JP3544781B2 - Method for producing Nb-Ti based superconducting multilayer board - Google Patents

Method for producing Nb-Ti based superconducting multilayer board Download PDF

Info

Publication number
JP3544781B2
JP3544781B2 JP08917796A JP8917796A JP3544781B2 JP 3544781 B2 JP3544781 B2 JP 3544781B2 JP 08917796 A JP08917796 A JP 08917796A JP 8917796 A JP8917796 A JP 8917796A JP 3544781 B2 JP3544781 B2 JP 3544781B2
Authority
JP
Japan
Prior art keywords
layer
alloy
plate
normal
conducting metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08917796A
Other languages
Japanese (ja)
Other versions
JPH09283812A (en
Inventor
郁夫 伊藤
広明 大塚
充 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08917796A priority Critical patent/JP3544781B2/en
Publication of JPH09283812A publication Critical patent/JPH09283812A/en
Application granted granted Critical
Publication of JP3544781B2 publication Critical patent/JP3544781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Nb−Ti系合金超電導材料の有する完全反磁性、磁束トラップ、電気抵抗ゼロでの高電流密度を有する通電能力等の優れた特性を利用し、超電導磁気シールド、超電導永久マグネット、超電導通電材料等として優れた能力を有する超電導多層板を、低コストで製造でき、かつ特性の大幅な向上も図ることができるNb−Ti系合金超電導多層板の製造方法に関するものである。
【0002】
【従来の技術】
従来、Nb−Ti系超電導多層板の製造方法としては、高導電金属からなる筐体状または円筒状中空体中に、Nb、TaまたはNb−Ta合金のシートまたは箔で被覆したNb−Ti系合金の板を、少なくとも1層前記高導電金属の板と交互に積層するよう充填し、充填率を60%以上としてから前記高導電金属で端部をふさぎ、内部を真空状態にして溶接密封して一体化複合体とし、この一体化複合体に加工率30〜98%、温度500〜1000℃の熱間加工を施した後、300〜450℃の温度で保持時間が1〜168時間の熱処理と、加工率が30〜98%である冷間加工を6回以上繰り返し施して板状または箱状の製品をつくるという方法が、特許第1790043号「Nb−Ti系超電導磁気シールド材及びその製造方法」、および「I. Itoh et al., Cryogenics, 35, 403(1995) 」等で知られている。
【0003】
また、Nb−Ti系合金の最重要超電導特性の一つである臨界電流密度(Jc )は、bcc構造を有するβ相中に、hcp構造を有するα−Ti析出物が微細に分散することによって大幅に向上することが知られている。α−Tiの時効析出のための最適な熱処理温度は300〜450℃の範囲にあるといわれ、この温度範囲である程度の長時間熱処理を行うことでα−Ti相が析出してくる。これ以上の温度では析出物の微細分散は不可能で粗大化してしまい、かつ600℃以上ではα−Ti析出物は分解してしまうとされている。また、Jc の向上にはα−Ti析出物だけでなく、転位網や格子欠陥も重要であることが知られている。これらは冷間加工によって結晶中に導入されるものであるが、β相の回復または再結晶する温度領域では消失してしまう。これら転位網等とα−Ti析出物を適当にミックスさせる方法として、適当な加工率の冷間加工と上記の熱処理を何回か繰り返すことで、Jc が大きく増大することも知られるようになってきた。
【0004】
これらのものがJc を向上させる理由として、以下のような説明がなされている。超電導体中に超電導電流が流れる時、当然磁場が発生するが、Nb−Ti系合金のような第2種超電導体では、Bc1(下部臨界磁場)以上の磁場中では、磁場は量子磁束単位の渦糸状の束になって超電導体中に侵入してくる。これを第2種超電導体の混合状態という。Nb−Ti系合金ではBc1は数10G(ガウス)と低く、実用的な磁場はすべてBc1を超えて超電導体中に侵入してくるといってよい。この時の磁場は超電導電流と直交するので、フレミングの法則に従って両者のいずれとも直角にローレンツ力が働き、何の抵抗力もなければ磁束フローがなだれ状に発生して電気抵抗の発生となり、発熱して超電導状態は瞬時に常電導状態に遷移してしまう。これをクエンチという。しかしこの磁束フローは、超電導体中に分散する適当なサイズと分布密度を有する常電導相が量子磁束渦糸のフローのストッパー(ピン止め点という)となり、超電導状態を維持することが可能となる。これがより高い電流密度まで維持可能であればJc の高い、特性のすぐれた超電導材料といえる。
【0005】
すなわち、Nb−Ti系合金ならば、既述のα−Ti析出物、転位網、格子欠陥のようなものがピン止め点となっていると一般的に認識されている。また、転位網、格子欠陥は析出相を形成する原子移動を助け、析出の駆動力になるとも言われ、二重の意味で重要である。したがって前述のように、特性を向上させるためには、Nb−Ti系合金において、最後の溶体化処理または再結晶化焼鈍後の、製品に至るまでの冷間加工比(最後の溶体化または再結晶時のNbTi厚さ/製品中のNbTi厚さ)を向上させる必要がある。
【0006】
しかし、従来の製造方法においては、工業的圧延設備での加工を考えると、加工比102 オーダー程度が限界であった。例えば、NbTi30層のクラッド時のNbTiシートおよび銅シートの板厚がどちらも3mmであった場合、最外層の銅厚さは通常10倍程度が望ましいので、クラッド材全体の厚さは最低でも約240mmになる。熱間圧延を加工率50%施したとすると、クラッド材厚さは120mmとなり、製品厚さ1mmの場合、その冷間加工比は120にしかならない。
【0007】
【発明が解決しようとする課題】
特許第1790043号にあるNb−Ti系超電導多層板には、Nb−Ti層数の倍数の拡散バリヤー層が必要である。バリヤーとして最適な素材であるNbまたはTaはレアメタルであり、極めて高価である。拡散バリヤーという性格上、その必要とされる厚さは製造条件にもよるがきわめて小さくて足りる。例えば、350℃でのNb中のTi原子拡散速度は1.5×10-16 m/hrであるといわれ、1000 hrその温度に保定しても1.5×10-13 m =1.5×10-3オングストロームと1原子間距離にもはるかに満たない程度である。すなわち、バリヤー厚さは相当に小さくても十分であり、Nb素材量も減って素材コストも低くなるはずである。ところが複合クラッド時のNbまたはTaシートは厚さが箔状になって薄くなるほど加工コストが上昇し、高価なものになる。例えば、Nb箔では箔の幅にもよるが、50μm以下になると単位重量当り単価は100μm以上のシートの数倍〜1桁程度高くなる。
【0008】
従来製造方法では、バリヤーを挿入するのが、多層クラッドスラブをクラッド組立てする段階であるので、例えば銅比2程度、NbTi層数が30層の場合、圧延機等の制約からくるクラッドスラブの最大厚さを約300mmとすると、NbTi板の厚さは3mm程度となり、バリヤー厚さは、コストとの兼ね合いで実際に必要な厚さの何桁も大きいものとなっていた。
