There is no internal oxidation during processing or heat treatment, and good metallic adhesion between each member is obtained, and an integrated composite having good workability is obtained.

第2図(a)に示すNb-Tiの単層複合体を加工して薄板
状にした後、第2図(c)に示すように積層密封し、加
工して第3図のような多層磁気シールド材7とすること
も可能である。
The Nb-Ti single-layer composite shown in FIG. 2 (a) is processed into a thin plate, and then laminated and sealed as shown in FIG. 2 (c) and processed into a multilayer as shown in FIG. It is also possible to use the magnetic shield material 7.

前記一体化複合体に熱処理及び加工を施す前に熱間加工
を施すのは、ある程度加熱して各部材を軟らかくしたう
えで圧延、鍛造、押出等の方法で圧着させ、良好な金属
的密着性を得るためである。その温度を500〜1000℃と
するのは、500℃未満では各部材、特に軟化温度の高いN
b-Ti系合金がまだ固く十分な密着性が得られず、1000℃
を越えると導電率の高い金属のうちのCuが融点に近付い
て軟らくなりすぎ、Nb-Ti系合金の硬さとの不整合が大
きくなって密着性が低下することによる。ただし、融点
が660℃と低いAlを用いる場合、それ以下の温度で熱間
加工するのはもちろんである。また、その加工率を30〜
98%とするのは、30%未満では温度が高くても十分な密
着性が得られにくく、98%を越えると磁気シールド特性
の向上に必要な冷間加工率が得られなくなるためであ
る。
Before performing heat treatment and processing on the integrated composite, hot working is performed by heating to a certain degree to soften each member, and then pressure-bonding by a method such as rolling, forging, extrusion, and good metal adhesion. Is to get. The temperature is set to 500 to 1000 ° C. because the temperature is less than 500 ° C.
The b-Ti alloy is still hard and sufficient adhesion cannot be obtained.
If it exceeds, the Cu of the metals having high conductivity approaches the melting point and becomes too soft, and the mismatch with the hardness of the Nb-Ti alloy becomes large, resulting in a decrease in adhesion. However, when using Al having a low melting point of 660 ° C., it goes without saying that hot working is performed at a temperature lower than that. In addition, the processing rate is 30 ~
The reason for setting it to 98% is that if it is less than 30%, it is difficult to obtain sufficient adhesion even if the temperature is high, and if it exceeds 98%, the cold working rate necessary for improving the magnetic shield characteristics cannot be obtained.

熱処理温度を300〜450℃とするのは、300℃未満では重
要なピン止め点となるα-Ti微細粒子の析出速度が小さ
過ぎ、時間がかりすぎるからであり、450℃を越えた場
合には析出粒子が粗大化してしまい、かえって磁気シー
ルド特性の低下をまねくためである。熱処理1回当りの
保持時間を1〜168時間とするのは、1時間未満では析
出の絶対量が足らず、168時間を越えた場合には析出が
ほとんど飽和してしまい、それ以上時間を延ばしても顕
著な効果が得られないからである。
The reason why the heat treatment temperature is 300 to 450 ° C is that the precipitation rate of α-Ti fine particles, which is an important pinning point, is too small and the time is too long below 300 ° C. This is because the deposited particles become coarser and rather lead to deterioration of the magnetic shield characteristics. The holding time per heat treatment is set to 1 to 168 hours because the absolute amount of precipitation is insufficient if it is less than 1 hour, and the precipitation is almost saturated if it exceeds 168 hours. This is because a remarkable effect cannot be obtained.

また、析出の駆動力となるのは冷間加工によって導入さ
れた転位、空孔等の格子欠陥であり、熱処理の前にある
程度の冷間加工を施しておくと一層の効果があり、なお
かつ冷間加工と熱処理を交互に繰り返すことはより一層
の効果がある。この繰り返し回数を6回以下としたの
は、6回を越えると各熱処理間の冷間加工率を十分大き
くとれなくなり、その効果もやはり頭打ちとなるからで
ある。
Also, the driving force for precipitation is the lattice defects such as dislocations and vacancies introduced by cold working, and it is more effective if cold working is performed to some extent before the heat treatment. Alternately repeating the hot working and the heat treatment has a further effect. The reason why this number of repetitions is set to 6 times or less is that if it exceeds 6 times, the cold working ratio between the respective heat treatments cannot be made sufficiently high, and the effect also reaches the ceiling.

さらに、熱処理と冷間加工を交互に複数回施す場合、各
熱処理間または最終形状に至るまでの1回当りの冷間加
工率を30〜98%とするのは、30%未満では導入される格
子欠陥の量が不十分で熱処理の効果を生かすことができ
ず、98%を越えると材料の一部または全体が破壊されて
加工不良が生じたり、加工スタート時の厚さが大きくな
りすぎて現実的には製造不可能になったりするからであ
る。
Furthermore, when heat treatment and cold working are alternately performed a plurality of times, the cold working ratio of 30 to 98% per heat treatment or until reaching the final shape is introduced at less than 30%. The amount of lattice defects is insufficient and the effect of heat treatment cannot be utilized. If it exceeds 98%, part or all of the material is destroyed and processing defects occur, or the thickness at the start of processing becomes too large. This is because, in reality, it becomes impossible to manufacture.

