JP5400416B2 - Superconducting wire - Google Patents

Superconducting wire Download PDF

Info

Publication number
JP5400416B2
JP5400416B2 JP2009037373A JP2009037373A JP5400416B2 JP 5400416 B2 JP5400416 B2 JP 5400416B2 JP 2009037373 A JP2009037373 A JP 2009037373A JP 2009037373 A JP2009037373 A JP 2009037373A JP 5400416 B2 JP5400416 B2 JP 5400416B2
Authority
JP
Japan
Prior art keywords
layer
substrate
orientation
superconducting wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037373A
Other languages
Japanese (ja)
Other versions
JP2010192349A (en
Inventor
直二 鹿島
重夫 長屋
邦弘 嶋
秀一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Chubu Electric Power Co Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Chubu Electric Power Co Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2009037373A priority Critical patent/JP5400416B2/en
Publication of JP2010192349A publication Critical patent/JP2010192349A/en
Application granted granted Critical
Publication of JP5400416B2 publication Critical patent/JP5400416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、基板上に酸化物超電導材料からなる超電導材層が形成された超電導線材に関し、従来のものよりも特性(臨界電流密度)に優れた超電導線材に関する。   The present invention relates to a superconducting wire in which a superconducting material layer made of an oxide superconducting material is formed on a substrate, and relates to a superconducting wire superior in characteristics (critical current density) than a conventional one.

送電ケーブル等の電力機器等への応用が期待されている超電導材料としては、その基本組成によりいくつかの分類があるが、実用化の観点から有望視されているものとしてYBCO等のRE(希土類)系超電導材料がある。この様な超電導材料は、それ自体は脆く靭性が乏しいことから、線状、テープ状の適宜の金属基板上に超電導材層を形成した超電導材料の状態で利用される。   Superconducting materials that are expected to be applied to power equipment such as power transmission cables are classified according to their basic composition, but RE (rare earth) such as YBCO is considered promising from the viewpoint of practical application. ) There are superconducting materials. Since such a superconducting material itself is brittle and has poor toughness, it is used in the state of a superconducting material in which a superconducting material layer is formed on a linear or tape-like metal substrate.

超電導線材の特性は、その材料組織に左右され、一定の配向組織を有することが要求される。そのため、上記のような多層構造の超電導線材の製造においては、超電導材層形成前に基板表面に配向組織を発現させて、その上にエピタキシャル成長により超電導材層を形成させるのが一般的である。   The characteristics of the superconducting wire depend on its material structure and are required to have a certain orientation structure. Therefore, in the production of a superconducting wire having a multilayer structure as described above, it is general that an oriented structure is developed on the surface of the substrate before the superconducting material layer is formed, and a superconducting material layer is formed thereon by epitaxial growth.

かかる多層構造の超電導線材において、従来から知られている構成として、IBAD基板を用いたものがある。これは、ハステロイ等の適宜の金属基板状に、イオンビーム蒸着等により配向組織を有する表面層(IBAD層)を形成し、その上に適宜の中間層及び超電導材層を形成するものである。このIBAD基板を適用した超電導線材は、基板上に形成された超電導材層の配向性も比較的良好であり、特性上は一応満足のいくものである。しかしながら、このタイプの超電導線材は、IBAD層形成のためのプロセスが複雑であり、生産コストの観点で問題があった。   Among such superconducting wires having a multi-layer structure, there is a structure using an IBAD substrate as a conventionally known configuration. In this method, a surface layer (IBAD layer) having an oriented structure is formed on an appropriate metal substrate such as Hastelloy by ion beam deposition or the like, and an appropriate intermediate layer and superconducting material layer are formed thereon. A superconducting wire using the IBAD substrate has a relatively good orientation of the superconducting material layer formed on the substrate, and is satisfactory in terms of characteristics. However, this type of superconducting wire has a problem in terms of production cost because the process for forming the IBAD layer is complicated.

そこで、基板そのものに配向性を具備させ、その上に超電導材層等を形成した超電導線材が提案されている。このタイプの超電導線材は、加工熱処理による結晶組織の改善により基板表面に配向性を具備させるものであるが、IBAD層のような製造工程が複雑な中間層は不要であり、生産コスト低減が期待できる。この配向性基板を用いた超電導線材としては、例えば、特許文献1には、基板として配向化処理されたNi合金(Ni−W合金)を適用したものが記載されている。   Therefore, a superconducting wire has been proposed in which the substrate itself is provided with orientation and a superconducting material layer or the like is formed thereon. This type of superconducting wire is intended to provide orientation on the substrate surface by improving the crystal structure by thermomechanical treatment, but an intermediate layer with a complicated manufacturing process such as an IBAD layer is unnecessary, and production cost reduction is expected. it can. As a superconducting wire using this oriented substrate, for example, Patent Document 1 describes one in which an oriented Ni alloy (Ni-W alloy) is applied as a substrate.

また、本願発明者等は、超電導材のようなエピタキシャル成長による材料用の基板として純銅からなる配向性基板を見出している(特許文献2)。この銅基板は、純銅の配向性制御の容易性に着目したものであり、結晶軸のずれ角ΔφがΔφ≦6°である{100}<001>立方体集合組織を有する。そして、この基板は、合金元素を含まない純銅の強度不足の問題を、ステンレス等の金属層(支持材)を表面活性化接合により解決したものである。   Further, the inventors of the present application have found an oriented substrate made of pure copper as a substrate for a material by epitaxial growth such as a superconducting material (Patent Document 2). This copper substrate focuses on the ease of controlling the orientation of pure copper, and has a {100} <001> cubic texture in which the crystal axis deviation angle Δφ is Δφ ≦ 6 °. This substrate solves the problem of insufficient strength of pure copper containing no alloy element by surface activated bonding of a metal layer (support material) such as stainless steel.

以上のような配向性基板を適用した超電導線材は、その製造効率・コスト面においては優れたものである。しかしながら、これらの超電導線材は、特性面において不足する或いはより改良を要するものとされている。即ち、ニッケル合金基板や銅合金基板においては、その配向性に劣る面があるため、基板上に超電導材層を形成した超電導線材全体としての特性に関しては改善の余地があるといえる。   A superconducting wire to which the orientation substrate as described above is applied is excellent in terms of manufacturing efficiency and cost. However, these superconducting wires are considered to have insufficient characteristics or require further improvement. That is, since the nickel alloy substrate and the copper alloy substrate have inferior orientation, there can be room for improvement in the characteristics of the entire superconducting wire having a superconducting material layer formed on the substrate.

一方、純銅基板については、ニッケル合金、銅合金に比して基板自体の配向性は改善されているが、純銅であっても配向性の改善には限界がある。ここで、配向性基板の配向性(配向度)は、構成金属の所定の結晶面及びその結晶軸の、基板に対するずれ角(Δφ)により評価されることが多い。純銅基板の配向性は、その製造工程における加工・熱処理の条件の調節により改善されるが、そのような条件設定によってもΔφの下限を5°程度とするのが限界である。また、合金化されていない銅は酸化し易い傾向にあり、純銅基板には表面酸化による中間層、超電導材層の成膜性に問題がある。   On the other hand, with respect to a pure copper substrate, the orientation of the substrate itself is improved as compared with nickel alloys and copper alloys, but there is a limit to the improvement in orientation even with pure copper. Here, the orientation (orientation degree) of the orientation substrate is often evaluated by a deviation angle (Δφ) of a predetermined crystal plane of the constituent metal and its crystal axis with respect to the substrate. The orientation of a pure copper substrate is improved by adjusting the conditions of processing and heat treatment in the manufacturing process, but the limit is that the lower limit of Δφ is about 5 ° even by setting such conditions. Further, copper that has not been alloyed tends to oxidize, and a pure copper substrate has a problem in the film formability of the intermediate layer and the superconducting material layer due to surface oxidation.

特開2007−115562号公報JP 2007-115562 A 特開2008−266686号公報JP 2008-266686A

そこで、本発明は、配向性基板を適用する超電導線材について、基板の配向性を従来よりも改善し、高特性を発揮し得る超電導線材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a superconducting wire that can improve the orientation of the substrate as compared with the conventional superconducting wire to which the oriented substrate is applied, and exhibit high characteristics.

上記の通り、純銅基板の配向性は、比較的良好であるとしても、その改善には一定の限界がある。本発明者等は、純銅基板の配向性改善の問題に対して検討を行ったところ、配向化金属の表面に一定膜厚以下の所定の金属薄膜を形成したとき、その表面における配向性が下地金属層よりも改善される現象を見出した。また、純銅基板上に金属薄膜を形成することで、その後の中間層、超電導材層の成膜性を改善することができ、成膜中の剥離を抑制することができることも見出した。かかる金属薄膜は、下地金属の配向性改善層というべきものであるが、これを利用することで基板表面の配向度を向上させることができ、超電導線材全体の特性改善を図ることができるとして本発明に想到した。   As described above, even if the orientation of the pure copper substrate is relatively good, the improvement has a certain limit. The present inventors have examined the problem of improving the orientation of a pure copper substrate. When a predetermined metal thin film having a certain thickness or less is formed on the surface of the oriented metal, the orientation on the surface is the basis. We found a phenomenon that was improved over the metal layer. Further, it has also been found that by forming a metal thin film on a pure copper substrate, it is possible to improve the film forming properties of the subsequent intermediate layer and superconducting material layer, and to suppress peeling during film formation. Such a metal thin film is supposed to be an orientation improving layer for the base metal. By utilizing this, it is possible to improve the degree of orientation of the substrate surface and to improve the characteristics of the entire superconducting wire. I came up with the invention.

即ち、本発明は、結晶配向金属からなる基板上に、少なくとも1層の中間層と、酸化物超電導材料からなる超電導材層が形成された超電導線材において、前記結晶配向金属からなる基板は、{100}<001>立方体集合組織を有する銅層と、前記銅層の上に形成され、厚さ1〜5000nmのニッケルからなる配向性改善層とからなり、前記基板表面における結晶軸のずれ角ΔφがΔφ≦5°であることを特徴とする超電導線材である。   That is, the present invention relates to a superconducting wire in which at least one intermediate layer and a superconducting material layer made of an oxide superconducting material are formed on a substrate made of a crystallographically oriented metal. 100} <001> a copper layer having a cubic texture, and an orientation improving layer made of nickel having a thickness of 1 to 5000 nm formed on the copper layer, and a crystal axis shift angle Δφ on the substrate surface Is a superconducting wire characterized by Δφ ≦ 5 °.

以下、本発明について詳細に説明する。本発明は、その前提として、配向化された純銅を主体とする基板を備える。上記の通り、純銅が配向性調整に最も優れる金属だからである。この銅層の結晶方位は、面心立方構造であることから{100}<001>立方体集合組織を有する。また、以下に説明する配向性改善層を適用するとしても、銅層の配向性は良好なものが好ましいことはいうまでもない。好ましくは、銅層の配向性は、結晶軸のずれ角Δφが6°以下であるものが好ましい。   Hereinafter, the present invention will be described in detail. The present invention is provided with a substrate mainly composed of oriented pure copper. This is because pure copper is the most excellent metal for adjusting the orientation as described above. The crystal orientation of the copper layer has a {100} <001> cubic texture because it has a face-centered cubic structure. Needless to say, even if the orientation improving layer described below is applied, it is preferable that the copper layer has good orientation. Preferably, the orientation of the copper layer is preferably such that the crystal axis deviation angle Δφ is 6 ° or less.

銅層上に形成される配向性改善層は、ニッケルよりなるが、ニッケルに限定するのは、下地となる銅に対する結晶構造及び格子定数を考慮した点、及び、配向性改善の効果が特に有効に認められるからである。そして、配向性改善層はその厚さとして1〜5000nmとする。これを超える膜厚とした場合、その後に形成する中間層及び超電導材層の成長方位にずれが生じるからであり、また、1nm以下では配向度改善の効果が得られないからである。そして、配向化改善層の膜厚は、100〜3000nmとするのがより好ましい。   The orientation improving layer formed on the copper layer is made of nickel. However, limiting to nickel is that the crystal structure and the lattice constant for the underlying copper are taken into account, and the effect of improving the orientation is particularly effective. It is because it is accepted. And the orientation improvement layer shall be 1-5000 nm as the thickness. This is because if the film thickness exceeds this range, the growth orientation of the intermediate layer and the superconducting material layer to be formed thereafter is shifted, and the effect of improving the orientation degree cannot be obtained at 1 nm or less. The film thickness of the orientation improving layer is more preferably 100 to 3000 nm.

配向性改善層は、めっき等のエピタキシャル成長による方法で形成されるものが好ましい。配向基板の配向性を維持するためである。そして、以上説明した配向性改善層を備える配向基板は、その表面においてΔφが向上し、5°以下となる。   The orientation improving layer is preferably formed by a method using epitaxial growth such as plating. This is to maintain the orientation of the alignment substrate. And an orientation substrate provided with the orientation improvement layer demonstrated above improves (DELTA) phi in the surface, and will be 5 degrees or less.

ところで、本発明者等によれば、配向性改善層をエピタキシャル成長により形成したとき、その表面にサブミクロンオーダーの極めて細かな凹凸が生じる場合がある。これは、エピタキシャル成長では金属結晶が一定の成長方位を指向しつつ、下地に対してcube on cubeの関係で積層する成長機構を有し、最表面においてその成長面と成長方位に応じた凹凸が生じることによる。この凹凸は、極めて細かなものであるが、その上に超電導材層等を形成すると微小なひずみが生じ、特性に影響を及ぼすおそれがある。   By the way, according to the present inventors, when the orientation improving layer is formed by epitaxial growth, extremely fine irregularities of the order of submicron may occur on the surface. This is because the epitaxial growth has a growth mechanism in which the metal crystal is oriented in a constant growth orientation and is laminated in a cube-on-cube relationship with the base, and unevenness is generated on the outermost surface according to the growth surface and the growth orientation. It depends. The irregularities are extremely fine, but if a superconducting material layer or the like is formed on the irregularities, minute distortion occurs, which may affect the characteristics.

そのため、基板上に高品質の超電導材層等を形成するためには、上記のような細かな凹凸のない状態が好ましい。具体的には、その表面粗さが20nm以下とするのが好ましい。尚、本発明での表面粗さとは、算術平均粗さ(Ra)を示す。また、表面粗さの好ましい下限値は0.1nmである。   Therefore, in order to form a high-quality superconducting material layer or the like on the substrate, it is preferable that there is no fine unevenness as described above. Specifically, the surface roughness is preferably 20 nm or less. In addition, the surface roughness in this invention shows arithmetic mean roughness (Ra). Moreover, the preferable lower limit of surface roughness is 0.1 nm.

そして、本発明では、基板表面の表面粗さの観点から、配向性改善層の表面に膜厚相当で30nm以下のパラジウムを含むものが好ましい。このパラジウムが微量添加された場合に表面粗さが改善される理由は、明らかではない。但し、本発明者等の推察では、エピタキシャル成長で形成された配向性改善層表面は、本来、表面エネルギーが高く、平滑となることで安定化しようする傾向にある。このような配向性改善層表面にパラジウムという異種金属が存在すると、配向性改善層の構成金属(ニッケル)に固溶して平滑化を促進する、いわば触媒的作用が生じ、これによりサブミクロンオーダーの凹凸が消失するものと考えている。   In the present invention, from the viewpoint of the surface roughness of the substrate surface, it is preferable that the surface of the orientation improving layer contains palladium having a thickness equivalent to 30 nm or less. The reason why the surface roughness is improved when a small amount of palladium is added is not clear. However, according to the inventor's guess, the surface of the orientation improving layer formed by epitaxial growth has a high surface energy and tends to be stabilized by becoming smooth. When a different kind of metal called palladium is present on the surface of such an orientation improving layer, a catalytic action that promotes smoothing by forming a solid solution in the constituent metal (nickel) of the orientation improving layer occurs, which is on the submicron order. It is thought that the unevenness of the will disappear.

ここで、パラジウムの添加量である「膜厚相当」とは、配向性改善層の表面積と、パラジウムの存在量(重量)及び密度より算出されるものである。このような表現を用いるのは、パラジウムの存在量が極めて少ないものであるため、完全な均一層を形成して配向性改善層を被覆するとは限らず、配向性改善層表面上に点在することがあるからである。この付加量の下限値は、0.5nmである。   Here, “equivalent to the film thickness”, which is the addition amount of palladium, is calculated from the surface area of the orientation improving layer, the abundance (weight) and density of palladium. The use of such an expression is because the amount of palladium present is extremely small, so it does not always form a complete uniform layer and coat the orientation improving layer, but is scattered on the surface of the orientation improving layer. Because there are things. The lower limit of this additional amount is 0.5 nm.

また、後述のように、上記のようなパラジウムの添加による配向性改善層の平滑化は、熱処理により更に促進されるものであるが、熱処理がなされた場合の基板は、その配向性改善層(ニッケル)に下地となる銅が拡散して、配向性改善層がニッケル−銅合金を形成することがある。上記のように平滑性改善の処理は、パラジウムを添加した後に熱処理を行うものであり、この熱処理により銅が配向性改善層に拡散するためである。もっとも、このような合金化が生じても、基板表面の配向性、平滑性には影響は生じない。   Further, as described later, the smoothing of the orientation improving layer by the addition of palladium as described above is further promoted by heat treatment, but the substrate when the heat treatment is performed, the orientation improving layer ( In some cases, the underlying copper diffuses into (nickel) and the orientation improving layer forms a nickel-copper alloy. As described above, the treatment for improving the smoothness is to perform a heat treatment after adding palladium, and this heat treatment diffuses copper into the orientation improving layer. However, even if such alloying occurs, the orientation and smoothness of the substrate surface are not affected.

本発明に係る超電導線材は、以上説明した配向化改善層を備える基板上に超電導材層を形成するものであるが、通常は、基板と超電導材層との間に中間層が形成される。この中間層は、超電導材(YBCO等)と基板を構成する金属との格子定数の差を考慮した緩衝層としての機能、基板(銅)中に含まれる金属元素の拡散を防止するための障壁層としての作用を有するものである。中間層の構成としては、シード層、バリア層、キャップ層の3層構造を有するものが好ましい。また、各中間層は、酸化物、炭化物、窒化物のいずれからなり、厚さ10〜1000nmとするのが好ましい。   The superconducting wire according to the present invention forms a superconducting material layer on a substrate provided with the orientation improving layer described above. Usually, an intermediate layer is formed between the substrate and the superconducting material layer. This intermediate layer functions as a buffer layer in consideration of the difference in lattice constant between the superconducting material (YBCO or the like) and the metal constituting the substrate, and a barrier for preventing the diffusion of metal elements contained in the substrate (copper). It has a function as a layer. The intermediate layer preferably has a three-layer structure of a seed layer, a barrier layer, and a cap layer. Each intermediate layer is made of any of oxide, carbide, and nitride, and preferably has a thickness of 10 to 1000 nm.

中間層の構成材料としては、具体的には、酸化セリウム、ジルコニウム酸化物等の酸化物やLaMnO、LaZrO、GdZrO等の複合酸化物、TiN等の窒化物が挙げられる。酸化物や複合酸化物の場合、ペロブスカイト型、蛍石型の酸化物、複合酸化物が好ましい。特に好ましいのは、シード層は、希土類元素酸化物又は希土類元素を含む複合酸化物からなり、バリア層は、ジルコニウム酸化物を含む酸化物からなり、更に、キャップ層は、希土類元素酸化物又は希土類元素を含む複合酸化物からなるものである。   Specific examples of the constituent material of the intermediate layer include oxides such as cerium oxide and zirconium oxide, composite oxides such as LaMnO, LaZrO, and GdZrO, and nitrides such as TiN. In the case of oxides and complex oxides, perovskite type, fluorite type oxides and complex oxides are preferable. Particularly preferably, the seed layer is made of a rare earth element oxide or a complex oxide containing a rare earth element, the barrier layer is made of an oxide containing zirconium oxide, and the cap layer is made of a rare earth element oxide or a rare earth element. It consists of a complex oxide containing elements.

また、超電導材層を構成する酸化物超電導材料は、RE系超電導材、特に、RE・BaCu超電導材料が好ましく(REは1種又は2種以上の希土類元素)、具体的には、YBCO、SmBCO、GdBCO、Y0.3Gd0.7BCO等が挙げられる。また、超電導材層は、これら超電導材料のみかならなるものの他、超電導特性向上のためにこれら超電導材料とは異なる酸化物を人工ピンとして添加したものでも良い。尚、この超電導材層の厚さは、100nm以上が好ましい。 Further, the oxide superconducting material constituting the superconducting material layer is preferably an RE-based superconducting material, in particular, an RE · Ba 2 Cu 3 O x superconducting material (RE is one or more rare earth elements), specifically YBCO, SmBCO, GdBCO, Y 0.3 Gd 0.7 BCO, and the like. Further, the superconducting material layer may be made only of these superconducting materials, or may be an artificial pin added with an oxide different from these superconducting materials in order to improve superconducting characteristics. The thickness of the superconducting material layer is preferably 100 nm or more.

尚、本発明に係る超電導線材は、強度確保のため基板の裏面に前記基板を支持する補強金属層が接合されたものが好ましい。補強金属層は、ステンレス、ニッケル合金(ハステロイ合金、インコネル合金、インコロイ合金、モネル合金等)のいずれかよりなるものが好ましい。また、配向基板の厚さ、形状については特に限定はなく、板状、箔状、テープ状等、用途に応じた形状が適用できる。   The superconducting wire according to the present invention preferably has a reinforcing metal layer that supports the substrate bonded to the back surface of the substrate in order to ensure strength. The reinforcing metal layer is preferably made of any one of stainless steel and nickel alloy (Hastelloy alloy, Inconel alloy, Incoloy alloy, Monel alloy, etc.). Moreover, there is no limitation in particular about the thickness and shape of an orientation board | substrate, The shape according to a use, such as plate shape, foil shape, and tape shape, is applicable.

また、本発明に係る超電導線材は、超電導材層の表面に安定化層を有していても良い。安定化層は、使用時の超電導層の安定化を図るものであり、導電性金属からなる。好ましくは、銀からなるもの、又は、銀からなる層と銅からなる層が積層されたもの(この場合、超電導材層上に銀層が形成される)が好ましい。そして、その厚さは、10〜1000nmとするのが好ましい。   Moreover, the superconducting wire according to the present invention may have a stabilizing layer on the surface of the superconducting material layer. The stabilizing layer is intended to stabilize the superconducting layer during use, and is made of a conductive metal. Preferably, silver or a layer in which a layer made of silver and a layer made of copper are stacked (in this case, a silver layer is formed on the superconducting material layer) is preferable. And it is preferable that the thickness shall be 10-1000 nm.

本発明に係る超電導線材は、上記説明した基板を製造した後に、中間層、超電導材層を形成して製造される。基板の製造については、純銅からなる板材・線材をもとに、加工率95%以上の冷間加工により帯材(テープ材)とし、非酸化性雰囲気下で熱処理(750℃)することで{100}<001>立方体集合組織を有する配向性の良好な銅層とすることができる。そして、この銅層に配向性改善層を形成する。配向性改善層は、上記のように、エピタキシャル成長に基づく薄膜形成方法が好ましく、PLD(パルスレーザー蒸着法)、CVD(化学気相蒸着法)、スパッタリング法、真空蒸着法、イオンプレーティング法、イオンビーム蒸着法、スピンコーティング法、MBE(分子線エピタキシー法)、めっき法等の各種の薄膜製造プロセスにより製造可能であるが、めっき法が特に好ましい。   The superconducting wire according to the present invention is manufactured by forming the intermediate layer and the superconducting material layer after manufacturing the above-described substrate. For the production of the substrate, a strip material (tape material) is obtained by cold working with a processing rate of 95% or more based on a plate material / wire material made of pure copper, and heat-treated (750 ° C.) in a non-oxidizing atmosphere { 100} <001> A highly oriented copper layer having a cubic texture can be obtained. Then, an orientation improving layer is formed on the copper layer. As described above, the orientation improving layer is preferably a thin film formation method based on epitaxial growth, such as PLD (pulse laser deposition), CVD (chemical vapor deposition), sputtering, vacuum deposition, ion plating, ion Although it can be manufactured by various thin film manufacturing processes such as a beam evaporation method, a spin coating method, MBE (molecular beam epitaxy method), and a plating method, the plating method is particularly preferable.

また、配向性改善層の表面平滑化のためのパラジウム添加の方法としては、配向性改善層の同様の方法が適用でき、めっき法が特に好ましい。そして、配向性改善層の表面平滑化のためには、パラジウム添加後に熱処理を行うことが好ましい。上記で述べたパラジウム添加による触媒的作用を速やかに発揮させるためである。この熱処理温度は400℃以上で、パラジウムの融点以下とするのが好ましい。400℃未満であると、表面を平滑にするための原子の移動が遅くなるからである。また、熱処理の時間は、10分間〜2時間とするのが好ましい。熱処理時間が10分未満であると、表面を平滑にするための原子の移動が不十分となるからであり、2時間を超えて熱処理しても効果に差異が生じないからである。熱処理の雰囲気は、非酸化性雰囲気であれば特に限定されない。   Moreover, as a method of adding palladium for smoothing the surface of the orientation improving layer, the same method of the orientation improving layer can be applied, and a plating method is particularly preferable. In order to smooth the surface of the orientation improving layer, it is preferable to perform a heat treatment after adding palladium. This is for promptly exerting the catalytic action by the addition of palladium as described above. The heat treatment temperature is preferably 400 ° C. or higher and not higher than the melting point of palladium. This is because if the temperature is lower than 400 ° C., the movement of atoms for smoothing the surface becomes slow. The heat treatment time is preferably 10 minutes to 2 hours. This is because if the heat treatment time is less than 10 minutes, the movement of atoms for smoothing the surface becomes insufficient, and even if the heat treatment exceeds 2 hours, there is no difference in effect. The atmosphere of the heat treatment is not particularly limited as long as it is a non-oxidizing atmosphere.

補強金属層を備える超電導材を製造する場合、以上の工程により基板を製造した後、中間層及び超電導層の形成前に補強金属層を接合するのが好ましい。補強金属層と基板との接合方法としては、表面活性化接合を適用するのが好ましい。表面活性化接合とは、被接合部材の接合面について乾式エッチング(表面活性化)を行い、接合面の酸化物、吸着物を除去し、素地(純金属)を露出させた直後に接合する方法である。この方法は、表面に酸化物等の不純物が全くない状態の原子(分子)間で生じる金属原子間力に基づき接合する方法である。表面活性化のための乾式エッチングの具体的な手法としては、アルゴン等のイオンビームエッチング若しくは原子ビームエッチングの他、プラズマエッチングのいずれかが適用できる。この乾式エッチングは、非酸化性雰囲気で行なうことが必要であり、特に、真空下で行なうのが好ましい。   When manufacturing a superconducting material having a reinforcing metal layer, it is preferable to bond the reinforcing metal layer before forming the intermediate layer and the superconducting layer after manufacturing the substrate by the above-described steps. As a method for joining the reinforcing metal layer and the substrate, surface activated joining is preferably applied. Surface activated bonding is a method of bonding immediately after exposing the substrate (pure metal) by performing dry etching (surface activation) on the bonding surfaces of the members to be bonded, removing oxides and adsorbates on the bonding surfaces. It is. This method is a method of joining based on metal atomic force generated between atoms (molecules) having no impurities such as oxides on the surface. As a specific method of dry etching for surface activation, either ion beam etching such as argon or atomic beam etching, or plasma etching can be applied. This dry etching needs to be performed in a non-oxidizing atmosphere, and is particularly preferably performed under vacuum.

表面活性化接合は、無加圧での接合を可能とするものであり、接合対象となる材料を重ね合わせるだけでも接合できる。但し、両材料の位置合わせ、或いは、より強固な接合のために加圧しても良い。もっとも、この場合の加圧力は、材料の変形が生じることのない程度に低圧であって、0.01〜300MPaとするのが好ましい。また、表面活性化接合は、常温での接合が可能である。従って、接合時の加工雰囲気を加熱する必要はない。尚、この接合の際においても、非酸化性雰囲気とすることが好ましい。   The surface activated bonding enables bonding without applying pressure, and can be bonded only by superimposing materials to be bonded. However, pressurization may be performed for alignment of both materials or for stronger bonding. However, the applied pressure in this case is low enough to prevent deformation of the material, and is preferably 0.01 to 300 MPa. Further, surface activated bonding can be performed at room temperature. Therefore, it is not necessary to heat the processing atmosphere at the time of joining. It should be noted that a non-oxidizing atmosphere is also preferable during this bonding.

基板上に中間層となる各酸化物を製造する方法は、PLD法、CVD法、スパッタリング法、イオンプレーティング法、イオンビーム蒸着法、スピンコーティング法、MBEの他、MOD法(金属有機酸塩堆積法)が適用できる。また、超電導材層も同様である。安定化層は、スパッタリングあるいは蒸着などの成膜法により形成される他、これらの方法で銀層を形成した後に箔状の銅層をろう材により接合することで形成できる。   Methods for producing each oxide to be an intermediate layer on a substrate include PLD method, CVD method, sputtering method, ion plating method, ion beam evaporation method, spin coating method, MBE, MOD method (metal organic acid salt) (Deposition method) can be applied. The same applies to the superconducting material layer. The stabilization layer can be formed by a film formation method such as sputtering or vapor deposition, or can be formed by bonding a foil-like copper layer with a brazing material after forming a silver layer by these methods.

以上説明した本発明に係る超電導線材は、基板として、配向性を具備した純銅にその配向性を更に改善するニッケル配向性改善層を備えたものを適用し、これにより高い特性を有する超電導線材とする。本発明は、従来のIBAD基板を用いた超電導線材よりも高性能であり、製造効率・コストの観点からも好ましいものとなっている。   The superconducting wire according to the present invention described above applies a superconducting wire having a high characteristic by applying, as a substrate, a pure copper having orientation with a nickel orientation improving layer for further improving the orientation. To do. The present invention has higher performance than a superconducting wire using a conventional IBAD substrate, and is preferable from the viewpoint of manufacturing efficiency and cost.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

(基板の製造・評価)
第1実施形態:板厚1000μmのテープ状の銅板を用意し、これを圧延ロールで加工率95%に設定して、室温で冷間圧延し50μmのテープ材とした。圧延後、銅板を熱処理して結晶組織を配向化し、{100}<001>立方体集合組織とした。この熱処理は、窒素ガス95%と水素ガス5%とからなる雰囲気中で温度750℃、2時間加熱することにより行った。
(Manufacture and evaluation of substrates)
First embodiment : A tape-shaped copper plate having a plate thickness of 1000 μm was prepared, and this was set to a processing rate of 95% with a rolling roll, and cold-rolled at room temperature to obtain a tape material of 50 μm. After rolling, the copper plate was heat treated to orient the crystal structure, and a {100} <001> cubic texture was obtained. This heat treatment was performed by heating at a temperature of 750 ° C. for 2 hours in an atmosphere composed of 95% nitrogen gas and 5% hydrogen gas.

以上の配向化処理を行った銅板に配向性改善層としてニッケルをめっきした。ニッケルめっきに際しては、基板を酸脱脂、電解脱脂した後ニッケルめっき浴(ワット浴)中で電解めっきを行った。めっき条件は、温度40℃、電流密度1A/dmとし、めっき時間を調製して厚さ500nmのニッケルをめっきした。尚、配向性改善層としてニッケルをめっきで形成する場合においては、電流密度1〜5A/dm、浴温度40〜60℃の範囲内で条件を設定するのが好ましい。 The copper plate subjected to the above orienting treatment was plated with nickel as an orientation improving layer. In the nickel plating, the substrate was subjected to acid degreasing and electrolytic degreasing, followed by electrolytic plating in a nickel plating bath (watt bath). The plating conditions were a temperature of 40 ° C., a current density of 1 A / dm 2 , a plating time was adjusted, and nickel having a thickness of 500 nm was plated. In the case where nickel is formed by plating as the orientation improving layer, it is preferable to set conditions within a range of a current density of 1 to 5 A / dm 2 and a bath temperature of 40 to 60 ° C.

そして、配向性改善層としてニッケルをめっきした銅基板に補強金属層として、事前に圧延された厚さ100μmのテープ状のステンレス(SUS304)板を接合した。ステンレス板の接合は、表面活性化接合装置にて銅基板、ステンレス板の双方の接合面を高速原子ビーム(アルゴン)にて表面活性化し、両者を圧延ロールにて接合した。表面活性化接合時の条件は以下の通りである。
・真空度:10−5Pa
(真空槽、エッチングチャンバ内はアルゴンガス雰囲気下)
・印加電圧:2kV
・エッチング時間:5分間
・接合時加圧力:2MPa
Then, a tape-shaped stainless steel (SUS304) plate having a thickness of 100 μm that was rolled in advance as a reinforcing metal layer was joined to a copper substrate plated with nickel as the orientation improving layer. For joining the stainless steel plates, the surface of both the copper substrate and the stainless steel plate was activated with a high-speed atomic beam (argon) using a surface activated joining device, and both were joined with a rolling roll. The conditions during surface activated bonding are as follows.
・ Degree of vacuum: 10 −5 Pa
(The inside of the vacuum chamber and etching chamber is in an argon gas atmosphere)
-Applied voltage: 2 kV
・ Etching time: 5 minutes ・ Pressure applied during bonding: 2 MPa

第2実施形態:ここでは、第1実施形態において、配向性改善層の表面にパラジウムを添加して平滑性を改善した基板を製造し超電導線材を製造した。第1実施形態と同様にして配向処理した銅に、配向性改善層(ニッケル)をめっきし、更に、パラジウムをめっきにより添加した。めっきは、市販のパラジウムめっき液を用い、浴温30〜50℃、電流密度1〜3A/dmめっき時間を調整して膜厚相当の付加量を調整した。そして、パラジウム添加後、非酸化性雰囲気中で700℃で1時間の熱処理し表面の平滑化処理を行った。その後、第1実施形態と同様に、中間層、超電導材層を形成した。 Second Embodiment : Here, in the first embodiment, a substrate having improved smoothness by adding palladium to the surface of the orientation improving layer was manufactured to manufacture a superconducting wire. An orientation improving layer (nickel) was plated on copper subjected to orientation treatment in the same manner as in the first embodiment, and palladium was further added by plating. For the plating, a commercially available palladium plating solution was used, and a bath temperature of 30 to 50 ° C. and a current density of 1 to 3 A / dm 2 were adjusted to adjust the addition amount corresponding to the film thickness. Then, after the addition of palladium, the surface was smoothed by heat treatment at 700 ° C. for 1 hour in a non-oxidizing atmosphere. Thereafter, similar to the first embodiment, an intermediate layer and a superconducting material layer were formed.

以上の第1、2実施形態における基板について、配向性改善層表面の表面粗さ及び配向度(Δφ)を測定した。測定は、中間層及び超電導材層形成前の基板表面について、AFM(原子間力顕微鏡)観察、X線回折分析(φスキャン)を行うことにより表面粗さとΔφを測定した。また、比較として配向性改善層の形成前の純銅基板についての値も測定した。表1にその結果を示す。   About the board | substrate in the above 1st, 2nd embodiment, the surface roughness and orientation degree ((DELTA) (phi)) of the orientation improvement layer surface were measured. In the measurement, the surface roughness and Δφ were measured by performing AFM (atomic force microscope) observation and X-ray diffraction analysis (φ scan) on the substrate surface before forming the intermediate layer and the superconducting material layer. Moreover, the value about the pure copper substrate before formation of an orientation improvement layer was also measured as a comparison. Table 1 shows the results.

Figure 0005400416
Figure 0005400416

表から、配向性改善層としてニッケルをめっきすることで、基板表面の配向性が改善され、Δφを5°未満とすることができることがわかる。また、配向性改善層にパラジウムを微量添加し、熱処理を行った第2実施形態についてみると、表面粗さが低減され平滑化がなされていることがわかる。   From the table, it can be seen that by plating nickel as the orientation improving layer, the orientation of the substrate surface is improved and Δφ can be less than 5 °. Moreover, when it sees about 2nd Embodiment which added trace amount palladium to the orientation improvement layer and heat-processed, it turns out that surface roughness is reduced and smoothing is made | formed.

(超電導線材の製造・評価)
以上の工程で製造した配向性基板に中間層、超電導材層を形成し、テープ状の超電導線材とした。本実施形態で製造した超電導線材の構成は表2の通りである。これらの中間層、超電導材層はPLD法にて形成した。
(Manufacturing and evaluation of superconducting wire)
An intermediate layer and a superconducting material layer were formed on the oriented substrate manufactured by the above steps to obtain a tape-shaped superconducting wire. Table 2 shows the configuration of the superconducting wire manufactured in this embodiment. These intermediate layer and superconducting material layer were formed by the PLD method.

Figure 0005400416
Figure 0005400416

そして、各実施形態における配向性改善層及び平滑化の効果を確認するために、各超電導線材の特性(臨界電流密度)を評価した。その結果を表3に示す。この評価では、配向性改善層のない基板を用いた場合(比較例)、及び、IBAD基板に同様の中間層、超電導材層を形成した超電導線材(従来例)についても測定した。   And in order to confirm the effect of the orientation improvement layer and smoothing in each embodiment, the characteristic (critical current density) of each superconducting wire was evaluated. The results are shown in Table 3. In this evaluation, measurements were also made on a superconducting wire (conventional example) in which a substrate without an orientation improving layer was used (comparative example) and a similar intermediate layer and superconducting material layer were formed on an IBAD substrate.

Figure 0005400416
Figure 0005400416

表3から、配向性改善層としてニッケルをめっきした純銅基板を適用した超電導線材は、IBAD基板を適用するものと同等以上の臨界電流密度を有し良好な特性を有することがわかる。特に、その中でも配向性改善層に更に平滑性改善処理を行った第2実施形態に係る超電導線材は、従来例に対して倍以上の臨界電流密度を示す。   From Table 3, it can be seen that the superconducting wire to which the pure copper substrate plated with nickel is applied as the orientation improving layer has a critical current density equal to or higher than that to which the IBAD substrate is applied and has good characteristics. In particular, the superconducting wire according to the second embodiment in which the orientation improving layer is further subjected to the smoothness improving treatment exhibits a critical current density that is twice or more that of the conventional example.

尚、比較例とした配向性改善層を形成していない純銅基板については、中間層形成後に中間層の剥離が生じ、超電導線材への加工自体が不可能であった。これにより、配向性改善層は、基板の配向度を改善するのみでなく、その後に形成される中間層、超電導材層を安定的に形成させる機能を有し、純銅基板を超電導線材へ適用する上で不可欠なものであることが確認できた。   In addition, about the pure copper board | substrate which does not form the orientation improvement layer used as a comparative example, peeling of the intermediate | middle layer occurred after intermediate | middle layer formation, and the process to a superconducting wire itself was impossible. Thereby, the orientation improving layer not only improves the degree of orientation of the substrate, but also has a function of stably forming the intermediate layer and the superconducting material layer to be formed thereafter, and applies the pure copper substrate to the superconducting wire. It was confirmed that it was essential.

以上説明したように、本発明に係る超電導線材は、従来のIBAD基板を用いた超電導線材よりも高性能であり、製造効率・コストの観点からも好ましいものとなっている。本発明は、送電ケーブル等の各種電力機器への超電導材料の適用可能性を広げるものである。   As described above, the superconducting wire according to the present invention has higher performance than a conventional superconducting wire using an IBAD substrate, and is preferable from the viewpoint of manufacturing efficiency and cost. The present invention broadens the applicability of superconducting materials to various power devices such as power transmission cables.

Claims (7)

結晶配向金属からなる基板上に、少なくとも1層の中間層と、酸化物超電導材料からなる超電導材層が形成された超電導線材において、
前記結晶配向金属からなる基板は、{100}<001>立方体集合組織を有する銅層と、前記銅層の上に形成され、厚さ1〜5000nmのニッケルからなる配向性改善層とからなり、
前記配向性改善層は、その表面にパラジウムを膜厚相当で30nm以下含み、基板表面の表面粗さ(Ra)が20nm以下であり、
前記基板表面における結晶軸のずれ角ΔφがΔφ≦5°であることを特徴とする超電導線材。
In a superconducting wire in which at least one intermediate layer and a superconducting material layer made of an oxide superconducting material are formed on a substrate made of a crystal-oriented metal,
The substrate made of the crystal orientation metal comprises a copper layer having a {100} <001> cubic texture, and an orientation improving layer made of nickel having a thickness of 1 to 5000 nm formed on the copper layer,
The orientation improving layer includes palladium on its surface in a film thickness equivalent to 30 nm or less, and the surface roughness (Ra) of the substrate surface is 20 nm or less,
A superconducting wire having a crystal axis shift angle Δφ on the substrate surface of Δφ ≦ 5 °.
中間層は、シード層、バリア層、キャップ層の3層構造を有し、各中間層は、酸化物、炭化物、窒化物のいずれからなり、それぞれ厚さ10〜1000nmである請求項1記載の超電導線材。 2. The intermediate layer according to claim 1, wherein the intermediate layer has a three-layer structure of a seed layer, a barrier layer, and a cap layer, and each intermediate layer is made of any of oxide, carbide, and nitride, and has a thickness of 10 to 1000 nm . Superconducting wire. シード層は、希土類元素酸化物又は希土類元素を含む複合酸化物からなり、バリア層は、ジルコニウム酸化物を含む酸化物からなり、更に、キャップ層は、希土類元素酸化物又は希土類元素を含む複合酸化物からなる請求項2記載の超電導線材。 The seed layer is made of a rare earth element oxide or a complex oxide containing rare earth elements, the barrier layer is made of an oxide containing zirconium oxide, and the cap layer is made of a rare earth element oxide or a complex oxide containing rare earth elements. The superconducting wire according to claim 2, which is made of a material. 超電導材層は、RE系超電導材料である請求項1〜請求項3のいずれかに記載の超電導線材。 The superconducting wire layer according to any one of claims 1 to 3 , wherein the superconducting material layer is an RE-based superconducting material. 基板の裏面に前記基板を支持する補強金属層が接合された請求項1〜請求項4のいずれかに記載の超電導線材。 The superconducting wire according to any one of claims 1 to 4 , wherein a reinforcing metal layer that supports the substrate is bonded to a back surface of the substrate. 超電導材層の表面に導電性金属からなる安定化層を有する請求項1〜請求項5のいずれかに記載の超電導線材。 The superconducting wire according to any one of claims 1 to 5 , further comprising a stabilizing layer made of a conductive metal on a surface of the superconducting material layer. 安定化層は、銀、又は、銀からなる層と銅からなる層とが積層されたものである請求項6記載の超電導線材。 The superconducting wire according to claim 6 , wherein the stabilization layer is a laminate of silver or a layer made of silver and a layer made of copper.
JP2009037373A 2009-02-20 2009-02-20 Superconducting wire Expired - Fee Related JP5400416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037373A JP5400416B2 (en) 2009-02-20 2009-02-20 Superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037373A JP5400416B2 (en) 2009-02-20 2009-02-20 Superconducting wire

Publications (2)

Publication Number Publication Date
JP2010192349A JP2010192349A (en) 2010-09-02
JP5400416B2 true JP5400416B2 (en) 2014-01-29

Family

ID=42818152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037373A Expired - Fee Related JP5400416B2 (en) 2009-02-20 2009-02-20 Superconducting wire

Country Status (1)

Country Link
JP (1) JP5400416B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356134B2 (en) 2009-07-10 2013-12-04 住友電気工業株式会社 Substrate, substrate manufacturing method, superconducting wire, and superconducting wire manufacturing method
JP5096422B2 (en) 2009-07-10 2012-12-12 住友電気工業株式会社 Substrate and superconducting wire manufacturing method
JP5411958B2 (en) * 2012-03-22 2014-02-12 中部電力株式会社 Alignment substrate for epitaxial film formation and manufacturing method thereof
JP6244142B2 (en) * 2013-09-04 2017-12-06 東洋鋼鈑株式会社 Superconducting wire substrate, manufacturing method thereof, and superconducting wire
WO2016129469A1 (en) * 2015-02-12 2016-08-18 住友電気工業株式会社 Superconducting wire material production method and superconducting wire material joining member
JP6074527B2 (en) * 2016-03-08 2017-02-01 東洋鋼鈑株式会社 Epitaxial growth substrate, manufacturing method thereof, and substrate for superconducting wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074083B2 (en) * 2007-04-17 2012-11-14 中部電力株式会社 Clad-oriented metal substrate for epitaxial thin film formation and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010192349A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
EP1982830B1 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP5324763B2 (en) Alignment substrate for epitaxial film formation and surface modification method for alignment substrate for epitaxial film formation
JP5400416B2 (en) Superconducting wire
KR20120038410A (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
JP5123462B2 (en) Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
JP5411958B2 (en) Alignment substrate for epitaxial film formation and manufacturing method thereof
US20080305322A1 (en) Interlayer of textured substrate for forming epitaxial film, and textured substrate for forming epitaxial film
WO2015033727A1 (en) Superconducting wire material substrate, production method therefor, and superconducting wire material
JP5694866B2 (en) Superconducting wire
JP5606920B2 (en) Polymer laminated substrate for epitaxial growth film formation and method for producing the same
JP2009245888A (en) Superconducting wire rod substrate and its method for manufacturing
JP5763718B2 (en) Alignment substrate for epitaxial film formation and manufacturing method thereof
JP5531065B2 (en) Alignment substrate for epitaxial film formation
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP2012252825A (en) Substrate for oxide superconductive wire material and oxide superconductive wire material
RU2575286C1 (en) Textured substrate for epitaxial film formation and method for thereof manufacturing
JP2012018829A (en) Superconductive wire material and manufacturing method thereof
JP2013089354A (en) Intermediate layer-formed base material for superconducting thin film wiring material, its manufacturing method and superconducting thin film wiring material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees