RU2436197C1 - COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND - Google Patents

COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND Download PDF

Info

Publication number
RU2436197C1
RU2436197C1 RU2010135122/28A RU2010135122A RU2436197C1 RU 2436197 C1 RU2436197 C1 RU 2436197C1 RU 2010135122/28 A RU2010135122/28 A RU 2010135122/28A RU 2010135122 A RU2010135122 A RU 2010135122A RU 2436197 C1 RU2436197 C1 RU 2436197C1
Authority
RU
Russia
Prior art keywords
layers
alloy
copper
niobium
composite
Prior art date
Application number
RU2010135122/28A
Other languages
Russian (ru)
Inventor
Михаил Иванович Карпов (RU)
Михаил Иванович Карпов
Виктор Иванович Внуков (RU)
Виктор Иванович Внуков
Валерий Поликарпович Коржов (RU)
Валерий Поликарпович Коржов
Юрий Романович Колобов (RU)
Юрий Романович Колобов
Евгений Витальевич Голосов (RU)
Евгений Витальевич Голосов
Original Assignee
Учреждение Российской академии наук ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (ИФТТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (ИФТТ РАН) filed Critical Учреждение Российской академии наук ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РАН (ИФТТ РАН)
Priority to RU2010135122/28A priority Critical patent/RU2436197C1/en
Application granted granted Critical
Publication of RU2436197C1 publication Critical patent/RU2436197C1/en

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

FIELD: electricity. ^ SUBSTANCE: composite superconducting tape based on NB3Sn compound consists of at least three alternating layers arranged in a copper shell: alloy Cu-(0.5-1.5) wt % Sn and multi-layer packs of nanostructure layers Nb3Sn and alloy Cu-(0.5-1.5) wt % Sn so that the layers adjacent to the copper shell are layers of multi-layer packs. ^ EFFECT: increased critical density of conductor current and improved extent of stabilisation. ^ 2 cl, 2 dwg

Description

Изобретение относится к области электротехники и может быть использовано в качестве сверхпроводящего материала при изготовлении сверхпроводящих магнитных систем различного назначения для генерации постоянных магнитных полей, например, в термоядерных реакторах для удержания плазмы, ускорителях элементарных частиц, накопителях энергии и других устройствах.The invention relates to the field of electrical engineering and can be used as a superconducting material in the manufacture of superconducting magnetic systems for various purposes to generate constant magnetic fields, for example, in fusion reactors for plasma confinement, particle accelerators, energy storage devices and other devices.

Сверхпроводящие соединения Nb3X, где X выбран из группы металлов, состоящей из Al, Sn и Ge, например, Nb3Sn, Nb3Ge, Nb3Al, предполагается использовать для изготовления сверхпроводящего материала, поскольку он пригоден для создания магнитных полей такой напряженности, для которых сверхпроводящий материал на основе сплава NbTi не может быть признан удовлетворительным.The superconducting compounds Nb 3 X, where X is selected from the group of metals consisting of Al, Sn and Ge, for example, Nb 3 Sn, Nb 3 Ge, Nb 3 Al, are supposed to be used for the manufacture of superconducting material, since it is suitable for creating magnetic fields such tensions for which the superconducting material based on the NbTi alloy cannot be considered satisfactory.

Однако все соединения Nb3X, в отличие от NbTi, обладают крайне высокой твердостью и хрупкостью, и поэтому не могут обрабатываться с помощью пластической деформации.However, all Nb 3 X compounds, unlike NbTi, have extremely high hardness and brittleness, and therefore cannot be processed using plastic deformation.

Известны проводники на основе интерметаллидов Nb3Sn, Nb3Al, Nb3Al0,8Ge0,2 (WO/2005/088651, МКИ Н01В 1/02, опуб. 22.09.2005; WO 2003/058727, МКИ H01L 39/14, опуб. 17.07.2003; US 6508889, МКИ Н01В 12/00, опуб. 01.21.2003), представляющие собой в общем случае матрицу из меди или алюминия с расположенными в ней сверхпроводящими элементами аксиальной формы.Known conductors based on intermetallic compounds Nb 3 Sn, Nb 3 Al, Nb 3 Al 0.8 Ge 0.2 (WO / 2005/088651, MKI H01B 1/02, publ. 09/22/2005; WO 2003/058727, MKI H01L 39 / 14, publ. 07/17/2003; US 6508889, MKI Н01В 12/00, publ. 01.21.2003), which are generally a matrix of copper or aluminum with axial-shaped superconducting elements located in it.

Такие проводники обладают высокими значениями критического тока, критической температуры и верхнего критического магнитного поля, но неудовлетворительной степенью стабилизации, связанной с низкой теплопроводностью и высоким сопротивлением матрицы.Such conductors possess high values of the critical current, critical temperature, and upper critical magnetic field, but an unsatisfactory degree of stabilization associated with low thermal conductivity and high matrix resistance.

Известна проволока (прототип) для Nb3X сверхпроводящего провода, содержащая стабилизирующую матрицу с внедренными в нее сверхпроводящими проволочными жилами, каждая из которых выполнена из медного прутка, слоистой части, сформированной из двух листов, первый из которых выполнен из чистого ниобия или его сплава, и второй - из металла или сплава, содержащих атомы X, которые вступают во взаимодействие с ниобием с образованием сверхпроводящего соединения. Между медным прутком и слоистой частью и поверх нее расположены слои, сформированные указанным листом ниобия или его сплава, и соприкасающиеся поверхности двух листов и ниобиевого листа и медного прутка выполнены зигзагообразными для увеличения площади контакта между ними. При этом ниобий имеет чистоту, по меньшей мере, 99,0% и второй - из металла X или сплава, содержащего атомы X (RU 2122758, Н01В 12/00, опубл. 27.11.1998).Known wire (prototype) for Nb 3 X superconducting wire containing a stabilizing matrix with embedded superconducting wire cores, each of which is made of a copper rod, a layered part formed of two sheets, the first of which is made of pure niobium or its alloy, and the second - from a metal or alloy containing X atoms, which interact with niobium to form a superconducting compound. Between the copper rod and the layered part and on top of it are layers formed by the specified sheet of niobium or its alloy, and the contacting surfaces of the two sheets and the niobium sheet and the copper rod are zigzag to increase the contact area between them. Moreover, niobium has a purity of at least 99.0% and the second one is made of metal X or an alloy containing X atoms (RU 2122758, НВВ 12/00, publ. 11/27/1998).

Однако величина критической плотности тока такого проводника является недостаточной для современного уровня техники. Закрепление сверхпроводящих вихрей (пиннинг) в этих проводах, отчего зависит их токонесущая способность, происходит на границах зерен, выделениях второй фазы и других структурных дефектах размером порядка или больше глубины проникновения магнитного поля сверхпроводника, т.е точечно. Кроме того, они обладают неудовлетворительной степенью стабилизации, связанной с низкой теплопроводностью и высоким сопротивлением матрицы.However, the critical current density of such a conductor is insufficient for the current level of technology. The fixing of superconducting vortices (pinning) in these wires, which determines their current carrying capacity, occurs at grain boundaries, precipitates of the second phase and other structural defects of a size on the order of or greater than the penetration depth of the superconductor magnetic field, i.e., pointwise. In addition, they have an unsatisfactory degree of stabilization associated with low thermal conductivity and high matrix resistance.

Предлагаемое изобретение решает задачу создания композита с увеличенными критической плотностью тока проводника и улучшенной степенью стабилизации.The present invention solves the problem of creating a composite with an increased critical current density of the conductor and an improved degree of stabilization.

Согласно изобретению композитная сверхпроводящая лента на основе соединения Nb3Sn состоит из расположенных в медной оболочке, по крайней мере, трех чередующихся слоев: сплава Cu-(0,5-1,5) мас.% Sn и многослойных пачек из наноструктурных слоев Nb3Sn и сплава Cu-(0,5-1,5) мас.% Sn таким образом, чтобы слоями, прилежащими к медной оболочке, были слои многослойных пачек.According to the invention, a composite superconducting tape based on the Nb 3 Sn compound consists of at least three alternating layers located in the copper shell: Cu- (0.5-1.5) wt.% Sn alloy and multilayer packs of nanostructured Nb 3 layers Sn and Cu- (0.5-1.5) wt.% Sn alloy so that the layers adjacent to the copper shell are layers of multilayer packs.

В настоящем изобретении под термином многослойные пачки из наноструктурных слоев Nb3Sn и сплава Cu-(0,5-1,5) мас.% Sn понимается структура, состоящая из чередующихся слоев соединения Nb3Sn и слоев сплава Cu-(0,5-1,5) мас.% Sn наноразмерной толщины.In the present invention, the term multilayer packs of nanostructured layers of Nb 3 Sn and a Cu- (0.5-1.5) wt.% Sn alloy refers to a structure consisting of alternating layers of a Nb 3 Sn compound and layers of a Cu- (0.5 -1.5) wt.% Sn nanoscale thickness.

Для улучшения стабилизирующих свойств композитной сверхпроводящей ленты соотношение толщин слоев медной оболочки, многослойных пачек и сплава составляет 1:(3-6):(10-25).To improve the stabilizing properties of the composite superconducting tape, the ratio of the thicknesses of the layers of the copper shell, multilayer packs and alloy is 1: (3-6) :( 10-25).

Предлагаемое изобретение представляет собой сверхпроводящий провод плоской геометрии. В отличие от вышеописанных проводников закрепление сверхпроводящих вихрей в нем происходит и на искусственно созданных межслойных границах. Такие границы являются более эффективными центрами пиннинга, так как закрепление вихря происходит не точечно, а на большой его длине. Это дает дополнительный вклад в величину критической плотности тока проводника.The present invention is a superconducting wire of flat geometry. In contrast to the above-described conductors, the fixing of superconducting vortices in it occurs at artificially created interlayer boundaries. Such boundaries are more effective pinning centers, since the vortex is fixed not pointwise, but over its large length. This makes an additional contribution to the critical current density of the conductor.

Кроме того, наружные слои меди в предлагаемом плоском проводнике при термической обработке, в результате которой образуется соединение Nb3Sn, остаются незагрязненными оловом, и поэтому ее теплопроводность остается высокой и электрическое сопротивление низким, что положительно сказывается на стабилизирующих свойствах.In addition, the outer layers of copper in the proposed flat conductor during heat treatment, which results in the formation of the Nb 3 Sn compound, remain uncontaminated with tin, and therefore its thermal conductivity remains high and the electrical resistance is low, which positively affects the stabilizing properties.

На Фиг.1 приведена конструкция 5-слойной композитной сверхпроводящей ленты на основе соединения Nb3Sn.Figure 1 shows the design of a 5-layer composite superconducting tape based on the Nb 3 Sn compound.

На Фиг.2 приведена конструкция 7-и слойной композитной сверхпроводящей ленты на основе соединения Nb3Sn.Figure 2 shows the design of a 7-layer composite superconducting tape based on the Nb 3 Sn compound.

Композитная сверхпроводящая лента согласно изобретению состоит из слоев 1, образованных медной оболочкой, прилежащих к ней многослойных пачек 2, из наноструктурных слоев Nb3Sn и сплава Cu-(0,5-1,5) мас.% и расположенного между ними слоя 3 сплава Cu-(0,5-1,5) мас.% Sn (Фиг.1) или трех многослойных пачек наноструктурных слоев Nb3Sn и сплава Cu-(0,5-1,5) мас.% с расположенным между ними двух слоев сплава Cu-(0,5-1,5) мас.% Sn 3 (Фиг.2).The composite superconducting tape according to the invention consists of layers 1 formed by a copper sheath, adjacent multilayer packs 2, nanostructured layers of Nb 3 Sn and a Cu- (0.5-1.5) wt.% Alloy and an alloy layer 3 located between them Cu- (0.5-1.5) wt.% Sn (Figure 1) or three multilayer packs of nanostructured layers of Nb 3 Sn and Cu- (0.5-1.5) wt.% Alloy with two layers of the alloy Cu- (0.5-1.5) wt.% Sn 3 (Figure 2).

Приведенные ниже примеры подтверждают, но не ограничивают предлагаемое изобретение.The following examples confirm, but do not limit, the invention.

Пример 1.Example 1

На первом этапе собирался пакет из 16 Cu- и 15 Nb-фольг толщиной 0,3 и 0,3 мм соответственно, таким образом, что наружными фольгами были фольги из меди. Затем пакет подвергался сначала диффузионной сварке под давлением 25 МПа при 800-850°С в течение 40 минут и затем прокатке на вакуумном прокатном стане с предварительным нагревом при 850°С за два прохода с обжатием 25-30% за один проход и далее прокатывался при комнатной температуре до ленты толщиной 0,3 мм.At the first stage, a packet of 16 Cu and 15 Nb foils 0.3 and 0.3 mm thick, respectively, was assembled, so that the outer foils were copper foils. Then the package was first subjected to diffusion welding under a pressure of 25 MPa at 800-850 ° C for 40 minutes and then rolling on a vacuum rolling mill with preliminary heating at 850 ° C in two passes with a compression of 25-30% in one pass and then rolled at room temperature to tape 0.3 mm thick.

2-й этап. Пакет собирался из 31 фольги после 1-го цикла толщиной 0,3 мм. Затем пакет подвергался сначала диффузионной сварке под давлением 25 МПа при 800-850°С в течение 40 минут и затем прокатке на вакуумном прокатном стане с предварительным нагревом при 850°С за два прохода с обжатием 25-30% за один проход и далее прокатывался при комнатной температуре до ленты толщиной 0,1 мм.2nd stage. The bag was assembled from 31 foils after the 1st cycle with a thickness of 0.3 mm. Then the package was first subjected to diffusion welding under a pressure of 25 MPa at 800-850 ° C for 40 minutes and then rolling on a vacuum rolling mill with preliminary heating at 850 ° C in two passes with a compression of 25-30% in one pass and then rolled at room temperature to tape 0.1 mm thick.

3-й этап. Пакет собирался согласно следующей конструкции Фиг1: (5 отрезков Nb/Cu-ленты, после 2-го этапа толщиной 0,1 мм) / (одна полоса из бронзы (сплава меди с 12 мас.% олова) толщиной 2,2 мм) / (5 отрезков Nb/Cu-ленты после 2-го этапа толщиной 0,1 мм) и затем оборачивался одним слоем листовой отожженной медной фольги толщиной 0,1 мм. Объемные содержания бронзы и ниобия в заготовке подбирались таким образом, чтобы удовлетворять отношению tNbNNb/tCuSnNCuSn=0,150-0,300, где tNb и tCuSn - толщины слоев ниобия и бронзы, NNb и NCuSn - количество слоев ниобия и бронзы соответственно. При выполнении этого соотношения максимальное количество олова из бронзы и весь ниобий будут израсходованы на образование сверхпроводящего соединения Nb3Sn.3rd stage. The package was assembled according to the following construction of Fig. 1: (5 segments of Nb / Cu tape, after the 2nd stage with a thickness of 0.1 mm) / (one strip of bronze (copper alloy with 12 wt.% Tin) 2.2 mm thick) / (5 segments of Nb / Cu tape after the second stage with a thickness of 0.1 mm) and then wrapped with one layer of sheet annealed copper foil with a thickness of 0.1 mm. The volume contents of bronze and niobium in the preform were selected so as to satisfy the ratio t Nb N Nb / t CuSn N CuSn = 0.150-0.300, where t Nb and t CuSn are the thicknesses of the niobium and bronze layers, N Nb and N CuSn are the number of niobium layers and bronzes respectively. When this ratio is fulfilled, the maximum amount of tin from bronze and all niobium will be spent on the formation of the superconducting compound Nb 3 Sn.

Перед сборкой пластина из бронзы отжигалась при 700-750°С в течение 1 ч. Затем пакет сваривался путем прокатки на вакуумном прокатном стане с предварительным нагревом при 750-800°С за два прохода с обжатием 30-35% за один проход и далее прокатывался при комнатной температуре при комнатной температуре до ленты толщиной 0,3 мм.Before assembly, the bronze plate was annealed at 700–750 ° С for 1 h. Then, the packet was welded by rolling in a vacuum rolling mill with preliminary heating at 750–800 ° С in two passes with 30-35% reduction in one pass and then rolled at room temperature at room temperature to a tape 0.3 mm thick.

После 3-го этапа расчетные толщины слоев ниобия и бронзы равны соответственно 9,7 нм и 194,7 мкм, количество слоев ниобия и бронзы - 4650 и 1 соответственно. Тогда отношение tNbNNt/tCuSnNCuSn равно 0,232. Это достаточно близко к теоретическому значению отношения (0,288), но с некоторым избытком олова по отношению к его расчетному количеству.After the 3rd stage, the calculated thicknesses of the niobium and bronze layers are 9.7 nm and 194.7 μm, respectively; the number of niobium and bronze layers is 4650 and 1, respectively. Then the ratio t Nb N Nt / t CuSn N CuSn is 0.232. This is close enough to the theoretical value of the ratio (0.288), but with a certain excess of tin in relation to its calculated amount.

В результате был получен композит, состоящий из размещенных между наружными медными слоями двух многослойных пачек, представляющих собой чередующиеся наноразмерные слои Nb3Sn и сплава Cu-(0,5-1,5 wt % Sn) и расположенного между ними слоя из сплава Cu-(0,5-1,5 мас.% Sn) (Фиг.1). Расчетные толщины слоя сплава Cu-(0,5-1,5 wt % Sn) равнялась 194,7 мкм, многослойных пачек - 44,3 мкм, наружных слоев меди - 8,8 мкм. Соотношение толщин меди, многослойных пачек и сплава Cu-(0,5-1,5 мас.% Sn) составило 1:5:22. По данным растровой электронной микроскопии расчетные толщины слоев удовлетворительно совпадали с измеренными усредненными толщинами слоев.As a result, a composite was obtained consisting of two multilayer packs placed between the outer copper layers, which are alternating nanosized layers of Nb 3 Sn and Cu- alloy (0.5-1.5 wt% Sn) and a layer of Cu- alloy located between them (0.5-1.5 wt.% Sn) (Figure 1). The calculated thickness of the Cu- alloy layer (0.5-1.5 wt% Sn) was 194.7 microns, multilayer packs - 44.3 microns, outer layers of copper - 8.8 microns. The ratio of the thicknesses of copper, multilayer packs and Cu- alloy (0.5-1.5 wt.% Sn) was 1: 5: 22. According to scanning electron microscopy, the calculated layer thicknesses satisfactorily coincided with the measured average layer thicknesses.

Критический ток измеряли при температуре жидкого гелия во внешнем магнитном поле до 7 Тесла при двух его ориентациях: параллельно плоскости полученного композита (наноламината) и перпендикулярно транспортному току (в этом случае сила Лоренца, направлена перпендикулярно плоскости наноламината и имеет место пинкинг на межслойной поверхности) и перпендикулярно плоскости наноламината и транспортному току (в этом случае пиннинг на межслойной поверхности отсутствует). Критическую плотность тока определяли отношением общего транспортного тока к площади поперечного сечения, занимаемой многослойными слоями, в составе которых находились наноразмерные слои соединения Nb3Sn.The critical current was measured at a temperature of liquid helium in an external magnetic field of up to 7 Tesla with two orientations: parallel to the plane of the obtained composite (nanolaminate) and perpendicular to the transport current (in this case, the Lorentz force is directed perpendicular to the plane of nanolaminate and there is pinning on the interlayer surface) and perpendicular to the plane of the nanolaminate and the transport current (in this case, there is no pinning on the interlayer surface). The critical current density was determined by the ratio of the total transport current to the cross-sectional area occupied by multilayer layers, which included nanoscale layers of the Nb 3 Sn compound.

Критическая плотность тока полученного композита составляет 62000 А/см2 в магнитном поле 6 Тесла.The critical current density of the resulting composite is 62,000 A / cm 2 in a 6 Tesla magnetic field.

Пример 2.Example 2

На первом этапе собирался пакет из 14 Cu- и 15 Nb-фольг толщиной 0,3 и 0,3 мм соответственно, таким образом, что наружными фольгами были фольги из ниобия, пакеты после сборки оборачивались одним слоем отожженной медной фольги толщиной 0,3 мм, а затем подвергались прокатке на вакуумном прокатном стане с предварительным нагревом при 850°С за два прохода с обжатием 25-30% за один проход и далее прокатывался при комнатной температуре до ленты толщиной 0,3 мм.At the first stage, a packet of 14 Cu and 15 Nb foils 0.3 and 0.3 mm thick, respectively, was assembled, so that the outer foils were niobium foils, and after assembly, the packets were wrapped with one layer of annealed 0.3 mm thick copper foil and then subjected to rolling in a vacuum rolling mill with preliminary heating at 850 ° C in two passes with compression of 25-30% in one pass and then rolled at room temperature to a tape 0.3 mm thick.

2-й этап. Пакет собирался из 31 фольги после 1-го этапа толщиной 0,3 мм. И после сборки оборачивался одним слоем отожженной медной фольги толщиной 0,1 мм. Затем пакет подвергался той же обработке, что и на первом этапе.2nd stage. The bag was assembled from 31 foils after the 1st stage with a thickness of 0.3 mm. And after assembly, wrapped in a single layer of annealed copper foil with a thickness of 0.1 mm. Then the package was subjected to the same processing as in the first stage.

3-й этап. Пакет собирался согласно следующей конструкции: (5 отрезкоз Nb/Cu-ленты, после 2-го этапа толщиной 0,1 мм) / [одна полоса из бронзы (сплава меди с 12 мас.% олова) толщиной 2,2 мм] / (5 отрезков Nb/Cu-ленты после 2-го этапа толщиной 0,1 мм) и затем оборачивался одним слоем листовой отожженной медной фольги толщиной 0,1 мм. Объемные содержания бронзы и ниобия в заготовке подбирались таким образом, чтобы удовлетворять отношению tNbNNb/tCuSnNCuSn=0,150-0,300, где tNb и tCuSn - толщины слоев ниобия и бронзы, NNb и NCuSn - количество слоев ниобия и бронзы соответственно. При выполнении этого соотношения максимальное количество олова из бронзы и весь ниобий будут израсходованы на образование сверхпроводящего соединения Nb3Sn.3rd stage. The package was assembled according to the following design: (5 cut-offs of Nb / Cu tape, after the 2nd stage 0.1 mm thick) / [one strip of bronze (copper alloy with 12 wt.% Tin) 2.2 mm thick] / ( 5 segments of Nb / Cu tape after the second stage with a thickness of 0.1 mm) and then wrapped with one layer of sheet annealed copper foil with a thickness of 0.1 mm. The volume contents of bronze and niobium in the preform were selected so as to satisfy the ratio t Nb N Nb / t CuSn N CuSn = 0.150-0.300, where t Nb and t CuSn are the thicknesses of the niobium and bronze layers, N Nb and N CuSn are the number of niobium layers and bronzes respectively. When this ratio is fulfilled, the maximum amount of tin from bronze and all niobium will be spent on the formation of the superconducting compound Nb 3 Sn.

Перед сборкой пластина из бронзы отжигалась при 700-750°С в течение 1 ч. Затем пакет сваривался путем прокатки на вакуумном прокатном стане с предварительным нагревом при 750-800°С за два прохода с обжатием 30-35% за один проход и далее прокатывался при комнатной температуре до ленты толщиной 0,3 мм.Before assembly, the bronze plate was annealed at 700–750 ° С for 1 h. Then, the packet was welded by rolling in a vacuum rolling mill with preliminary heating at 750–800 ° С in two passes with 30-35% reduction in one pass and then rolled at room temperature to a tape 0.3 mm thick.

После 3-го этапа расчетные толщины слоев ниобия и бронзы равны соответственно 9,7 нм и 194,7 мкм, количество слоев ниобия и бронзы - 4650 и 1 соответственно. Тогда отношение tNbNNb/tCuSnNCuSn равно 0,232. Это достаточно близко к теоретическому значению отношения (0,288), но с некоторым избытком олова по отношению к его расчетному количеству.After the 3rd stage, the calculated thicknesses of the niobium and bronze layers are 9.7 nm and 194.7 μm, respectively; the number of niobium and bronze layers is 4650 and 1, respectively. Then the ratio t Nb N Nb / t CuSn N CuSn is 0.232. This is close enough to the theoretical value of the ratio (0.288), but with a certain excess of tin in relation to its calculated amount.

В результате был получен композит, состоящий из размещенных между наружными медными слоями двух многослойных пачек, представляющих собой чередующиеся наноразмерные слои Nb3Sn и сплава Cu-(0,5-1,5 wt % Sn) и расположенного между ними слоя из сплава Cu-(0,5-1,5 мас.% Sn). Расчетные толщины слоя сплава Cu-(0,5-1,5 wt % Sn) равнялась 194,7 мкм, многослойных пачек - 44,3 мкм, наружных слоев меди - 8,8 мкм. Соотношение толщин меди, многослойных пачек и сплава Cu-(0,5-1,5 мас.% Sn) составило 1:5:22. По данным растровой электронной микроскопии расчетные толщины слоев удовлетворительно совпадали с измеренными усредненными толщинами слоев.As a result, a composite was obtained consisting of two multilayer packs placed between the outer copper layers, which are alternating nanosized layers of Nb 3 Sn and Cu- alloy (0.5-1.5 wt% Sn) and a layer of Cu- alloy located between them (0.5-1.5 wt.% Sn). The calculated thickness of the Cu- alloy layer (0.5-1.5 wt% Sn) was 194.7 microns, multilayer packs - 44.3 microns, outer layers of copper - 8.8 microns. The ratio of the thicknesses of copper, multilayer packs and Cu- alloy (0.5-1.5 wt.% Sn) was 1: 5: 22. According to scanning electron microscopy, the calculated layer thicknesses satisfactorily coincided with the measured average layer thicknesses.

Критический ток измеряли при температуре жидкого гелия во внешнем магнитном поле до 7 Тесла при двух его ориентациях: параллельно плоскости полученного композита (наноламината) и перпендикулярно транспортному току (в этом случае сила Лоренца, направлена перпендикулярно плоскости наноламината и имеет место пиннинг на межслойной поверхности) и перпендикулярно плоскости наноламината и транспортному току (в этом случае пиннинг на межслойной поверхности отсутствует). Критическую плотность тока определяли отношением общего транспортного тока к площади поперечного сечения, занимаемой многослойными слоями, в составе которых находились наноразмерные слои соединения Nb3Sn.The critical current was measured at a temperature of liquid helium in an external magnetic field up to 7 Tesla with two orientations: parallel to the plane of the obtained composite (nanolaminate) and perpendicular to the transport current (in this case, the Lorentz force is directed perpendicular to the plane of nanolaminate and pinning occurs on the interlayer surface) and perpendicular to the plane of the nanolaminate and the transport current (in this case, there is no pinning on the interlayer surface). The critical current density was determined by the ratio of the total transport current to the cross-sectional area occupied by multilayer layers, which included nanoscale layers of the Nb 3 Sn compound.

Критическая плотность тока полученного композита составляет 62000 А/см2 в магнитном поле 6 Тесла.The critical current density of the resulting composite is 62,000 A / cm 2 in a 6 Tesla magnetic field.

Пример 3.Example 3

То же, что в примере 1, только пакет собирался согласно следующей конструкции: (4 отрезков Nb/Cu-ленты после 2-го этапа толщиной 0,1 мм) / (одна полоса из бронзы толщиной 1,1 мм) / (4 отрезков Nb/Cu-ленты после 2-го этапа толщиной 0,1 мм) / (одна полоса из бронзы толщиной 1,1 мм) / (4 отрезков Nb/Cu-ленты после 2-го этапа толщиной 0,1 мм) и затем оборачивался одним слоем листовой отожженной медной фольги толщиной 0,1 мм.The same as in example 1, only the package was assembled according to the following design: (4 segments of Nb / Cu tape after the 2nd stage with a thickness of 0.1 mm) / (one strip of bronze with a thickness of 1.1 mm) / (4 segments Nb / Cu tape after the 2nd stage with a thickness of 0.1 mm) / (one strip of bronze with a thickness of 1.1 mm) / (4 pieces of Nb / Cu tape after the 2nd stage with a thickness of 0.1 mm) and then wrapped in a single layer of sheet annealed copper foil 0.1 mm thick.

После 3-го этапа расчетные толщины слоев ниобия и бронзы равны соответственно 9,2 нм и 91,7 мкм, количество слоев ниобия и бронзы - 5580 и 3 соответственно. Тогда отношение tNbNNb/tCuSnNCuSn равно 0,176. Это означает, что в композите содержится избыток олова, по отношению к его расчетному количеству.After the 3rd stage, the calculated thicknesses of the niobium and bronze layers are 9.2 nm and 91.7 μm, respectively; the number of niobium and bronze layers is 5580 and 3, respectively. Then the ratio t Nb N Nb / t CuSn N CuSn is 0.176. This means that the composite contains an excess of tin, relative to its calculated amount.

В результате был получен композит (Фиг.2), состоящий из размещенных между наружными медными слоями трех пачек чередующихся наноразмерных слоев Nb3Sn и сплава Cu-(0,5-1,5 мас.% Sn) и расположенных между ними двух слоев сплава Cu-(0,5-1,5 wt % Sn). Расчетные толщины слоев сплава Cu-(0,5-1,5 wt % Sn) равнялась 91,7 мкм, многослойных пачек - 33,3 мкм, наружных слоев меди - 8,3 мкм. Соотношение толщин меди, многослойных пачек и сплава Cu-(0,5-1,5 мас.% Sn) составило 1:4:11.As a result, a composite was obtained (Figure 2), consisting of three packs of alternating nanosized layers of Nb 3 Sn and a Cu- alloy (0.5-1.5 wt.% Sn) located between the outer copper layers and two layers of the alloy located between them Cu- (0.5-1.5 wt% Sn). The calculated thickness of the Cu- (0.5-1.5 wt% Sn) alloy layers was 91.7 μm, multilayer packs 33.3 μm, and the outer copper layers 8.3 μm. The ratio of the thicknesses of copper, multilayer packs and Cu- alloy (0.5-1.5 wt.% Sn) was 1: 4: 11.

Критическая плотность тока полученного композита составляет 41000 А/см2 в магнитном поле 6 Тесла.The critical current density of the resulting composite is 41,000 A / cm 2 in a 6 Tesla magnetic field.

Как видно из приведенных примеров, предлагаемое изобретение позволяет получить композитную сверхпроводящую ленту на основе соединения Nb3Sn с высокой критической плотностью тока, способную нести большой суммарный ток и одновременно обладающую повышенными стабилизирующими свойствами.As can be seen from the above examples, the present invention allows to obtain a composite superconducting tape based on the Nb 3 Sn compound with a high critical current density, capable of carrying a large total current and at the same time having enhanced stabilizing properties.

Claims (2)

1. Композитная сверхпроводящая лента на основе соединения Nb3Sn, состоящая из расположенных в медной оболочке, по крайней мере, трех чередующихся слоев: сплава Cu-(0,5-1,5) мас.% Sn и многослойных пачек из наноструктурных слоев Nb3Sn и сплава Cu-(0,5-1,5) мас.% Sn таким образом, чтобы слоями, прилежащими к медной оболочке, были многослойные пачки из наноструктурных слоев.1. A composite superconducting tape based on the Nb 3 Sn compound, consisting of at least three alternating layers located in the copper shell: Cu- (0.5-1.5) wt.% Sn alloy and multilayer packs of Nb nanostructured layers 3 Sn and Cu- (0.5-1.5) wt.% Sn alloy so that the layers adjacent to the copper shell are multilayer packs of nanostructured layers. 2. Композитная сверхпроводящая лента по п.1, отличающаяся тем, что для улучшения стабилизирующих свойств ленты соотношение толщин слоев медной оболочки, многослойных пачек и сплава составляет 1:(3-6):(10-25). 2. The composite superconducting tape according to claim 1, characterized in that in order to improve the stabilizing properties of the tape, the ratio of the thicknesses of the layers of the copper shell, multilayer packs and alloy is 1: (3-6) :( 10-25).
RU2010135122/28A 2010-08-24 2010-08-24 COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND RU2436197C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010135122/28A RU2436197C1 (en) 2010-08-24 2010-08-24 COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010135122/28A RU2436197C1 (en) 2010-08-24 2010-08-24 COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND

Publications (1)

Publication Number Publication Date
RU2436197C1 true RU2436197C1 (en) 2011-12-10

Family

ID=45405749

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010135122/28A RU2436197C1 (en) 2010-08-24 2010-08-24 COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND

Country Status (1)

Country Link
RU (1) RU2436197C1 (en)

Similar Documents

Publication Publication Date Title
US10128025B2 (en) Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
JP5684961B2 (en) Oxide superconducting wire
CN106898433B (en) Superconduction graphene composite film wire/belt material and cable
CN106716558A (en) Superconducting cable
US20150332812A1 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
US20180358154A1 (en) Superconducting Article With Compliant Layers
RU2436197C1 (en) COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
RU2436199C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
JP6704589B2 (en) Precursor wire for Nb3Al superconducting wire and Nb3Al superconducting wire
RU2436198C1 (en) COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP5693798B2 (en) Oxide superconducting wire
JP2015228357A (en) Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod
RU2441300C1 (en) METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND
US3616530A (en) Method of fabricating a superconducting composite
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
KR101630168B1 (en) Manufacturing Method of a composite-wire
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
RU2367043C1 (en) Method of making multi-layer tape nanostructure composite based on superconducting niobium-titanium alloy
RU2367042C1 (en) Multi-layer tape nanostructure composite based on superconducting niobium-titanium alloy
CN115171974B (en) Copper alloy reinforced superconducting tape, reinforcing method, superconducting coil and superconducting cable
EP4227427A1 (en) Nbti superconducting multi-core wire
JPH03136400A (en) Manufacture of nb-ti superconducting magnetic shielding material
JPH0568805B2 (en)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160825