また、最終板厚に冷間加工したのち最終熱処理を施すの
は、磁気シールドする範囲の磁場でのピン止め点として
有効なα-Ti粒子の析出物が得られ、かつ先に施された
熱処理にて形成し、加工された析出物との相乗効果があ
るからである。この熱処理の温度範囲を300〜450℃とす
るのは、先に記した熱処理の場合と同じである。また、
保持時間を1〜1000時間とするのは、1時間未満では析
出の絶対値が足らず、1000時間を越えると析出がほとん
ど飽和してしまい、それ以上時間を延ばしても顕著な効
果が得られないからである。
In addition, the final heat treatment after cold working to the final plate thickness is because a precipitate of α-Ti particles effective as a pinning point in the magnetic field in the range of magnetic shielding is obtained, and This is because there is a synergistic effect with the precipitate formed and processed. The temperature range of this heat treatment is set to 300 to 450 ° C. as in the case of the heat treatment described above. Also,
When the holding time is set to 1 to 1000 hours, the absolute value of precipitation is insufficient if it is less than 1 hour, and if it exceeds 1000 hours, the precipitation is almost saturated, and even if the time is further extended, a remarkable effect cannot be obtained. Because.

次に、上記最終熱処理を施した板または箔に加工率2%
以上30%未満の冷間加工を施すと好ましいのは、最終熱
処理上り材よりも特性の向上が見られるからである。加
工率が2%未満では冷間加工の効果が十分でなく、30%
以上では最適な領域を越えて低下が著しいためである。
Next, the plate or foil that has been subjected to the final heat treatment has a processing rate of 2%.
It is preferable to carry out the cold working of not less than 30%, because the properties are improved as compared with the final heat-treated finished material. If the working rate is less than 2%, the effect of cold working is not sufficient, and 30%
This is because in the above, the decrease is remarkable beyond the optimum region.

(実施例) 実施例1 第1図(b)に示すように厚さ0.1mmのNbの箔2を表面
に巻回被覆した厚さ5mm、巾100mm、長さ150mmのNb-46wt
%Ti合金の板1を7枚と厚さだけ2mmに変えた無酸素銅
の板4を6枚、外サイズが厚さ58mm、巾112mm、長さ172
mm、内サイズが厚さ50mm、巾102mm、長さ172mmの無酸素
銅でできた筐体状の中空体3の中に交互に挿入し、第2
図(b)に示すように中空部に適合したサイズの蓋5で
中空体3の両端部をふさぎ、真空引きしながらその合わ
せ目を溶接して密封した一体化複合体とした。
(Example) Example 1 Nb-46wt having a thickness of 5 mm, a width of 100 mm, and a length of 150 mm, which was obtained by winding and covering a surface of a foil 2 of Nb having a thickness of 0.1 mm as shown in Fig. 1 (b).
% Ti alloy plate 1 and 6 oxygen-free copper plates 4 whose thickness is changed to 2 mm, outer size is 58 mm thick, 112 mm wide, 172 mm long.
mm, the inner size is 50 mm thick, the width is 102 mm, and the length is 172 mm.
As shown in FIG. 2B, both ends of the hollow body 3 were covered with a lid 5 having a size adapted to the hollow portion, and the joints were welded and sealed while vacuuming to form an integrated composite body.

しかる後温度750℃まで加熱し、熱間圧延にて厚さ27mm
まで加工し、その後冷間圧延と熱処理を第1表に示すよ
うに施して厚さ0.1mm、直径50mmの円板状サンプルとし
て磁気シールド特性を測定した。その測定の方法は、第
4図に示すように磁気シールドサンプル8を外部磁場B1
(サンプルが無いときの磁場)中に垂直にセットし、サ
ンプルをセットしたときの残留磁場B2をホール素子にて
測定し、以下の式で得られるΔBの大きさで磁気シール
ド特性を評価した。その結果を第1表に示す。
After that, heat up to 750 ℃ and hot-roll it to a thickness of 27 mm.
Then, cold rolling and heat treatment were performed as shown in Table 1 to measure the magnetic shield characteristics as a disk-shaped sample having a thickness of 0.1 mm and a diameter of 50 mm. The method of the measurement, the external field B 1 magnetic shield Sample 8 as shown in FIG. 4
It is set vertically in (magnetic field when there is no sample), the residual magnetic field B 2 when the sample is set is measured by a Hall element, and the magnetic shield characteristic is evaluated by the magnitude of ΔB obtained by the following formula. . The results are shown in Table 1.

ΔB=B1-B2 また、ΔBはB1がある値までは超電導体がホール素子の
ある空間の完全磁気シールドをするのでほぼΔB=B1
関係でΔBは増加するが、あるところから磁束がホール
素子のある空間に浸入するため増加率がぶり始め、次に
ピークをうって漸減する。そこで、 Seff=100×ΔB/B1(%) をシールド効率とし、特にB1=0.5TeslaのときのSeffを
磁気シールド特性を評価する指標とした。B1とΔBの一
般的な関係を第5図に示す。
ΔB = B 1 -B 2 also, .DELTA.B although increases .DELTA.B almost .DELTA.B = relation B 1 because until a certain value B 1 superconductor is a complete magnetic shielding space with Hall elements, from a certain point Since the magnetic flux penetrates into the space with the Hall element, the rate of increase begins to take place, and then it peaks and then gradually decreases. Therefore, Seff = 100 × ΔB / B 1 (%) was used as the shield efficiency, and Seff particularly when B 1 = 0.5 Tesla was used as an index for evaluating the magnetic shield characteristics. The general relationship between B 1 and ΔB is shown in FIG.

尚、第1表における中間加工率とはある熱処理と次の熱
処理の間に行う冷間加工率のことであり、最終加工率と
は最終熱処理の直前に行われる冷間加工率のことであ
る。
The intermediate working rate in Table 1 is the cold working rate performed between one heat treatment and the next heat treatment, and the final working rate is the cold working rate performed immediately before the final heat treatment. .

No.1〜12では、中間加工率、最終加工率、最終熱処理条
件を一定にして、中間熱処理条件とその繰り返し回数を
変えて磁気シールド特性をみた。ただし繰り返し回数が
1回のNo.1と10では中間加工は行わなかった。No.1〜5
において熱処理温度が比較的低い場合は保持時間をかな
り長くし(No.1)、高い場合には保持時間を短か目にし
て繰り返し回数を増やす方が(No.2〜5)磁気シールド
特性は向上した。特にNo.2や3の条件で特性的に高い値
が得られた。
In Nos. 1 to 12, the magnetic shield characteristics were observed by changing the intermediate heat treatment condition and the number of repetitions while keeping the intermediate heat treatment ratio, the final heat treatment ratio, and the final heat treatment conditions constant. However, in No. 1 and 10 in which the number of repetitions was 1, no intermediate processing was performed. No.1 ~ 5
If the heat treatment temperature is relatively low, the holding time should be considerably long (No. 1), and if it is high, the holding time should be short and the number of repetitions should be increased (No. 2 to 5). Improved. Especially under the conditions of No. 2 and 3, high values were obtained characteristically.

No.6〜12は中間熱処理の温度、保持時間、繰り返し回数
の3条件のうち1つずつをNo.1〜5のいずれかに対して
変えたものである。各要件を満たさないためいずれも磁
気シールド特性がきわめて低い。中にはNo.11のよう
に、最終加工の途中で材料破損により加工不能になった
ものもあった。No.13〜14ではNo.2に対し中間熱処理の
繰り返し回数と中間加工率を変えた。中間加工率が限界
に近く、No.2に比べると特性的にはあまり良くない。
In Nos. 6 to 12, one of the three conditions of the temperature of intermediate heat treatment, the holding time, and the number of repetitions was changed with respect to any of Nos. 1 to 5. Since they do not meet the requirements, they all have extremely low magnetic shield characteristics. Some of them, like No. 11, could not be processed due to material damage during the final processing. In Nos. 13 to 14, the number of repetitions of the intermediate heat treatment and the intermediate working rate were changed with respect to No. 2. The intermediate processing rate is close to the limit, and the characteristics are not so good compared to No.2.

No.15はNo.14の中間加工率だけをさらに大きくして99%
にしたが、最終加工の途中で材料破損により加工不能に
なった。
No. 15 is 99% with only the intermediate processing rate of No. 14 further increased.
However, it became impossible to process due to material damage during the final processing.

No.16〜17ではNo.2に対し最終加工率を変えた。最終加
工率が限界に近く、No.16はNo.2に比べると特性的には
あまり良くない。No.17は特性的にはかなり良いが、No.
2に比べるとやや低い。
In No. 16-17, the final processing rate was changed from No. 2. The final processing rate is near the limit, and No. 16 is not so good in characteristics compared to No. 2. No. 17 is quite good in terms of characteristics, but No. 17
A little lower than 2.

No.18はNo.16の中間加工率だけをさらに小さくして25%
にしたが、特性的にきわめて低くなった。
No. 18 is 25% with only the intermediate machining rate of No. 16 further reduced.
However, the characteristics were extremely low.

No.19〜21はNo.2に対し最終熱処理の温度、保持時間の
2条件のうちの1つずつを変えたものである。各要件を
満たさないためいずれも磁気シールド特性がきわめて低
い。
Nos. 19 to 21 are different from No. 2 in one of the two conditions of the final heat treatment temperature and the holding time. Since they do not meet the requirements, they all have extremely low magnetic shield characteristics.

No.22〜23ではNo.2に対し最終熱処理を保持時間のみを
変えた。No.22では、500時間に延ばしたことでかなりの
特性向上が見られた。No.23では限界に近く、特性が低
下している。
In Nos. 22 to 23, only the holding time of the final heat treatment was changed from No. 2. In No. 22, the characteristics were improved considerably by extending the time to 500 hours. No. 23 is close to the limit and the characteristics are degraded.

No.18はNo.23の保持時間をさらに100時間延ばしたもの
であるが、特性がさらに大巾に低下した。
No. 18 is a product in which the holding time of No. 23 was extended by 100 hours, but the characteristics were further deteriorated.

実施例2 実施例1のNo.2と同じ要領で一体化複合体(第1図
(b))を作成し、その後第2表に示すように加工率を
変えて冷間加工を行なったサンプルとし、同様の要領で
磁気シールド特性の測定を行った。ただし、その特性の
指標はNo.2のSeff at 0.5 Tに対する増減の百分率で表
わした。
Example 2 A sample in which an integrated composite body (Fig. 1 (b)) was prepared in the same manner as in No. 2 of Example 1, and then cold worked at different working rates as shown in Table 2. Then, the magnetic shield characteristics were measured in the same manner. However, the index of the characteristic is expressed as a percentage of increase / decrease with respect to No. 2 Seff at 0.5 T.

No.25はNo.2の最終熱処理上り材を加工率15%で冷間加
工したもので、No.2に対し30%の特性向上が見られた。
No.26と27は同上冷間加工の加工率がそれぞれ下限、上
限に近く、No.2に対し若干の特性向上が見られるもの
の、その効果はNo.25に比べてかなり低下している。
No.25 is the No.2 final heat-treated rolled material that was cold-worked at a working rate of 15%, and a characteristic improvement of 30% over No.2 was observed.
Nos. 26 and 27 have the same cold working ratios as the lower limit and the upper limit, respectively, and although a slight improvement in properties can be seen compared to No. 2, the effect is considerably lower than No. 25.

No.28〜29は同上加工率が要件を満たさないものである
が、No.28はNo.2に対し全く特性は変わらなかった。No.
29はNo.2よりも特性の低下が見られた。
No. 28 to 29 are the same as above, but the processing rate does not meet the requirements, but No. 28 did not change the characteristics at all compared to No. 2. No.
In No. 2, the characteristics of No. 29 were lower than those of No. 2.

実施例3 実施例1と同じ要領で一体化複合体(第1図(b))を
作成し、その後の加工を他は同じ条件で熱間加工(この
場合は熱間圧延)の条件のみを第3表のように変えて加
工性及び磁気シールド特性を調べた。加工性はNo.2と同
じ熱処理及び冷間圧延を施し、厚さ0.1mmの最終サイズ
まで良好に加工できたものを◎、途中でコバ割れ、ピン
ホール、破断等の欠陥の生じたものを、その発生サイズ
及び欠陥の大きさ、頻度等で順次○、△、×とした。そ
の結果を磁気シールド特性Seff於0.5Tと共に第3表に示
す。ただしNo.37だけは、その厚さサイズの制約から最
終加工率を31%とした。
Example 3 An integrated composite body (FIG. 1 (b)) was prepared in the same manner as in Example 1, and the subsequent processing was carried out under the same conditions except for hot working (in this case, hot rolling). The workability and the magnetic shield characteristics were examined by changing the values as shown in Table 3. The workability is the same as No.2, which was subjected to the same heat treatment and cold rolling and was successfully processed to a final size of 0.1 mm in thickness, and ◎, and those with defects such as edge cracks, pinholes and breaks in the middle. The order of occurrence, the size of the defect, the frequency, etc. were marked as ◯, Δ, and ×. The results are shown in Table 3 together with the magnetic shield characteristic Seff of 0.5T. However, for No. 37 only, the final processing rate was 31% due to its thickness size restriction.

No.2は第1表No.2と同じものであり、No.30〜31は熱間
加工率を実施例1と同じ54%にし、加熱温度だけを変え
た。その結果No.2が最も良好で欠陥はほとんど発生せ
ず、磁気シールド特性も良好であった。No.30は加熱温
度をかなり低くしたところ特性は非常に良好であるが、
やはり密着性が低下し種々の欠陥が発生した。No.31は
加熱温度をかなり高くしたが、加工性はNo.2とほぼ同等
であるが特性はやや低下した。
No. 2 is the same as No. 2 in Table 1, and Nos. 30 to 31 have the hot working rate of 54%, which is the same as in Example 1, and only the heating temperature is changed. As a result, No. 2 was the best, few defects were generated, and the magnetic shield characteristics were also good. No. 30 has very good characteristics when the heating temperature is made quite low,
After all, the adhesion was lowered and various defects were generated. No.31 had a fairly high heating temperature, but its workability was almost the same as that of No.2, but its properties were slightly degraded.

No.32はNo.30よりさらに加熱温度を低くしたため密着性
が非常に悪く、最終サイズまで至らなかった。No.33で
は加熱温度が高過ぎて、熱間圧延中に加工発熱で銅が溶
ける現象が発生した。
Since the heating temperature of No. 32 was lower than that of No. 30, the adhesion was extremely poor and the final size could not be reached. In No. 33, the heating temperature was too high, and the phenomenon of copper melting due to heat generated during processing occurred during hot rolling.

また、No.34〜37の加熱温度は加工性及び特性の両面か
らみて最も良好だった750℃に固定し、熱間加工率だけ
を変えた。その結果No.34は特性は良好であるが、密着
性不足によると思われる欠陥が若干発生した。No.35は
熱間加工率をきわめて高くしたためにその分冷間加工率
が減少し、特性も大巾に低下した。No.36はNo.34よりさ
らに熱間加工率を小さくしたために密着性不足で材料破
断が相次ぎ、最終サイズまで加工できなった。No.37は
熱間加工率を大きくしすぎたために、その分最終熱処理
後の冷間加工率が31%にとどまり、加工性はまあまあ良
好ではあったが特性は著しく低かった。
Moreover, the heating temperature of Nos. 34 to 37 was fixed at 750 ° C, which was the best in terms of workability and characteristics, and only the hot working rate was changed. As a result, No. 34 had good characteristics, but some defects which were considered to be due to insufficient adhesion occurred. Since No. 35 had an extremely high hot working rate, the cold working rate was reduced by that amount, and the characteristics were significantly reduced. Since No. 36 had a smaller hot working rate than No. 34, adhesion was insufficient and material rupture occurred one after another, making it impossible to machine to the final size. In No. 37, the hot workability was too high, so the cold workability after the final heat treatment was only 31%, and although the workability was reasonably good, the properties were remarkably low.

実施例4 実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際にその充填率を第4表のように変え、No.2と
同じ条件で熱処理、加工を施してその加工性を調査し
た。その評価は実施例3と同様に行なった。その結果を
第4表に示す。尚、実施例1の各一体化複合体の充填率
はいずれも95%であり、実施例ではいずれも最終サイズ
に至るまで良好に加工できた。
Example 4 When an integrated composite body (FIG. 1 (b)) was prepared in the same manner as in Example 1, the filling rate was changed as shown in Table 4, and heat treatment and processing were performed under the same conditions as No. 2. Then, the workability was investigated. The evaluation was performed in the same manner as in Example 3. The results are shown in Table 4. The filling rate of each of the integrated composites of Example 1 was 95%, and in each of the Examples, good processing was possible up to the final size.

No.38は最終サイズ近くで若干の欠陥を生じたがまあま
あの良好な加工性を有していた。しかしNo.39では内部
の密着不良に起因すると思われる材料の破断等が頻発
し、加工性は非常に悪かった。
No. 38 had some defects in the vicinity of the final size, but had moderately good workability. However, in No. 39, the workability was very poor because the material often fractured due to poor internal adhesion.

実施例5 実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際にNbの箔2を全く用いなかったところ、冷間
加工の途中で材料破断が頻発し、またその破断部をSEM
及びEPMAで調査したところCu-Ti化合物が多数検出され
た。
Example 5 When an integrated composite body (Fig. 1 (b)) was prepared in the same manner as in Example 1 and no Nb foil 2 was used, material fracture frequently occurred during cold working, In addition, the broken part is SEM
Moreover, a large number of Cu-Ti compounds were detected by the EPMA and EPMA.

実施例6 実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際に真空中での電子ビーム溶接による密封をい
っさい行わなかったところ、冷間加工の途中で密着不良
によると思われる材料破断が頻発した。これは複合材内
部の接触面が熱間加工時等に酸化され、金属的密着性が
不十分なためと推定された。
Example 6 When an integrated composite body (FIG. 1 (b)) was prepared in the same manner as in Example 1, no sealing by electron beam welding in a vacuum was performed, and it was found that during the cold working, adhesion Frequent material breakage, which is thought to be due to defects. It was presumed that this was because the contact surface inside the composite material was oxidized during hot working and the metal adhesion was insufficient.

実施例7 実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際に無酸素銅の板4及び筐体状の中空体3をす
べて純アルミニウム材に変え、かつ熱間圧延での加熱温
度を520℃にした以外はいずれも第1表と同様の熱処理
及び冷間加工を施したところ、それぞれバラツキの範囲
内で同程度の磁気シールド特性が得られたが、詳細は省
略する。
Example 7 When an integrated composite body (FIG. 1 (b)) was prepared in the same manner as in Example 1, all of the oxygen-free copper plate 4 and the housing-shaped hollow body 3 were changed to pure aluminum materials, and When the same heat treatment and cold working as in Table 1 were applied except that the heating temperature in hot rolling was set to 520 ° C., similar magnetic shield characteristics were obtained within the range of variation, respectively. Details are omitted.

実施例8 実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際にNb-Ti系合金の板1をNb-60wt%Ti合金の板
に変えて他は第1表と同様の熱処理及び冷間加工を施し
たところ、Nb-46wt%Ti合金に比べて1〜2割高く、ま
たバラツキの範囲内で安定した磁気シールド特性が得ら
れたが、詳細は省略する。
Example 8 When an integrated composite body (Fig. 1 (b)) was prepared in the same manner as in Example 1, the Nb-Ti alloy plate 1 was replaced with an Nb-60wt% Ti alloy plate, and the others were used. When subjected to the same heat treatment and cold working as in Table 1, it was 10 to 20% higher than the Nb-46wt% Ti alloy, and stable magnetic shield characteristics were obtained within the range of variation, but details are omitted. To do.

実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際にNb-Ti系合金の板1をNb-30wt%Ti合金の板
に変えて他は第1表と同様の熱処理及び冷間加工を施し
たところ、Nb-46wt%Ti合金に比べて1〜2割低いもの
の、バラツキの範囲内で安定した磁気シールド特性が得
られたが、詳細は省略する。
When an integrated composite body (Fig. 1 (b)) was prepared in the same manner as in Example 1, the Nb-Ti alloy plate 1 was replaced with a Nb-30wt% Ti alloy plate, and the others were shown in Table 1. When the same heat treatment and cold working were performed, a stable magnetic shield characteristic was obtained within the range of variation, although it was 10 to 20% lower than that of the Nb-46 wt% Ti alloy, but details thereof are omitted.

実施例1と同じ要領で一体化複合体(第1図(b))を
作成した際にNb-Ti系合金の板1をNb-40wt%Ti-10wt%Z
r合金の板に変えて他は第1表と同様の熱処理及び冷間
加工を施したところ、Nb-46wt%Ti合金の特性に比べて
約2〜3割低かったものの、それぞれバラツキの範囲内
で安定した磁気シールド特性が得られたが、詳細は省略
する。
When an integrated composite body (Fig. 1 (b)) was prepared in the same manner as in Example 1, the Nb-Ti alloy plate 1 was treated with Nb-40wt% Ti-10wt% Z.
When the heat treatment and cold working similar to those in Table 1 were applied instead of the r alloy plate, it was about 20 to 30% lower than the characteristics of the Nb-46wt% Ti alloy, but within the range of variations. Although stable magnetic shield characteristics were obtained in, the details are omitted.

また、同様にNb-40wt%Ti-50wt%Ta合金の板に変えて他
は第1表と同様の熱処理及び冷間加工を施したところ、
Nb-46wt%Ti合金の特性に比べて約2〜3割低かったも
のの、それぞれバラツキの範囲内で安定した磁気シール
ド特性が得られたが、詳細は省略する。
Also, when the same heat treatment and cold working as in Table 1 were performed except that the plate was made of Nb-40wt% Ti-50wt% Ta alloy,
Although it was about 20 to 30% lower than the characteristics of the Nb-46wt% Ti alloy, stable magnetic shield characteristics were obtained within the respective variations, but details are omitted.

(発明の効果) 以上説明したように、本発明によれば比較例の数倍以
上、場合によっては10倍以上の安定した磁気シールド特
性を得ることができ、かつ安定化金属とNb-Ti系超電導
材との一体化複合体が容易に組み立てられる上に、磁気
シールド特性の大巾向上のために必要な熱処理や冷間加
工を施すことができ、良好な加工性をも有している。し
たがって磁気シールド材を箔状まで薄くすることがで
き、かつ特性も非常に良好であるので、最近の磁気浮上
列車、電磁推進船といった軽量化の要請に答えつつ高性
能をもたらすことができ、その工業的な利用価値は非常
に高いものである。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain stable magnetic shield characteristics of several times or more, and in some cases, 10 times or more of that of the comparative example, and stabilizing metal and Nb-Ti system. In addition to being able to easily assemble an integrated composite with a superconducting material, it can be subjected to heat treatment and cold working necessary for improving the magnetic shield characteristics, and has good workability. Therefore, the magnetic shield material can be thinned to a foil shape, and the characteristics are also very good, so it is possible to bring high performance while responding to the recent demand for weight reduction such as magnetic levitation trains and electromagnetic propulsion ships. Its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は無酸素銅の筐体状の中空体の中にNb箔を
巻回被覆したNb-Ti系合金の板1層を挿入したところを
示す図、第1図(b)はNb-Ti系合金の板と無酸素銅の
板とを交互に多層化して挿入したところを示す図、第2
図(a)は第1図(a)の一体化複合体の両端に無酸素
銅の蓋をとりつけたものの長手方向の断面を示す図、第
2図(b)は第1図(b)の一体化複合体の両端に無酸
素銅の蓋をとりつけたものの長手方向の断面を示す図、
第2図(c)は第1図(a)の単層複合材を加工して薄
くした後、複数枚重ねて挿入し、両端に無酸素銅の蓋を
とりつけた一体化複合体の長手方向の断面を示す図、第
3図は本発明法により得られた磁気シールド材を示す
図、第4図は磁気シールド材の円板状サンプルを垂直磁
場中に置いて磁気シールド特性を測定する状況を示す
図、第5図は外部磁場を大きくしていったときの磁気シ
ールド特性ΔBmの変化をプロットした図、第6図は同筒
状の中空体中にNb-Ti系合金と導電率の高い金属とを積
層した状況を示す図である。 1……Nb-Ti系合金の板、2……箔、3……中空体、
3′……導電率の高い金属の層、4……導電率の高い金
属の板、5……蓋、6……導電率の高い金属の層、7…
…多層磁気シールド材、8……磁気シールドサンプル。
FIG. 1 (a) is a view showing a case where one layer of Nb-Ti based alloy sheet coated with Nb foil is inserted into a hollow body of oxygen-free copper casing, FIG. 1 (b). Shows a diagram in which Nb-Ti alloy plate and oxygen-free copper plate are alternately laminated and inserted,
FIG. 2 (a) is a view showing a cross section in the longitudinal direction of the integrated composite of FIG. 1 (a) with oxygen-free copper lids attached to both ends, and FIG. 2 (b) is of FIG. 1 (b). The figure which shows the cross section of the longitudinal direction of what attached the lid | cover of oxygen-free copper to the both ends of the integrated composite body,
Fig. 2 (c) shows the single-layer composite material of Fig. 1 (a), which is thinned by processing, then a plurality of sheets are stacked and inserted, and an oxygen-free copper lid is attached to both ends in the longitudinal direction of the integrated composite body. FIG. 3 is a diagram showing a cross section of FIG. 3, FIG. 3 is a diagram showing a magnetic shield material obtained by the method of the present invention, and FIG. 4 is a situation in which a disk-shaped sample of the magnetic shield material is placed in a vertical magnetic field to measure magnetic shield characteristics. Fig. 5 is a diagram plotting the change of the magnetic shield characteristic ΔBm when the external magnetic field is increased, and Fig. 6 is a graph showing the conductivity of Nb-Ti alloy and conductivity in the cylindrical hollow body. It is a figure which shows the condition which laminated | stacked the high metal. 1 ... Nb-Ti alloy plate, 2 ... foil, 3 ... hollow body,
3 '... metal layer with high conductivity, 4 ... metal plate with high conductivity, 5 ... lid, 6 ... metal layer with high conductivity, 7 ...
… Multilayer magnetic shield material, 8 …… Magnetic shield sample.

フロントページの続き (72)発明者 清水 庸宏 山口県光市大字島田3434 新日本製鐵株式 会社光製鐵所内 (72)発明者 佐々木 勉 神奈川県川崎市中原区井田1618 新日本製 鐵株式会社第一技術研究所内Front page continued (72) Inventor Norihiro Shimizu 3434 Shimada, Hikari City, Yamaguchi Pref., Nippon Steel Co., Ltd.Hikari Steel Works (72) Inventor, Tsutomu Sasaki 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Nippon Steel Co., Ltd. Inside the Institute of Technology

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1層の導電率の高い金属Cuまた
はAlとNb-Ti系合金とが交互に積層されているNb-Ti系超
電導磁気シールド材の製造方法において、前記導電率の
高い金属からなる筐体状または円筒状中空体中にNbまた
はTaの箔で被覆したNb-Ti系合金の板を少なくとも1層
以上前記導電率の高い金属と交互に積層するよう充填
し、充填率を60%以上としてから前記中空体の端部をふ
さぎ、内部を真空状態にして溶接密封し一体化複合体と
し、この一体化複合体に加工率30〜98%、温度500〜100
0℃の熱間加工を施し、300〜450℃の温度で1回当りの
保持時間が1〜168時間の熱処理と1回当りの加工率が3
0〜98%の冷間加工を6回以下交互に繰り返し施して板
状または箔状とした後、300〜450℃の温度で保持時間が
1〜1000時間の最終熱処理を施すことを特徴とするNb-T
i系超電導磁気シールド材の製造方法。
1. A method for producing an Nb-Ti-based superconducting magnetic shield material in which at least one layer of a highly conductive metal Cu or Al and an Nb-Ti-based alloy are alternately laminated, wherein the metal having a high conductivity is used. At least one layer of Nb-Ti alloy plate coated with Nb or Ta foil is filled in a case-like or cylindrical hollow body made of, so as to be alternately laminated with the metal having high conductivity, and the filling rate is increased. After 60% or more, the end of the hollow body is closed, the inside is vacuumed and welded and sealed to form an integrated composite, and the integrated composite has a processing rate of 30 to 98% and a temperature of 500 to 100.
Hot working at 0 ℃, heat treatment at a temperature of 300-450 ℃ for 1 to 168 hours, and processing rate of 3
It is characterized in that 0 to 98% of cold working is alternately repeated up to 6 times to form a plate or foil, and then a final heat treatment is performed at a temperature of 300 to 450 ° C. and a holding time of 1 to 1000 hours. Nb-T
Manufacturing method of i-based superconducting magnetic shield material.
【請求項2】最終熱処理を施した後、加工率が2%以上
30%未満の冷間加工を施すことを特徴とする請求項1記
載のNb-Ti系超電導磁気シールド材の製造方法。
2. After the final heat treatment, the processing rate is 2% or more.
The method for producing a Nb-Ti based superconducting magnetic shield material according to claim 1, wherein cold working is performed at less than 30%.
JP1275539A 1989-10-23 1989-10-23 Manufacturing method of Nb-Ti superconducting magnetic shield material Expired - Lifetime JPH0736479B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1275539A JPH0736479B2 (en) 1989-10-23 1989-10-23 Manufacturing method of Nb-Ti superconducting magnetic shield material
CA 2028242 CA2028242C (en) 1989-10-23 1990-10-22 Superconducting magnetic shield and process for preparing the same
DE1990628172 DE69028172T2 (en) 1989-10-23 1990-10-22 Superconducting magnetic shielding and process for its manufacture
AU64889/90A AU629062B2 (en) 1989-10-23 1990-10-22 Superconducting magnetic shield and process for preparing the same
EP19900120193 EP0424835B1 (en) 1989-10-23 1990-10-22 Superconducting magnetic shield and process for preparing the same
US07/809,040 US5373275A (en) 1989-10-23 1991-12-16 Superconducting magnetic shield and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275539A JPH0736479B2 (en) 1989-10-23 1989-10-23 Manufacturing method of Nb-Ti superconducting magnetic shield material

Publications (2)

Publication Number Publication Date
JPH03136400A JPH03136400A (en) 1991-06-11
JPH0736479B2 true JPH0736479B2 (en) 1995-04-19

Family

ID=17556860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275539A Expired - Lifetime JPH0736479B2 (en) 1989-10-23 1989-10-23 Manufacturing method of Nb-Ti superconducting magnetic shield material

Country Status (1)

Country Link
JP (1) JPH0736479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571918B2 (en) * 1996-03-19 2010-10-27 新日本製鐵株式会社 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board
JP4516639B2 (en) * 1998-03-13 2010-08-04 新日本製鐵株式会社 NbTi superconducting multilayer board and manufacturing method thereof
JP6523047B2 (en) * 2015-05-29 2019-05-29 三菱重工機械システム株式会社 Shield body and superconducting accelerator

Also Published As

Publication number Publication date
JPH03136400A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
AU740508B2 (en) Substrates with improved oxidation resistance
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
JP4602911B2 (en) Rare earth tape oxide superconductor
KR102403087B1 (en) Superconducting wire material substrate and method for manufacturing same, and superconducting wire material
WO2014126149A1 (en) Oxide superconducting wire
US3570118A (en) Method of producing copper clad superconductors
WO2018198515A1 (en) Production method for nb3sn superconducting wire rod, precursor for nb3sn superconducting wire rod, and nb3sn superconducting wire rod using same
JP5400416B2 (en) Superconducting wire
US5364709A (en) Insulation for superconductors
KR102188566B1 (en) Superconducting wire material substrate, production method therefor, and superconducting wire material
EP0613192B1 (en) Wire for NB3X superconducting wire
US5373275A (en) Superconducting magnetic shield and process for preparing the same
EP0424835B1 (en) Superconducting magnetic shield and process for preparing the same
JPH0736479B2 (en) Manufacturing method of Nb-Ti superconducting magnetic shield material
US3756788A (en) Laminated magnetic material
JPH05880B2 (en)
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
RU2436199C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
JP6232450B2 (en) Oxide superconducting wire
EP0609804A1 (en) Wire for Nb3X superconducting wire, Nb3x superconducting wire and method of preparing the same
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
JP3178317B2 (en) High strength superconducting wire
JP5650098B2 (en) Rolled copper foil for superconducting film formation
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP4113031B2 (en) NbTi superconducting multilayer board and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 15