【0009】
また、上記特許第1790043号では、両金属層の良好な金属接合を得るために、複合体に加工率30〜98%、500〜1000℃の温度での熱間加工を施すとしているが、より高温側で金属が軟化している方が接合しやすい。したがって、クラッド材の複合一体化、すなわち各金属界面にて十分な金属的接合が得られるためには、NbTi超電導材料のJc を向上させる最重要因子であるα−Ti析出物、転位網や格子欠陥がその役割を大幅に減少させてしまうか、または消失さえしてしまう危険性のある温度領域まで加熱されてしまっていた。
【0010】
すなわち、上記特許第1790043号によれば、多層に積層する前のNb−Ti系合金板は、熱間加工の後、冷間加工(主として冷間圧延)によって板加工されるとしている。この際、相当の加工率の圧延によって導入された転位網、格子欠陥が組織中に蓄積されている。ところが従来法では、この後多層に積層した複合材料の金属接合を得るために熱間加工(主として熱間圧延)を実施し、その時の500〜1000℃の温度での加熱によって、せっかく蓄積された転位網、格子欠陥は大幅に減少するか、さらには消失せざるをえなかった。したがって従来法では、多層クラッド工程以前に、Nb−Ti系合金組織中に導入された転位網、格子欠陥を十分利用することはほとんど不可能で、以後に導入された分を利用しているにすぎなかった。
【0011】
【課題を解決するための手段】
(1)まず図1(a)にも示すように、厚さの大きい1層のNb−Ti系合金材料1の周囲に、Nb、TaまたはNb−Ta合金のシートまたは箔3を被覆し、そのまた周囲に常電導金属材料2を被覆する。この方法としては上記常電導金属材料からなる筐体2に、Nb、TaまたはNb−Ta合金のシートまたは箔を被覆した1層のNb−Ti系合金材料を挿入し、筐体中を真空にしてから溶接接合させて密封し、Nb−Ti単層クラッドスラブを得る。本スラブに加工率30〜98%、温度500〜1000℃での熱間加工を含む減面加工を施して複合一体化させる。減面加工法としては熱間、温間、冷間での圧延、または熱間、温間、冷間でのプレス鍛造等がある。また、HIP、CIPのような方法も有効である。さらには前記各種加工法を順次組み合わせた方法もある。これらの方法で減面加工した後、図2に示すように、中身がNb−Ti系合金1で、表層が常電導金属2、それらの界面にNb、TaまたはNb−Ta合金の層3が介在する3層構造のクラッド板4ができるが、この最表面に存在する酸化スケールや油、汚れといった不純物は一切除去して清浄にした後、図1(b)に示すように、所望の層数だけ切り分けて板厚方向に積層し、常電導金属からなる筐体2に挿入した後、筐体中を真空にしてから溶接して密封し、多層クラッドスラブを得る。本スラブに再び加工率30〜98%、温度600℃以下での加工を施した後、300〜450℃の温度で保持時間が1〜168時間の熱処理と、加工率が30〜98%である冷間加工を6回以下交互に繰り返し施して、板状または箔状とし、図3に示すようなNb−Ti系超電導多層板5を得る。減面加工法としては既述の方法がある。
【0012】
3層構造のクラッド板4ができる時、最初その全周が常電導金属で被覆されているので、減面加工後も全周が常電導金属で被覆されている。通常、切り分けた箇所以外の、例えば板の側面等は常電導金属で覆われたままであるが、そのままで積層してもよいし、常電導金属だけの端末部分(通常、耳という)は切断除去した後に積層してもどちらでもよい。図1(b)には耳を除去した場合を示しているが、通常こちらの方が筐体中の限られたスペースを有効利用できる。
【0013】
ここで常電導金属層は本発明の超電導材料の超電導安定性を確保するため、及び超電導材料を多層に分割するための隔壁材として必要なもので、一般的に使用されているものであるが、Cu、Al等の高導電金属またはCu−Ni合金等の高抵抗金属があげられる。超電導材料の分割とは、超電導体内に発生し、その超電導特性を破壊する主要因の一つである単位体積当りのヒステリシス損失を低減するための有効な手段として知られている方法である。静磁場(直流磁場)中または変化速度の小さい変動磁場中での使用に際してはCu、Al等の高導電金属が望ましく、変化速度の大きい変動磁場(交流磁場やパルス磁場)中ではCu−Ni合金等の高抵抗金属が望ましい。常電導金属中に生じる渦電流起因の発熱が小さい前者の条件下では高導電金属が超電導安定化に役立つが、渦電流問題が深刻になる後者の条件下では高抵抗金属が望ましくなる。
【0014】
(2)(1)と同様に3層構造のNb−Ti単層クラッド板をつくり、図4(a)に示すように、所望の層数だけ切り分けて板厚方向に積層し、かつその最上下面には常電導金属板2を積層した後、そのすべての界面を真空に保ちつつ各積層界面の端部を溶接して密封し、(1)と同様に再び減面加工を施して複合一体化させ、図4(b)に示すようなNb−Ti系超電導多層板5′を得る。減面および熱処理の加工法は(1)に同じ。
【0015】
【発明の実施の形態】
本発明によれば、図1(a)に示すように、スタート時の1層のNb−Ti系合金材料の板厚に対する、界面に挿入する拡散バリヤー金属のシートまたは箔の厚さの比率をはるかに小さくすることが可能である。すなわち従来法では、図6に示すように、減面加工されて厚さの小さくなった複数のNb−Ti系合金板と常電導金属板を交互に積層し、その全界面に拡散バリヤー金属のシートまたは箔を挿入した多層積層体を常電導金属材料からなる筐体に挿入していた。図1(a)および図1(b)に示す筐体の高さ(クラッド材の厚さ)制限は圧延機等の設備上の制約から受けるので、本発明でも従来法でも同等である。したがって、拡散バリヤー金属のシートまたは箔の厚さが同じ場合、Nb−Ti系合金板の厚さは本発明の方がはるかに大きくできるので、最終製品が同一厚さ、構造の多層板である場合、同じ厚さのNb−Ti系合金層に対し、拡散バリヤー層厚を最大2桁程度小さくすることが可能となり、高コストの極薄箔加工を利用することなく拡散バリヤー金属材料の使用量を大幅に減らすことが可能となる。
【0016】
また本発明によれば、全製造工程で2回のクラッド工程が入るが、その1回目の単層クラッドは図1(a)、図5(a)に示すような方法がある。また2回目の多層クラッドは図1(b)、図4(a)に示すような方法がある。1回目の単層クラッドの時は、従来法同様、異種金属層間、すなわちNb−Ti系合金板と常電導金属板、および拡散バリヤー金属との各金属間を金属的に接合させるために、温度500〜1000℃、望ましくは600〜1000℃で熱間加工を施す必要がある。この温度領域ではNb−Ti超電導材料のJc を向上させる最重要因子であるα−Ti析出物や、転位網、格子欠陥は、大幅に減少するか、または消失さえしてしまう危険性があったわけであるが、本発明ではこの段階ではNb−Ti組織中に上記重要因子のいずれもほとんど導入されていないので、その危険性はほとんどないといえる。Nb−Ti系合金板の厚さが相当に大きい段階なので、熱間加工だけで済み、あえて冷間加工を必要としないか、あっても従来法に比べてごくわずかで済むからである。
【0017】
しかし、図1(b)、図4(a)を見て容易にわかる通り、2回目の多層クラッドの時はCu、Al、Cu−Ni合金等の常電導金属層同士の界面しかなく、これらは1回目の異種金属界面に比べ、大幅に低い加熱温度での熱間圧延等の加工でも容易に良好な金属接合を得ることが可能である。すなわち、600℃以下の温度領域でも十分である。この温度領域であれば、Nb−Ti系合金中のα−Ti析出物や、転位網、格子欠陥の消失がほとんどないか、あってもかなりわずかで済む。Jc 低下の原因となるα−Ti析出物の粗大化という問題は起こりうるが、加熱の保定時間を問題ない範囲で短くすることは可能であり、回避しうる。したがって、従来法ではほとんど活用できなかった、1回目と2回目のクラッド工程間で実施された冷間圧延等の加工によって導入された転位網、格子欠陥の大部分を、2回目の多層クラッド以降の冷間圧延加工に重畳させたり、熱処理によるα−Ti相析出に役立てることが可能になり、Jc の大幅な向上をもたらすことが可能になるものである。
【0018】
【実施例】
(実施例1)
図1(a)に示すように、厚さ50mmt のNb−Ti合金厚板1の全周囲に、厚さ0.1mmtのNbシート3を被覆し、高さ100mmtの銅箱2に挿入し、真空中で電子ビーム溶接によって密封して単層クラッド材を作製した。その箱を600℃の熱間圧延によって500mmtにした後、冷間圧延によって3mmtとした。図2にその単層クラッド板4を示すが、図1(b)に示すように、同じ形状の角板20枚に切断して積層し、高さ100mmtの銅箱2に挿入し、再び真空中で電子ビーム溶接によって密封して多層クラッド材を作製した。その箱を400℃の熱間圧延によって50mmtにした後、冷間圧延とα−Ti相析出のための熱処理を行って図3に示すような厚さ1mmtの多層板5を得た。
【0019】
また、比較のための従来法として、厚さ50mmtのNb−Ti合金厚板を600℃の熱間圧延によって25mmtにした後、冷間圧延によって1.5mmtとし、そのNb−Ti合金板を同じ形状の角板20枚に切断して同じ厚さ、形状の銅板19枚と交互に積層し、かつ厚さ0.1mmtのNbシートをすべての界面に挿入した積層体を厚さ100mmtの銅箱に挿入し、真空中で電子ビーム溶接によって密封して多層クラッド材を作製した。以後、上記同様の条件で同じ構造を有する厚さ1mmtの多層板とした。
【0020】
両者の超電導特性を比較するため、「I. Itoh et al., Cryogenics, 35, 403(1995) 」に示した方法(四端子法)にて磁場中でのJc 測定を行った。ここにおいて印加磁場はNb−Ti層に対して平行に印加し、通電電流は磁場に垂直および圧延方向に垂直の場合の結果である。
【0021】
それによれば、従来法のJc は、印加磁場2Tで2.5×103 A/mm2 、6Tで0.9×103 A/mm2 であった。それに対し、本発明のJc は2Tで4.5×103 A/mm2 、6Tで1.5×103 A/mm2 と、2Tで8割、6Tで約7割向上した。
【0022】
(実施例2)
図4(a)に示すように、実施例1と同様の方法で厚さ3mmtのNb−Ti単層クラッド板4を同じ形状の角板20枚に切断し、それを積層した最上下面に厚さ20mmtの銅板2を積層した後、真空中で各界面の周囲の端部を電子ビーム溶接6によって密封して多層クラッド材を作製した。以後、図4(b)に示すように、実施例1と同じ方法で同一構造を有する厚さ1mmtの多層板5′とした。この板のJc 特性を実施例1と同様の方法で測定したところ、ほぼ同等のJc 値を得た。
【0023】
(実施例3)
図1(a)に示すように、厚さ50mmtのNb−Ti合金厚板1の全周囲に、厚さ0.1mmtのNbシート3を被覆し、厚さ100mmtの銅箱2に挿入し、真空中で電子ビーム溶接によって密封して単層クラッド材を作製した。その箱を600℃の熱間圧延によって500mmtにした後、冷間圧延によって3mmtとし、その単層クラッド板を同じ形状の角板20枚に切断して積層し、厚さ100mmtの銅箱に挿入し、再び真空中で電子ビーム溶接によって密封して多層クラッド材を作製した。その箱を400℃の熱間圧延によって50mmtにした後、冷間圧延とα−Ti相析出のための熱処理を適宜行って1mmtとした。この時のNb−Ti1層の厚さに対するNbバリヤー層の厚さの比率は最初と同様約0.2%であった。これは従来法で作製した全く同じ構造を有するNbバリヤー層の厚さの1/33であった。またNbシートの価格はどちらも同じなので、拡散バリヤーに関わるコストもほぼ1/33に低減した。さらにはバリヤー層厚が薄くなったことによる拡散効果の劣化は見られなかった。
【0024】
【発明の効果】
本発明によれば、従来法に比べ、最も重要な超電導特性の一つであるJc を大幅に向上させることが可能になり、コスト、特性向上の両面からきわめて多大な効果を有することは明らかである。また高価な金属であるNb、Ta、Nb−Ta合金等の拡散バリヤー金属材料の使用に関し、そのコストを1桁以上低減することが可能になった。
【図面の簡単な説明】
【図1】(a)は本発明における、拡散バリヤー金属シートまたは箔を被覆した、1層のNb−Ti系合金板を、常電導金属からなる筐体に挿入して作製する単層クラッドスラブ、(b)は本発明における、複数の単層クラッド板を常電導金属からなる筐体に挿入して作製する多層クラッドスラブ。
【図2】本発明における複合一体化された単層クラッド板。
【図3】本発明における複合一体化された多層クラッド板。
【図4】(a)は本発明における、複数の単層クラッド板を厚さ方向に積層し、さらにその最上下面に常電導金属板を積層した後、その全界面を真空に保ちながら、その周囲の端部を溶接密封して作製する多層クラッドスラブ、(b)は本発明における、図4(a)における多層クラッドスラブを複合一体化させて作製された多層クラッド板。
【図5】(a)は本発明における、拡散バリヤー金属シートまたは箔を被覆した、1層のNb−Ti系合金板と、その幅広両面に常電導金属板を積層し、その全界面を真空に保ちながら、その周囲の端部を溶接密封して作製された単層クラッドスラブ、(b)は本発明における、図5(a)における単層クラッドスラブを複合一体化させて作製された単層クラッド板。
【図6】従来法における、拡散バリヤー金属シートまたは箔を被覆した、複数のNb−Ti系合金板と、複数の常電導金属板を交互に積層して得た積層体を、常電導金属からなる筐体に挿入して作製する多層クラッドスラブ。
【符号の説明】
1 Nb−Ti系合金材
2 常電導金属板
3 拡散バリヤー金属シートまたは箔
4 図1(a)を加工して複合一体化された単層クラッド板
4′ 図5(a)を加工して複合一体化された単層クラッド板
5 図1(b)を加工して複合一体化された多層クラッド板
5′ 図4(a)を加工して複合一体化された多層クラッド板
6 溶接箇所
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention utilizes the excellent properties of the Nb-Ti alloy superconducting material, such as complete diamagnetism, magnetic flux trapping, and high current density with zero electric resistance, such as current carrying ability, to provide a superconducting magnetic shield, a superconducting permanent magnet, The present invention relates to a method for manufacturing an Nb-Ti alloy superconducting multilayer plate capable of producing a superconducting multilayer plate having excellent performance as a current-carrying material at low cost and capable of significantly improving characteristics.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method for producing an Nb-Ti-based superconducting multilayer board, a Nb-Ti-based superconducting multilayer board is coated with a sheet or foil of Nb, Ta or an Nb-Ta alloy in a housing or cylindrical hollow body made of a highly conductive metal. An alloy plate is filled so as to be alternately laminated with at least one layer of the highly conductive metal plate, the filling rate is set to 60% or more, and the ends are covered with the highly conductive metal, and the inside is vacuum-sealed and welded and sealed. After performing hot working at a working rate of 30 to 98% and a temperature of 500 to 1000 ° C., a heat treatment is performed at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours. Patent No. 1790043, "Nb-Ti-based superconducting magnetic shield material and its production," in which cold working with a working ratio of 30 to 98% is repeatedly performed at least six times to produce a plate-like or box-like product. Method " Beauty "I. Itoh et al., Cryogenics, 35, 403 (1995)" is known the like.
[0003]
The critical current density (Jc), which is one of the most important superconducting properties of the Nb-Ti alloy, is determined by the fact that the α-Ti precipitate having the hcp structure is finely dispersed in the β phase having the bcc structure. It is known to improve significantly. It is said that the optimal heat treatment temperature for aging precipitation of α-Ti is in the range of 300 to 450 ° C., and the α-Ti phase is precipitated by performing the heat treatment for a certain long time in this temperature range. It is said that if the temperature is higher than this, fine dispersion of the precipitate is impossible and the precipitate becomes coarse, and if the temperature is 600 ° C. or higher, the α-Ti precipitate is decomposed. It is known that not only α-Ti precipitates but also dislocation networks and lattice defects are important for improving Jc. These are introduced into the crystal by cold working, but disappear in the temperature range where the β phase is recovered or recrystallized. As a method of appropriately mixing the dislocation network and the α-Ti precipitate, it has become known that Jc is greatly increased by repeating cold working at an appropriate working rate and the above heat treatment several times. Have been.
[0004]
The following is a description of the reason why these materials improve Jc. When a superconducting current flows in a superconductor, a magnetic field is naturally generated. However, in a second-class superconductor such as an Nb-Ti alloy, in a magnetic field of Bc1 (lower critical magnetic field) or more, the magnetic field is expressed in quantum flux units. They form a spiral bundle and enter the superconductor. This is called a mixed state of the second type superconductor. In an Nb-Ti alloy, Bc1 is as low as several tens G (Gauss), and it can be said that all practical magnetic fields exceed Bc1 and penetrate into the superconductor. Since the magnetic field at this time is orthogonal to the superconducting current, Lorentz force acts on both of them at right angles according to Fleming's law, and if there is no resistance force, the magnetic flux flow occurs in an avalanche state and electric resistance occurs, generating heat. As a result, the superconducting state instantaneously transits to the normal conducting state. This is called quench. However, in this magnetic flux flow, the normal conducting phase having an appropriate size and distribution density dispersed in the superconductor acts as a stopper (called a pinning point) of the flow of the quantum flux vortex, and the superconducting state can be maintained. . If this can be maintained up to a higher current density, it can be said that this is a superconducting material having a high Jc and excellent characteristics.
[0005]
That is, in the case of an Nb-Ti-based alloy, it is generally recognized that the aforementioned α-Ti precipitates, dislocation networks, and lattice defects are pinning points. In addition, dislocation networks and lattice defects are said to assist in the movement of atoms forming a precipitated phase and serve as a driving force for precipitation, and are important in a double sense. Therefore, as described above, in order to improve the properties, in the case of the Nb-Ti alloy, the cold working ratio (final solution treatment or recrystallization) until the product after the final solution treatment or recrystallization annealing is performed. It is necessary to improve the thickness of NbTi at the time of crystallization / the thickness of NbTi in the product.
[0006]
However, in the conventional manufacturing method, given the processing on an industrial rolling equipment, working ratio of 10 about two orders was limited. For example, when the thickness of the NbTi sheet and the copper sheet at the time of cladding of the NbTi 30 layer are both 3 mm, the copper thickness of the outermost layer is usually desirably about 10 times. 240mm. Assuming that the hot rolling is performed at a working ratio of 50%, the thickness of the clad material is 120 mm, and when the product thickness is 1 mm, the cold working ratio is only 120.
[0007]
[Problems to be solved by the invention]
The Nb-Ti-based superconducting multilayer board disclosed in Japanese Patent No. 1790043 requires a diffusion barrier layer having a multiple of the number of Nb-Ti layers. Nb or Ta, which is a material most suitable as a barrier, is a rare metal and is extremely expensive. Due to the nature of the diffusion barrier, the required thickness is very small, depending on the manufacturing conditions. For example, the diffusion rate of Ti atoms in Nb at 350 ° C. is said to be 1.5 × 10 −16 m / hr, and 1.5 × 10 −13 m = 1.5 even when the temperature is maintained for 1000 hr. × 10 −3 Å, which is far less than the distance between atoms. In other words, a relatively small barrier thickness is sufficient, and the amount of Nb material should be reduced and the material cost should be reduced. However, as the thickness of the Nb or Ta sheet at the time of the composite cladding becomes thinner and thinner, the processing cost increases and the sheet becomes expensive. For example, in the case of Nb foil, depending on the width of the foil, if it is 50 μm or less, the unit price per unit weight is several times to one digit higher than that of a sheet of 100 μm or more.
[0008]
In the conventional manufacturing method, the barrier is inserted at the stage of clad assembly of the multilayer clad slab. For example, when the copper ratio is about 2 and the number of NbTi layers is 30, the maximum of the clad slab coming from the restriction of the rolling mill or the like is obtained. When the thickness is about 300 mm, the thickness of the NbTi plate is about 3 mm, and the barrier thickness is several orders of magnitude larger than the actually required thickness in view of cost.
[0009]
Further, in the above-mentioned Japanese Patent No. 1790043, in order to obtain good metal bonding between the two metal layers, the composite is subjected to hot working at a working rate of 30 to 98% and a temperature of 500 to 1000 ° C. Bonding is easier if the metal is softened on the high temperature side. Therefore, in order to obtain the composite integration of the cladding material, that is, to obtain a sufficient metallic bonding at each metal interface, α-Ti precipitates, dislocation networks and lattices, which are the most important factors for improving the Jc of the NbTi superconducting material. Defects have been heated to a temperature range where there is a risk that their role will be greatly reduced or even eliminated.
[0010]
That is, according to the above-mentioned Patent No. 1790043, the Nb-Ti-based alloy sheet before being laminated in multiple layers is subjected to cold working (mainly cold rolling) after hot working. At this time, dislocation networks and lattice defects introduced by rolling at a considerable processing rate are accumulated in the structure. However, in the conventional method, hot working (mainly hot rolling) was performed to obtain a metal joint of the composite material laminated in multiple layers, and the heat was accumulated at a temperature of 500 to 1000 ° C. at that time. Dislocation networks and lattice defects had to be greatly reduced or even disappeared. Therefore, in the conventional method, it is almost impossible to make full use of the dislocation network and lattice defects introduced into the Nb-Ti based alloy structure before the multilayer cladding step, and it is necessary to use the parts introduced later. It was not too much.
[0011]
[Means for Solving the Problems]
(1) First, as shown in FIG. 1A, a sheet or foil 3 of Nb, Ta, or Nb-Ta alloy is coated around a single layer of the Nb-Ti alloy material 1 having a large thickness. The surrounding area is coated with a normal conductive metal material 2. In this method, a single layer of Nb-Ti alloy material coated with a sheet or foil of Nb, Ta or Nb-Ta alloy is inserted into the case 2 made of the above-described normal conductive metal material, and the inside of the case is evacuated. And then sealed by welding to obtain a single-layer Nb-Ti clad slab. The present slab is subjected to surface reduction processing including hot working at a processing rate of 30 to 98% and a temperature of 500 to 1000 ° C. to be combined and integrated. Examples of the surface reduction processing include hot, warm, and cold rolling, and hot, warm, and cold press forging. Also, methods such as HIP and CIP are effective. Furthermore, there is a method in which the various processing methods are sequentially combined. After reducing the surface by these methods, as shown in FIG. 2, the content is an Nb-Ti alloy 1, the surface layer is a normal conductive metal 2, and a layer 3 of Nb, Ta or Nb-Ta alloy is provided at the interface between them. Although an intervening clad plate 4 having a three-layer structure is formed, impurities such as oxide scale, oil and dirt present on the outermost surface are completely removed and cleaned, and then, as shown in FIG. After cutting into several pieces and laminating them in the thickness direction and inserting them into the casing 2 made of a normal conducting metal, the inside of the casing is evacuated and then sealed by welding to obtain a multilayer clad slab. After subjecting this slab to processing at a processing rate of 30 to 98% and a temperature of 600 ° C. or less again, a heat treatment at a temperature of 300 to 450 ° C. and a holding time of 1 to 168 hours, and a processing rate of 30 to 98%. Cold working is repeated alternately six times or less to form a plate or foil to obtain an Nb-Ti based superconducting multilayer board 5 as shown in FIG. As the surface reduction processing method, there is the method described above.
[0012]
When the clad plate 4 having the three-layer structure is formed, the entire circumference is firstly covered with the normal conducting metal, so that the entire circumference is covered with the normal conducting metal even after the area reduction processing. Normally, for example, the side surfaces of the plate other than the cut portions are still covered with the normal conducting metal, but they may be laminated as they are, or the terminal portion of the normal conducting metal only (usually called an ear) is cut and removed. The layers may be laminated after being formed. FIG. 1B shows a case where the ears are removed, but this can usually make more effective use of the limited space in the housing.
[0013]
Here, the normal-conducting metal layer is generally used because it is necessary as a partition material for securing the superconducting stability of the superconducting material of the present invention and for dividing the superconducting material into multiple layers. , Cu, Al or the like, or a high resistance metal such as a Cu-Ni alloy. The division of the superconducting material is a method known as an effective means for reducing the hysteresis loss per unit volume, which is one of the main factors generated in the superconductor and destroying its superconducting characteristics. When used in a static magnetic field (DC magnetic field) or a fluctuating magnetic field having a small change rate, a highly conductive metal such as Cu or Al is desirable. In a fluctuating magnetic field having a high change rate (AC magnetic field or pulse magnetic field), a Cu-Ni alloy is used. And the like. Under the former condition in which the heat generated by the eddy current generated in the normal conducting metal is small, the highly conductive metal is useful for stabilizing the superconductivity, but under the latter condition in which the eddy current problem is serious, a high resistance metal is desirable.
[0014]
(2) An Nb-Ti single-layer clad plate having a three-layer structure is formed in the same manner as in (1), and as shown in FIG. 4A, a desired number of layers are cut and laminated in the plate thickness direction. After laminating the normal conducting metal plate 2 on the lower surface, the edges of each lamination interface are welded and sealed while all the interfaces are kept in a vacuum, and the surface is reduced again in the same manner as (1) to form a composite integrated body. Then, an Nb—Ti-based superconducting multilayer plate 5 ′ as shown in FIG. 4B is obtained. The processing method of the area reduction and heat treatment is the same as (1).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, as shown in FIG. 1A, the ratio of the thickness of the sheet or foil of the diffusion barrier metal inserted at the interface to the plate thickness of one layer of the Nb-Ti alloy material at the time of start is determined. It can be much smaller. That is, in the conventional method, as shown in FIG. 6, a plurality of Nb-Ti-based alloy plates and normal-conducting metal plates, each of which has been reduced in surface area and reduced in thickness, are alternately laminated, and the diffusion barrier metal The multilayer laminate into which a sheet or foil has been inserted has been inserted into a housing made of a normal conductive metal material. The height (clad material thickness) limitation of the casing shown in FIGS. 1A and 1B is limited by equipment such as a rolling mill, and is the same in the present invention and the conventional method. Therefore, when the thickness of the diffusion barrier metal sheet or foil is the same, the thickness of the Nb-Ti alloy plate can be much larger in the present invention, so that the final product is a multilayer plate having the same thickness and structure. In this case, the thickness of the diffusion barrier layer can be reduced by up to about two orders of magnitude with respect to the Nb-Ti alloy layer having the same thickness, and the amount of the diffusion barrier metal material used without using high-cost ultra-thin foil processing. Can be greatly reduced.
[0016]
Further, according to the present invention, two cladding steps are performed in all the manufacturing steps, and the first single-layer cladding includes a method as shown in FIGS. 1 (a) and 5 (a). For the second multilayer cladding, there is a method as shown in FIGS. 1 (b) and 4 (a). At the time of the first single-layer cladding, as in the conventional method, the temperature is set so as to metallically bond between different metal layers, that is, between the Nb-Ti alloy plate and the normal conductive metal plate and the diffusion barrier metal. It is necessary to perform hot working at 500 to 1000C, preferably 600 to 1000C. In this temperature range, α-Ti precipitates, dislocation networks, and lattice defects, which are the most important factors for improving the Jc of the Nb-Ti superconducting material, have a risk of being significantly reduced or even eliminated. However, according to the present invention, at this stage, almost none of the above-mentioned important factors has been introduced into the Nb-Ti structure, so that it can be said that there is almost no danger. Because the thickness of the Nb-Ti alloy sheet is considerably large, only hot working is required, and no cold working is required, or even very little compared to the conventional method.
[0017]
However, as can be easily understood from FIGS. 1B and 4A, in the second multilayer cladding, there is only an interface between normal conductive metal layers such as Cu, Al, and Cu—Ni alloy. As compared with the first dissimilar metal interface, good metal bonding can be easily obtained even by processing such as hot rolling at a significantly lower heating temperature. That is, a temperature range of 600 ° C. or less is sufficient. In this temperature range, α-Ti precipitates, dislocation networks, and lattice defects in the Nb—Ti-based alloy hardly disappear, or even very little. Although the problem of coarsening of the α-Ti precipitate which causes a decrease in Jc may occur, it is possible and can be avoided to shorten the holding time of heating within a range without any problem. Therefore, most of the dislocation networks and lattice defects introduced by the processing such as the cold rolling performed between the first and second cladding steps, which could hardly be used in the conventional method, were removed after the second multilayer cladding. , And can be used for α-Ti phase precipitation by heat treatment, and can greatly improve Jc.
[0018]
【Example】
(Example 1)
As shown in FIG. 1 (a), the entire circumference of a 50 mmt thick Nb-Ti alloy thick plate 1 is covered with a 0.1 mmt thick Nb sheet 3 and inserted into a 100 mmt high copper box 2. Sealing was performed by electron beam welding in a vacuum to produce a single-layer clad material. The box was made 500 mmt by hot rolling at 600 ° C., and then 3 mmt by cold rolling. FIG. 2 shows the single-layer clad plate 4. As shown in FIG. 1 (b), it is cut into 20 square plates of the same shape and laminated, inserted into a copper box 2 having a height of 100 mmt, and evacuated again. The inside was sealed by electron beam welding to produce a multilayer clad material. The box was reduced to 50 mmt by hot rolling at 400 ° C., and then subjected to cold rolling and heat treatment for α-Ti phase precipitation to obtain a multilayer plate 5 having a thickness of 1 mmt as shown in FIG.
[0019]
Also, as a conventional method for comparison, a 50 mmt thick Nb-Ti alloy plate was hot-rolled at 600 ° C. to 25 mmt, then cold-rolled to 1.5 mmt, and the Nb-Ti alloy plate was made the same. A copper box having a thickness of 100 mmt is formed by cutting into 20 square plates having a shape and alternately laminating with 19 copper plates having the same thickness and shape, and inserting Nb sheets having a thickness of 0.1 mm at all interfaces. And sealed by electron beam welding in a vacuum to produce a multilayer clad material. Thereafter, a multilayer plate having a thickness of 1 mmt and having the same structure under the same conditions as described above was obtained.
[0020]
To compare the superconducting properties of the two, Jc measurement in a magnetic field was performed by the method (four-terminal method) shown in "I. Itoh et al., Cryogenics, 35, 403 (1995)". Here, the applied magnetic field is applied in parallel to the Nb-Ti layer, and the energizing current is the result when the magnetic field is perpendicular to the magnetic field and the rolling direction.
[0021]
According to this, Jc of the conventional method was 2.5 × 10 3 A / mm 2 at an applied magnetic field of 2T and 0.9 × 10 3 A / mm 2 at an applied magnetic field of 6T. On the other hand, the Jc of the present invention was 4.5 × 10 3 A / mm 2 at 2T, 1.5 × 10 3 A / mm 2 at 6T, improved by 80% at 2T, and about 70% at 6T.
[0022]
(Example 2)
As shown in FIG. 4A, a 3 mmt-thick Nb-Ti single-layer clad plate 4 is cut into 20 square plates of the same shape in the same manner as in Example 1, and the thickness is placed on the uppermost lower surface where these are laminated. After laminating a copper plate 2 having a thickness of 20 mmt, edges around each interface were sealed in a vacuum by electron beam welding 6 to produce a multilayer clad material. Thereafter, as shown in FIG. 4B, a multilayer board 5 'having a thickness of 1 mmt and having the same structure was formed in the same manner as in Example 1. When the Jc characteristic of this plate was measured by the same method as in Example 1, almost the same Jc value was obtained.
[0023]
(Example 3)
As shown in FIG. 1 (a), the entire periphery of the Nb-Ti alloy thick plate 1 having a thickness of 50 mmt is covered with a Nb sheet 3 having a thickness of 0.1 mmt, and inserted into a copper box 2 having a thickness of 100 mmt. Sealing was performed by electron beam welding in a vacuum to produce a single-layer clad material. The box is made 500 mmt by hot rolling at 600 ° C., then 3 mmt by cold rolling, the single-layer clad plate is cut into 20 square plates of the same shape, laminated, and inserted into a copper box having a thickness of 100 mmt. Then, sealing was performed again by electron beam welding in a vacuum to produce a multilayer clad material. The box was reduced to 50 mmt by hot rolling at 400 ° C., and then appropriately subjected to cold rolling and heat treatment for α-Ti phase precipitation to 1 mmt. At this time, the ratio of the thickness of the Nb barrier layer to the thickness of the Nb-Ti1 layer was about 0.2% as in the first case. This was 1/33 of the thickness of the Nb barrier layer having the exact same structure manufactured by the conventional method. Further, since the price of the Nb sheet is the same for both, the cost relating to the diffusion barrier has been reduced to almost 1/33. Further, no deterioration of the diffusion effect due to the reduced thickness of the barrier layer was observed.
[0024]
【The invention's effect】
According to the present invention, it is possible to greatly improve Jc, which is one of the most important superconducting characteristics, as compared with the conventional method, and it is clear that the present invention has a very great effect in terms of both cost and characteristics. is there. Further, the use of a diffusion barrier metal material such as an expensive metal such as Nb, Ta, or an Nb-Ta alloy has made it possible to reduce the cost by one digit or more .
[Brief description of the drawings]
FIG. 1A is a diagram illustrating a single-layer clad slab produced by inserting a single-layer Nb—Ti-based alloy plate coated with a diffusion barrier metal sheet or foil into a case made of a normal conductive metal according to the present invention. (B) is a multilayer clad slab according to the present invention, which is produced by inserting a plurality of single-layer clad plates into a casing made of a normal conducting metal.
FIG. 2 is a composite-integrated single-layer clad plate according to the present invention.
FIG. 3 is a composite-integrated multilayer clad plate according to the present invention.
FIG. 4 (a) is a view of the present invention in which a plurality of single-layer clad plates are laminated in the thickness direction, and a normal conducting metal plate is further laminated on the uppermost lower surface thereof. A multilayer clad slab produced by welding and sealing the peripheral end, and FIG. 4B shows a multilayer clad plate produced by integrally integrating the multilayer clad slab in FIG. 4A according to the present invention.
FIG. 5 (a) shows a single-layer Nb—Ti alloy plate coated with a diffusion barrier metal sheet or foil according to the present invention, and a normal conducting metal plate laminated on both wide sides thereof, and all interfaces thereof are vacuumed. (B) is a single-layer clad slab manufactured by integrally integrating the single-layer clad slab in FIG. 5 (a) according to the present invention. Layer clad plate.
FIG. 6 shows a laminate obtained by alternately laminating a plurality of Nb—Ti-based alloy plates coated with a diffusion barrier metal sheet or foil and a plurality of normal conducting metal plates in a conventional method from a normal conducting metal. A multilayer clad slab that is manufactured by inserting it into an enclosure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nb-Ti alloy material 2 Normally conductive metal plate 3 Diffusion barrier metal sheet or foil 4 Single-layer clad plate 4 'integrated by processing Fig. 1 (a) and composited by processing Fig. 5 (a) Integrated single-layer clad plate 5 Multi-layered clad plate 5 ′ processed as shown in FIG. 1 (b) and composite-integrated multilayer clad plate 6 processed as shown in FIG. 4 (a).

Claims (2)

少なくとも1層のNb−Ti系合金層と、少なくとも1層の常電導金属層が交互に積層され、かつ前記Nb−Ti系合金層と常電導金属層の間にはすべてNb、TaまたはNb−Ta合金のバリヤー層が存在する構造を有するNb−Ti系超電導多層板の製造方法において、Nb、TaまたはNb−Ta合金のシートまたは箔で被覆した、1層のNb−Ti系合金材料の周囲に常電導金属材料を被覆し、加工率30〜98%、温度500〜1000℃での熱間加工を含む減面加工を施して複合一体化させた後、該複合材料を少なくとも1層以上積層し、常電導金属からなる筐体に挿入した後、筐体中を真空にしてから筐体を溶接接合させて密封し、この一体化複合体に加工率30〜98%、温度600℃以下での熱間加工を施した後、300〜450℃の温度で保持時間が1〜168時間の熱処理と、加工率が30〜98%である冷間加工を6回以下交互に繰り返し施して、板状または箔状とし、Nb−Ti系超電導多層板を得ることを特徴とする製造方法。At least one Nb-Ti-based alloy layer and at least one normal-conducting metal layer are alternately laminated, and Nb, Ta or Nb- is interposed between the Nb-Ti-based alloy layer and the normal-conducting metal layer. In a method for manufacturing a Nb-Ti-based superconducting multilayer plate having a structure in which a barrier layer of a Ta alloy is present, a single-layer Nb-Ti-based alloy material covered with a sheet or foil of Nb, Ta or Nb-Ta alloy is provided. Is coated with a normal conducting metal material, and subjected to surface reduction processing including hot working at a processing rate of 30 to 98% and a temperature of 500 to 1000 ° C. to form a composite integrated body, and then laminating at least one layer of the composite material Then, after being inserted into a case made of a normal conducting metal, the inside of the case is evacuated, and then the case is welded and sealed, and the integrated composite is processed at a processing rate of 30 to 98% at a temperature of 600 ° C. or lower. After hot working of 300 Heat treatment at a temperature of 450 ° C. for a holding time of 1 to 168 hours and cold working with a working rate of 30 to 98% are alternately repeated 6 times or less to form a plate or foil, and the Nb—Ti superconductor A method for producing a multilayer board. 少なくとも1層のNb−Ti系合金層と、少なくとも1層の常電導金属層が交互に積層され、かつ前記Nb−Ti系合金層と常電導金属層の間にはすべてNb、TaまたはNb−Ta合金のバリヤー層が存在する構造を有するNb−Ti系超電導多層板の製造方法において、Nb、TaまたはNb−Ta合金のシートまたは箔で被覆した、1層のNb−Ti系合金材料の周囲に常電導金属材料を被覆し、加工率30〜98%、温度500〜1000℃での熱間加工を含む減面加工を施して複合一体化させた後、該複合材料を少なくとも1層以上積層し、積層界面を真空に保ちつつ各積層界面の端部を溶接接合させて密封し、この一体化複合体に加工率30〜98%、温度600℃以下での熱間加工を施した後、300〜450℃の温度で保持時間が1〜168時間の熱処理と、加工率が30〜98%である冷間加工を6回以下交互に繰り返し施して板状または箔状とし、Nb−Ti系超電導多層板を得ることを特徴とする製造方法。At least one Nb-Ti-based alloy layer and at least one normal-conducting metal layer are alternately laminated, and Nb, Ta or Nb- is interposed between the Nb-Ti-based alloy layer and the normal-conducting metal layer. In a method for manufacturing a Nb-Ti-based superconducting multilayer plate having a structure in which a barrier layer of a Ta alloy is present, a single-layer Nb-Ti-based alloy material covered with a sheet or foil of Nb, Ta or Nb-Ta alloy is provided. Is coated with a normal conducting metal material, and subjected to surface reduction processing including hot working at a processing rate of 30 to 98% and a temperature of 500 to 1000 ° C. to form a composite integrated body, and then laminating at least one layer of the composite material Then, while maintaining the vacuum at the lamination interface, the ends of each lamination interface are welded and sealed, and the integrated composite is subjected to hot working at a working rate of 30 to 98% at a temperature of 600 ° C. or lower, Hold at 300-450 ° C A heat treatment of 1 to 168 hours and a cold working of a working rate of 30 to 98% are alternately repeated 6 times or less to form a plate or foil to obtain an Nb-Ti superconducting multilayer board. Manufacturing method.
JP08917796A 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board Expired - Fee Related JP3544781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08917796A JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08917796A JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Publications (2)

Publication Number Publication Date
JPH09283812A JPH09283812A (en) 1997-10-31
JP3544781B2 true JP3544781B2 (en) 2004-07-21

Family

ID=13963494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08917796A Expired - Fee Related JP3544781B2 (en) 1996-04-11 1996-04-11 Method for producing Nb-Ti based superconducting multilayer board

Country Status (1)

Country Link
JP (1) JP3544781B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571918B2 (en) * 1996-03-19 2010-10-27 新日本製鐵株式会社 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board
US6857558B2 (en) * 2002-02-27 2005-02-22 Ferry, Iii Robert Thomas Metal lamination method and structure
JP4916646B2 (en) * 2004-01-09 2012-04-18 新日本製鐵株式会社 Clad plate for polymer electrolyte fuel cell separator and method for producing the same

Also Published As

Publication number Publication date
JPH09283812A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
US6699821B2 (en) Nb3Al superconductor and method of manufacture
JP3433937B2 (en) Method of manufacturing superconducting alloy
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
JP4634908B2 (en) High temperature superconducting coil
JP3522306B2 (en) Bi-based oxide superconducting wire and method for producing the same
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP4142770B2 (en) NbTi superconducting multilayer rolled plate and method for producing the same
JP3788839B2 (en) Manufacturing method of NbTi superconducting multilayer board
JPH0736479B2 (en) Manufacturing method of Nb-Ti superconducting magnetic shield material
JP3014512B2 (en) Method for producing NbTi-based superconducting wire
JPH0714442A (en) Nbti superconducting wire for palse or ac
JPH05880B2 (en)
JP5650098B2 (en) Rolled copper foil for superconducting film formation
JPH02177217A (en) Manufacture of nb3al superconducting wire
JP4516639B2 (en) NbTi superconducting multilayer board and manufacturing method thereof
JP2551579B2 (en) Bonding structure of oxide-based superconductor and normal conductor
RU2436198C1 (en) COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
KR20000000707A (en) Different sort metal material bound having cube structure and manufacturing method thereof
JP4571918B2 (en) Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board
JP2002194454A (en) METHOD FOR MANUFACTURING Nb-Ti ALLOY BY PACK ROLLING, AND Nb-Ti ALLOY
Hazelton Development of manufacturing techniques to prepare V 2 (Hf-Zr) Laves phase (C15) superconductor
RU2436197C1 (en) COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
JPH05101720A (en) Compound superconductive wire and manufacture thereof
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees