JP4142770B2 - NbTi superconducting multilayer rolled plate and method for producing the same - Google Patents
NbTi superconducting multilayer rolled plate and method for producing the same Download PDFInfo
- Publication number
- JP4142770B2 JP4142770B2 JP18211098A JP18211098A JP4142770B2 JP 4142770 B2 JP4142770 B2 JP 4142770B2 JP 18211098 A JP18211098 A JP 18211098A JP 18211098 A JP18211098 A JP 18211098A JP 4142770 B2 JP4142770 B2 JP 4142770B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- nbti
- alloy
- conductive metal
- highly conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002184 metal Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 19
- 239000000956 alloy Substances 0.000 claims description 19
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910003336 CuNi Inorganic materials 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 5
- 239000011888 foil Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000002887 superconductor Substances 0.000 claims description 2
- 230000001568 sexual effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 description 31
- 230000005291 magnetic effect Effects 0.000 description 30
- 239000010949 copper Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、MRI(磁気共鳴医療画像診断装置)、超電導リニアモーターカー等の強力な磁場を必要とする機器で使用されている超電導機器等に対し外部磁場を遮蔽したり、超電導機器が発する強磁場の漏洩範囲を抑制する磁気シールド材や、磁場を発生するマグネットとして利用されるNbTi超電導多層板およびその製造方法に関するものである。
【0002】
【従来の技術】
超電導材料と高導電性金属材料を交互に積層した構造を有する超電導板は、特開平2−94498号公報に記載されているように、熱間加工及び冷間加工と熱処理の繰り返しによりNbTi層中にTiの析出物(常電導物質)を分散させて量子化磁束のピン止め点とし、比較的高い臨界電流密度(Jc)を得るものである。量子化磁束のピン止め点をTiの析出物としてNbTi層に析出させるためには最後に行う熱処理を数週間もの長時間行う必要があり、コスト上昇、製品工期の長期化という問題を有していた。また、Jc値は2Tの磁場下において約24万A/cm2であり、磁気シールド材として厚さ1mm以下で1T以上の磁場(但し磁場の方向は多層板と平行)をシールドするためには、さらに高いJcが求められていた。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は以下の通りである。
(1)製造工期の短い超電導多層圧延板を提供すること
(2)Jc値の高い超電導多層圧延板を提供すること
(3)超電導層と常電導層の層厚のばらつきが小さく、大きなくびれも無い安定な電流を流せる超電導多層圧延板を提供すること
すなわち、長時間にわたる熱処理工程を必要としない製造工程で、2Tの磁場下におけるJc値が24万A/cm2より高い超電導多層圧延板を提供すること、これにより軽量で磁気シールド特性または磁場捕捉特性の優れた超電導多層圧延板を得ることを目的としている。
【0004】
【課題を解決するための手段及び実施の形態】
請求項1に示す第1の発明は、図1に示すようにNbTi合金層と常電導層が交互に2層以上積層した構造を有する複合層と、Ni及びSiを含むCu合金からなる高導電性金属層とが交互に積層した構造を有し、最外層がCu、CuNi合金、又はAlからなる高導電性金属である多層圧延板であって、常電導層の厚さが実質的に5nm以上、200nm以下、NbTi合金層の厚さが実質的に5nm以上、500nm以下であり、かつNi及びSiを含むCu合金からなる高導電性金属層の電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下であることを特徴とするNbTi超電導多層圧延板である。
【0005】
本発明のNbTi超電導多層圧延板の複合層において、常電導の厚さを実質的に5nm以上、200nm以下、NbTi層の厚さを実質的に5nm以上、500nm以下とした理由を、以下に述べる。
金属、合金及び酸化物超電導体において量子化磁束の有効なピン止め点は量子化磁束の格子間隔に分散した超電導のコヒーレンス長の2倍程度の大きさの常電導物質である(NbTiの場合5Tにおける量子化磁束の格子間隔は22nm、コヒーレンス長の2倍は11nm)といわれており(石田文彦他、Advances in Cryogenic Engineering (Materials), vol.36, P.287, Plenum Press New York,1990)、または、フレーク状(K. Matsumoto 他、IEEE Transactions on magnetics, Vol.27, No.2 March P.1125, 1991)で存在しているが、本発明者らは印加する磁場が多層圧延板に平行な場合、層形状の常電導相も量子化磁束のピン止めとして非常に有効であることを見いだした。
【0006】
即ち、本発明の超電導多層圧延板の複合層において、常電導層の厚さを5nm以上としたのは、理想的なピン止め点の厚さはおよそ11nmとされているが、5nm程度でも十分ピン止め点としての効果があり高い磁場が得られるためであり、200nm以下としたのはこれを超えるとピン止め効率が低下するためである。NbTi層の厚さを5nm以上としたのは、圧延法によりこれ以下の厚さとするのは実質的に困難であるためであり、500nm以下としたのはこれを超えるとピン止め同士の間隔が大きくなり磁束捕捉の効率が悪くJcが低下するためである。特に、超電導層と常電導層の層厚の合計が実質的に100nm以下となる場合にピン止め力は大きくなり、Jcは飛躍的に上昇する。
【0007】
なお、本発明において、実質的という意味は、本発明材料の断面構造写真に板厚方向に直線を引いて各層の厚さを調べたときに、各層の内の50%以上が請求項で規定した範囲に入っていることを示す。高導電性金属とは、CuNi等の銅合金である。常電導相とは、使用時に常電導状態であるNb、Ti、Ta等のことである。
【0008】
次に、本発明のNbTi超電導多層圧延板の複合層において、高導電性金属層の電気伝導率がIACS30%以上、硬度が120以上、220以下とした理由を、以下に述べる。
Jcの高い超電導多層圧延板を製造するためには、超電導層と常電導層が設計通りまたは設計値に近い層厚になっていることが重要である。超電導層及び常電導層の層厚が1μm以下になるまで圧延を行う場合、超電導層と常電導層及び高導電性金属層の硬さが大きく異なると各層厚のばらつきが大きくなったりくびれが起こり超電導電流を阻害する原因となる。例えば、NbTiの硬度と比較して純銅の硬度はかなり小さいことから純銅とNbTiを多層にした多層板の冷間圧延を行うと特にNbTiの層厚のばらつきが大きくなりJcが低下する。この問題を解決するために、本発明では、特に高導電性金属層の硬さを規定し、圧延性を層間で一様になるようにした。
【0009】
なお、IACSとは、無酸素銅の電気伝導率を100%としたときにどれだけの電気伝導率があるかを示す指標である。高導電性金属層のIACSを30%以上としたのは、30%未満だと超電導層が局所的に常電導に転移した場合に材料に流れていた超電導電流を高導電金属層に流すのには不十分で、超電導層全体が一気に常電導に転移してしまう現象が起きやすくなるためである。高導電性金属層のビッカース硬度を120以上としたのは、NbTi層のビッカース硬度が180〜220であることから、硬度の差が100を超えない値とした。硬度の差が100を超えると圧延性が異なり超電導層の層厚のばらつきが大きくなり、くびれが多数発生するためである。高導電性金属層の硬度を220以下とした理由は、硬度が220を超えると高導電性金属層の圧延性が低下するためである。
【0010】
請求項2に示した第2の発明は、請求項1記載のNbTi超電導多層圧延板の製造方法を規定するものである。NbTi合金板と常電導板を交互に2層以上積層するように重ねた複合層と、前記高導電性金属層として、電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下のNi及びSiを含むCu合金からなる高導電性金属板をCu、CuNi合金、又はAlからなる高導電性金属で作製した箱の中に交互に入れ、Cu、CuNi合金、又はAlからなる高導電性金属板で真空中で封止し、次に温度500〜1000℃で加熱した後に圧延し、冷間圧延を施して板状または、箔状とすることを特徴とする製造方法である。
【0011】
電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下の合金の例としては、1〜5%のNiと0.1〜2%のSiを含む銅合金や、0.05〜4%のFeと0.01〜0.2のPを含む銅合金などがある。ここで常電導板とはNb、Ti、Ta、及び電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下の銅合金等のことを示す。圧延の温度を500℃以上としたのは、これ未満ではNbTi層と高導電性金属層が接合しないためであり、1000℃以下としたのは1000℃超では高導電性金属層の融点に近く融解の危険が生じるためである。高導電性金属層の電気伝導率をIACS30%以上としたのは、30%未満だと超電導層が局所的に常電導に転移した場合に材料に流れていた超電導電流を高導電性金属層に流すのには不十分で、超電導層全体が一気に常電導に転移してしまう現象が起きやすくなるためである。ビッカース硬度を120以上としたのは、NbTi層のビッカース硬度が180〜220であることから、硬度の差が100を超えない値とした。硬度の差が100を超えると圧延性が異なり超電導層の層厚のばらつきが大きくなり、くびれが多数発生するためである。高導電性金属層の硬度を220以下とした理由は、硬度が220を超えると高導電性金属層の圧延性が低下するためである。
Tiの析出物をピン止め点とする通常のNbTi多層圧延板(特開平2−94498号公報)では、熱間圧延後の工程において熱処理と冷間圧延を繰り返し行い、最後に長時間の熱処理を行うことが必要であるが、本発明の場合、常電導金属層がピン止めとなるため、熱間圧延で各層同士を接合した後は冷間圧延工程のみで材料を作製することができる。但し、機械的性質(例えば伸び)を改善するために軟化焼鈍を必要に応じて行うこともある。
【0012】
請求項3に示した第3の発明は、請求項1記載のNbTi超電導多層圧延板の製造方法を規定するものである。NbTi合金板と常電導板を交互に2層以上積層するように重ねた複合層と、電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下のNi及びSiを含むCu合金からなる高導電性金属層がNbを介して交互に2層以上積層した構造を有し、最外層が電気伝導率がIACS30%以上、ビッカース硬度が120以上220以下のCu、CuNi合金、又はAlからなる高導電性金属板であり、超高導電性金属を10枚以上、100枚以下重ねて真空中または不活性ガス雰囲気で500〜700℃で10分〜5時間、1MPa〜400MPaの圧力をかけた後室温で冷間圧延を施して、板状または、箔状とすることを特徴とするNbTi多層圧延板の製造方法である。
【0013】
10枚以上としたのは、10枚未満だと重ね合わせて圧延した際、NbTi及び常電導層の厚さを薄くする効果が小さいためであり、100枚以下としたのは、100枚を超えると重ね合わせた後の材料の層厚が厚くなり、圧延に時間がかかり工期が長期化するためである。温度500〜700℃としたのは、500未満では最外層の高導電性金属層が接合しないためであり、700℃を超えるとNbTi層中のTiの拡散が顕著となりCu層と金属間化合物が形成され、後の圧延工程に悪影響を及ぼすためである。時間を10分〜5時間としたのは、10分未満では試料全体が加熱されるのに不十分であり、5時間を超えるとTiの拡散による悪影響が出始めるためである。圧力を1MPa以上400MPa以下としたのは、硬度が120以上200以下の高導電性金属とNbTiの両方に均一に充分に接合圧力を伝えるためで、1MPa未満では十分接合しないためであり、400MPaを超えるとNbTiや高導電性金属層に亀裂が入ったりするためである。
【0014】
【実施例】
[実施例1]
本発明材として、以下を作製した。厚さ0.01mmのNb板41枚と厚さ0.05mmのNb−46.5質量%Ti板40枚を交互に積層したトータル厚さ2.41mmのNb/NbTi複合層を30個用意した。これらNb/NbTi複合層とNiを3.0%、Siを0.6%含み、残りCuと不可避不純物から成る厚さ1mmのCu合金板29枚を交互にCuで作製した箱に積層充填し、内部を真空状態にして溶接密封し700℃で圧下率80%で熱間圧延を施して一体化させた。次にCu合金板のビッカース硬度を140、IACSを50%になるように500℃で2時間の熱処理を施し、Cu合金板中にNiとSiの金属間化合物を析出させた。次に冷間圧延を行い、厚さ0.1mmの超電導多層板を作製した。このときのNbTi層の厚さ、即ちNb層とNb層の層間隔は設計値で41.2nm、Nb層の厚さは設計値で8.2nmである。
【0015】
一方、比較材として、厚さ1mmのNbTi30枚と厚さ1mmのCuの板を0.1mmのNbを介して交互にCuで作製した箱に積層充填し、内部を真空状態にして溶接密封し700℃で圧下率50%で熱間圧延を施して一体化させた後、冷間圧延と400℃の熱処理を2回繰り返し、厚さ0.5mmとし、最後に370℃で200時間時効した材料を作製した。比較材の断面組織を電子顕微鏡で観察したところ、結晶粒界と結晶粒中にTi析出物が存在していることが確認できた。
【0016】
本発明材及び比較材の臨界電流密度Jcを液体ヘリウムに浸漬した状態で、2Tの磁場下において測定した(磁場の方向は試料に対して平行)。試料は平行部長さ約30mm、幅0.5mmの板状試験片に10mmの間隔で電圧の検出端子を取り付け試料に電流を流し、電圧が1μVに上昇したときの電流値を臨界電流とし、その値をNbTiの断面積で割った値を臨界電流密度とした。
【0017】
その結果、2Tの磁場下に於けるJc値は、本発明材が81万A/cm 2 、比較材が19万A/cm 2 となり、本発明材は、比較材に比べ4.2倍以上も大きい値となった。
本発明材は、比較材が必要とした370℃200時間の時効工程を省くことができ、なおかつ、このように高Jc値が得られたものである。
【0018】
尚、本発明材の製造工程の途中において、NiとSiを含むCu合金板を使用した多層板に500℃で2時間熱処理を施した後のNbTi層とCu合金層のビッカース硬度を測定したところ、それぞれ160と140であった。両層の硬さがほぼ等しいので、均一に冷間圧延することができ、高Jc値が得られた。
【0019】
[実施例2]
本発明材として、以下を作製した。厚さ1mmのNbTi板30枚とNi3.0%、Si0.6%、Zn0.2%を含み残部は不可避不純物からなる厚さ1mmのCu合金の板を0.1mmのNbを介して交互にCuで作製した箱に積層充填し、内部を真空状態にして溶接密封し800℃で圧下率50%の熱間圧延を施して一体化させた後、冷間圧延により厚さ0.1mmの多層板を作製した。これを10枚積層して銅の箔でくるみ、真空中で250MPaの圧力をかけながら550℃で5時間加熱プレスし接合した。ここで300層のNbTi層をもつ多層板ができた。本多層板を室温で厚さ14μmまで圧延した。このときNbTi層及びCu合金層の厚さは16nm、Nb層の厚さは2nmであり、NbTi層同士の間隔は平均20nmであった。
一方、実施例1で示した比較材をさらに圧延して厚さ14μmとし、実施例2での比較材とした。
これらの臨界電流密度Jcを液体ヘリウムに浸漬した状態で、1Tの磁場下において測定した(磁場の方向は試料に対して平行)。試料は平行部長さ約30mm、幅0.5mmの板状試験片に10mmの間隔で電圧の検出端子を取り付け試料に電流を流し、電圧が1μVに上昇したときの電流値を臨界電流とし、その値をNbTiの断面積で割った値を臨界電流密度とした。
【0020】
その結果、本発明材の1Tの磁場下に於けるJc値は297万A/cm2と非常に高い値が得られた。実施例1に示した比較材を厚さ14μmまで圧延した材料の1Tに於けるJc値は、44万A/cm 2 であったので、本発明材のJc値は比較材の6.7倍以上という非常に大きな値を示した。
本発明材は、比較材が必要とした370℃200時間の時効工程を省くことができ、なおかつ、このように高Jc値が得られたものである。
【0021】
【発明の効果】
以上説明したように本発明により、製造工期が短く、超電導層と常電導層の層厚のばらつきが小さく、大きなくびれも無く、安定な電流を流せ、高いJcを有するNbTi超電導多層圧延板が得られた。
【図面の簡単な説明】
【図1】 本発明に係る超電導多層圧延板の断面模式図で、(a)は全体図、(b)は(a)における複合層の断面図である。
【符号の説明】
1 高導電性金属層(CuNi合金等)
2 複合層
3 常電導層(Nb、Ta、Ti等)
4 NbTi層[0001]
BACKGROUND OF THE INVENTION
The present invention shields an external magnetic field from a superconducting device used in a device that requires a strong magnetic field, such as an MRI (magnetic resonance medical image diagnostic apparatus), a superconducting linear motor car, or the like, or generates a strong force generated by the superconducting device. The present invention relates to a magnetic shield material that suppresses the leakage range of a magnetic field, an NbTi superconducting multilayer board that is used as a magnet that generates a magnetic field, and a manufacturing method thereof.
[0002]
[Prior art]
A superconducting plate having a structure in which a superconducting material and a highly conductive metal material are alternately laminated is formed in an NbTi layer by repeating hot working, cold working and heat treatment, as described in JP-A-2-94498. Ti precipitates (normal conducting material) are dispersed in the magnetic flux to serve as a pinning point for the quantized magnetic flux to obtain a relatively high critical current density (Jc). In order to deposit the pinning point of the quantized magnetic flux as a Ti precipitate on the NbTi layer, the last heat treatment needs to be performed for a long time of several weeks, which has the problems of cost increase and product construction period extension. It was. Also, Jc value was about 240,000 A / cm 2 under a magnetic field of 2 T, 1 T or more magnetic field below 1mm thick as the magnetic shield material (although the direction of the magnetic field parallel to the multilayer plate) for shielding the Therefore, a higher Jc was required.
[0003]
[Problems to be solved by the invention]
The problems to be solved by the present invention are as follows.
(1) providing a short superconducting multilayer rolled plate of manufacturing period (2) to provide a high Jc value superconducting multilayer rolled plate (3) variations in the thickness of the superconducting layer and the normal conductive layer is small, a large constriction also no i.e. to provide a superconducting multilayer rolled sheet that can safely stable current, in the manufacturing process that does not require a heat treatment process over a long period of time, 2 T high superconducting multilayer rolled sheet than Jc value 240,000 a / cm 2 under a magnetic field of It is an object of the present invention to provide a superconducting multilayer rolled sheet that is lightweight and has excellent magnetic shielding characteristics or magnetic field capturing characteristics.
[0004]
[Means for Solving the Problems and Embodiments]
The first invention described in claim 1 is a highly conductive material comprising a composite layer having a structure in which two or more NbTi alloy layers and normal conducting layers are alternately laminated as shown in FIG. 1, and a Cu alloy containing Ni and Si. A multilayer rolled plate having a structure in which conductive metal layers are alternately laminated, and the outermost layer is a highly conductive metal made of Cu, CuNi alloy, or Al, and the thickness of the normal conductive layer is substantially 5 nm. As described above, the electric conductivity of the highly conductive metal layer made of a Cu alloy containing Ni and Si is not less than 200 nm, the thickness of the NbTi alloy layer is substantially not less than 5 nm and not more than 500 nm, and the Vickers hardness is not less than IACS. It is a NbTi superconducting multilayer rolled plate characterized by being 120 or more and 220 or less.
[0005]
In the composite layer of the NbTi superconducting multilayer rolled plate of the present invention, the reason why the thickness of normal conduction is substantially 5 nm or more and 200 nm or less and the thickness of the NbTi layer is substantially 5 nm or more and 500 nm or less will be described below. .
In a metal, alloy, and oxide superconductor, the effective pinning point of the quantized magnetic flux is a normal conducting material having a size about twice the coherence length of the superconducting dispersed in the lattice spacing of the quantized magnetic flux (5 for NbTi). It is said that the lattice spacing of the quantized magnetic flux at T is 22 nm, and the coherence length is twice as long as 11 nm (Fumihiko Ishida et al., Advances in Cryogenic Engineering (Materials), vol. 36, P. 287, Plenum Press New York, 1990) ), or, flaky (K. Matsumoto another, IEEE Transactions on magnetics, Vol.27, No.2 March P.1125, although present in 1991), the present inventors have magnetic multilayer rolled sheet to be applied It was found that the layered normal conducting phase is very effective for pinning the quantized magnetic flux.
[0006]
That is, in the composite layer of the superconducting multilayer rolled plate of the present invention, the thickness of the normal conducting layer is set to 5 nm or more. The ideal pinning point thickness is about 11 nm, but about 5 nm is sufficient. This is because it has an effect as a pinning point and a high magnetic field is obtained, and the reason why it is set to 200 nm or less is that if it exceeds this, the pinning efficiency is lowered. The reason why the thickness of the NbTi layer is set to 5 nm or more is that it is substantially difficult to reduce the thickness to less than this by a rolling method. This is because it becomes larger and the efficiency of capturing the magnetic flux is poor and Jc is lowered. In particular, when the total thickness of the superconducting layer and the normal conducting layer is substantially 100 nm or less, the pinning force increases and Jc increases dramatically.
[0007]
Incidentally, specified in the present invention, means that substantially, when examining the thickness of each layer in the cross-sectional structure photograph of the present invention the material by pulling a line in the thickness direction, 50% or more of the respective layers in claim Indicates that it is within the specified range. The highly conductive metal is a copper alloy such as CuNi . The normal conducting phase refers to Nb, Ti, Ta, etc. that are in a normal conducting state at the time of use.
[0008]
Next, the reason why the electrical conductivity of the highly conductive metal layer in the composite layer of the NbTi superconducting multilayer rolled plate of the present invention is set to 30% or more for IACS and 120 to 220 for hardness is described below.
In order to manufacture a superconducting multilayer rolled sheet having a high Jc, it is important that the superconducting layer and the normal conducting layer have a thickness as designed or close to the designed value. When rolling until the layer thickness of the superconducting layer and the normal conducting layer is 1 μm or less, if the hardness of the superconducting layer, the normal conducting layer, and the highly conductive metal layer is greatly different, the variation in the thickness of each layer becomes large or constriction occurs. It becomes a cause of obstructing superconducting current. For example, since the hardness of pure copper is considerably smaller than the hardness of NbTi, when cold rolling is performed on a multilayer plate in which pure copper and NbTi are multilayered, the variation in the layer thickness of NbTi increases and Jc decreases. In order to solve this problem , in the present invention, the hardness of the highly conductive metal layer is specified, and the rollability is made uniform between the layers.
[0009]
Note that IACS is an index indicating how much electrical conductivity there is when the electrical conductivity of oxygen-free copper is 100%. The reason why the IACS of the highly conductive metal layer is set to 30% or more is that when the superconducting layer is less than 30%, the superconducting current flowing in the material when the superconducting layer is locally changed to normal conduction flows to the highly conductive metal layer. This is because the phenomenon that the entire superconducting layer is rapidly transformed into normal conduction is likely to occur. The reason why the Vickers hardness of the highly conductive metal layer was set to 120 or more was that the difference in hardness did not exceed 100 because the Vickers hardness of the NbTi layer was 180 to 220. This is because if the difference in hardness exceeds 100, the rollability is different and the variation in the thickness of the superconducting layer increases, resulting in a large number of constrictions. The reason why the hardness of the highly conductive metal layer is 220 or less is that when the hardness exceeds 220, the rollability of the highly conductive metal layer is lowered.
[0010]
The second invention shown in
[0011]
Examples of alloys having an electrical conductivity of IACS 30% or more and Vickers hardness of 120 or more and 220 or less include copper alloys containing 1 to 5% Ni and 0.1 to 2% Si, and 0.05 to 4%. Examples include copper alloys containing Fe and 0.01 to 0.2 P. Here, the normal conductive plate indicates Nb, Ti, Ta, a copper alloy having an electrical conductivity of IACS 30% or more, and a Vickers hardness of 120 or more and 220 or less. The reason why the rolling temperature is set to 500 ° C. or higher is that the NbTi layer and the highly conductive metal layer are not bonded when the temperature is lower than this, and that the temperature is set to 1000 ° C. or lower is close to the melting point of the highly conductive metal layer when the temperature is higher than 1000 ° C. This is because there is a risk of melting. The reason why the electrical conductivity of the highly conductive metal layer is set to IACS 30% or more is that if it is less than 30%, the superconducting current flowing in the material when the superconducting layer locally transitions to normal conduction is changed to the highly conductive metal layer. This is because it is not sufficient to flow, and the phenomenon that the entire superconducting layer transitions to normal conduction at once is likely to occur. The reason why the Vickers hardness was set to 120 or more was that the difference in hardness did not exceed 100 because the Vickers hardness of the NbTi layer was 180 to 220. This is because if the difference in hardness exceeds 100, the rollability is different and the variation in the thickness of the superconducting layer increases, resulting in a large number of constrictions. The reason why the hardness of the highly conductive metal layer is 220 or less is that when the hardness exceeds 220, the rollability of the highly conductive metal layer is lowered.
In a normal NbTi multilayer rolled plate (JP-A-2-94498) having a Ti precipitate as a pinning point, heat treatment and cold rolling are repeated in the process after hot rolling, and finally a long time heat treatment is performed. Although it is necessary to perform, in the case of this invention, since a normal conducting metal layer becomes pinning, after joining each layer by hot rolling, a material can be produced only by a cold rolling process. However, in order to improve mechanical properties (for example, elongation), softening annealing may be performed as necessary.
[0012]
A third aspect of the present invention provides a method for manufacturing the NbTi superconducting multilayer rolled sheet according to the first aspect. A composite layer superimposed to laminate alternately two or more layers of NbTi alloy plate and normal-conducting plate, electric conductivity IACS30% or more, the Vickers hardness of the Cu alloy containing 120 to 220 or less Ni and Si high conductivity The conductive metal layer has a structure in which two or more layers are alternately laminated via Nb, and the outermost layer is made of Cu, CuNi alloy, or Al having an electrical conductivity of IACS 30% or more and a Vickers hardness of 120 to 220. 10 or more and 100 or less super high conductive metals are stacked, and after applying a pressure of 1 MPa to 400 MPa in vacuum or in an inert gas atmosphere at 500 to 700 ° C. for 10 minutes to 5 hours, room temperature The method for producing a NbTi multilayer rolled plate is characterized in that it is cold rolled to form a plate or foil.
[0013]
The reason why the number is 10 or more is that the effect of reducing the thickness of NbTi and the normal conducting layer is small when the number is less than 10 and rolled, and the number of 100 or less is more than 100. This is because the layer thickness of the material after being overlaid becomes thick, and it takes time to roll and the construction period is prolonged. The reason why the temperature is set to 500 to 700 ° C. is that when the temperature is less than 500, the outermost highly conductive metal layer is not bonded. When the temperature exceeds 700 ° C., the diffusion of Ti in the NbTi layer becomes remarkable, and the Cu layer and the intermetallic compound are formed. This is because it is formed and adversely affects the subsequent rolling process. The reason for setting the time to 10 minutes to 5 hours is that if the time is less than 10 minutes, the entire sample is insufficient to be heated, and if it exceeds 5 hours, adverse effects due to diffusion of Ti begin to appear. The reason why the pressure is set to 1 MPa or more and 400 MPa or less is to transmit the bonding pressure uniformly and sufficiently to both the highly conductive metal having a hardness of 120 or more and 200 or less and NbTi. If it exceeds, NbTi or the highly conductive metal layer will crack.
[0014]
【Example】
[Example 1]
The following were produced as the material of the present invention. 30 Nb / NbTi composite layers having a total thickness of 2.41 mm were prepared by alternately laminating 41 Nb plates having a thickness of 0.01 mm and 40 Nb-46.5 mass% Ti plates having a thickness of 0.05 mm. . These Nb / NbTi composite layers, Ni of 3.0%, Si of 0.6%, and 29 Cu alloy plates with a thickness of 1 mm consisting of the remaining Cu and inevitable impurities are alternately stacked and filled in a box made of Cu. The inside was vacuum-sealed and welded and sealed at 700 ° C. with a rolling reduction of 80% and integrated. Next, heat treatment was performed at 500 ° C. for 2 hours so that the Vickers hardness of the Cu alloy plate was 140 and IACS was 50%, and an intermetallic compound of Ni and Si was precipitated in the Cu alloy plate. Next, cold rolling was performed to produce a superconducting multilayer plate having a thickness of 0.1 mm. At this time, the thickness of the NbTi layer, that is, the distance between the Nb layer and the Nb layer is 41.2 nm as a design value, and the thickness of the Nb layer is 8.2 nm as a design value.
[0015]
On the other hand , as a comparative material, 30 NbTi plates with a thickness of 1 mm and Cu plates with a thickness of 1 mm are stacked and filled in a box made of Cu alternately with 0.1 mm of Nb, and the inside is vacuum-sealed and welded and sealed. A material that was integrated by hot rolling at 700 ° C. with a rolling reduction of 50%, then cold rolling and heat treatment at 400 ° C. were repeated twice to a thickness of 0.5 mm, and finally aged at 370 ° C. for 200 hours. Was made. When the cross-sectional structure of the comparative material was observed with an electron microscope, it was confirmed that Ti precipitates were present in the crystal grain boundaries and crystal grains.
[0016]
The critical current density Jc of the inventive material and the comparative material was measured under a magnetic field of 2 T in a state immersed in liquid helium (the direction of the magnetic field is parallel to the sample). A sample is a plate-shaped test piece having a parallel part length of about 30 mm and a width of 0.5 mm, and a voltage detection terminal is attached at an interval of 10 mm. A current flows through the sample, and the current value when the voltage rises to 1 μV is defined as a critical current. The value obtained by dividing the value by the cross-sectional area of NbTi was defined as the critical current density.
[0017]
As a result, the Jc value under a magnetic field of 2 T is 810,000 A / cm 2 for the inventive material and 190,000 A / cm 2 for the comparative material, which is 4.2 times that of the comparative material. The above was also a large value.
The material of the present invention can omit the aging process at 370 ° C. for 200 hours required for the comparative material, and has a high Jc value as described above.
[0018]
In the course of the production process of the material of the present invention , the Vickers hardness of the NbTi layer and the Cu alloy layer after the heat treatment at 500 ° C. for 2 hours on the multilayer plate using the Cu alloy plate containing Ni and Si was measured. , 160 and 140, respectively. Since the hardness of both layers was almost equal, it could be uniformly cold-rolled and a high Jc value was obtained.
[0019]
[Example 2]
The following were produced as the material of the present invention. 30 NbTi plates with a thickness of 1 mm and Ni alloy plates with Ni 3.0%, Si 0.6%, and Zn 0.2%, and the balance is made of unavoidable impurities. A box made of Cu is laminated and filled, and the inside is welded and sealed in a vacuum state. After being integrated by hot rolling at 800 ° C. with a reduction rate of 50%, a multilayer having a thickness of 0.1 mm is obtained by cold rolling. A plate was made. Ten sheets of these were laminated and wrapped with copper foil, and joined by press-pressing at 550 ° C. for 5 hours while applying a pressure of 250 MPa in a vacuum. Here, a multilayer board having 300 NbTi layers was obtained. The multilayer board was rolled to a thickness of 14 μm at room temperature. At this time, the thickness of the NbTi layer and the Cu alloy layer was 16 nm, the thickness of the Nb layer was 2 nm, and the interval between the NbTi layers was 20 nm on average.
On the other hand, the comparative material shown in Example 1 was further rolled to a thickness of 14 μm and used as the comparative material in Example 2.
These critical current densities Jc were measured in a magnetic field of 1 T while immersed in liquid helium (the direction of the magnetic field was parallel to the sample). A sample is a plate-shaped test piece having a parallel part length of about 30 mm and a width of 0.5 mm, and a voltage detection terminal is attached at an interval of 10 mm. A current flows through the sample, and the current value when the voltage rises to 1 μV is defined as a critical current. The value obtained by dividing the value by the cross-sectional area of NbTi was defined as the critical current density.
[0020]
As a result, the Jc value of the material of the present invention under a magnetic field of 1 T was as high as 2.97 million A / cm 2 . Since the Jc value in 1T of the material obtained by rolling the comparative material shown in Example 1 to a thickness of 14 μm was 440,000 A / cm 2 , the Jc value of the inventive material was 6.7 times that of the comparative material. It was a very large value.
The material of the present invention can omit the aging process at 370 ° C. for 200 hours required for the comparative material, and has a high Jc value as described above.
[0021]
【The invention's effect】
As described above, according to the present invention, an NbTi superconducting multilayer rolled sheet having a short manufacturing period, small variations in the layer thickness of the superconducting layer and the normal conducting layer, no large constriction, allowing a stable current to flow, and high Jc is obtained. It was.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a superconducting multilayer rolled plate according to the present invention, where (a) is an overall view and (b) is a cross-sectional view of a composite layer in (a).
[Explanation of symbols]
1 Highly conductive metal layer ( CuNi alloy, etc. )
2 Composite layer 3 Normal conducting layer ( Nb, Ta, Ti, etc. )
4 NbTi layer
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18211098A JP4142770B2 (en) | 1997-08-18 | 1998-06-29 | NbTi superconducting multilayer rolled plate and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-221294 | 1997-08-18 | ||
JP22129497 | 1997-08-18 | ||
JP18211098A JP4142770B2 (en) | 1997-08-18 | 1998-06-29 | NbTi superconducting multilayer rolled plate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11126928A JPH11126928A (en) | 1999-05-11 |
JP4142770B2 true JP4142770B2 (en) | 2008-09-03 |
Family
ID=26501034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18211098A Expired - Fee Related JP4142770B2 (en) | 1997-08-18 | 1998-06-29 | NbTi superconducting multilayer rolled plate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4142770B2 (en) |
-
1998
- 1998-06-29 JP JP18211098A patent/JP4142770B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11126928A (en) | 1999-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007134515A1 (en) | A composite base belt of ni-based alloy for superconductor coating and a method for preparing the same | |
JPH0297098A (en) | Superconductive magnetic shielding body | |
CN117476286B (en) | Preparation method of NbTi superconducting wire with high critical current density | |
JP4142770B2 (en) | NbTi superconducting multilayer rolled plate and method for producing the same | |
JP6704589B2 (en) | Precursor wire for Nb3Al superconducting wire and Nb3Al superconducting wire | |
JP3544781B2 (en) | Method for producing Nb-Ti based superconducting multilayer board | |
JP2015228357A (en) | Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod | |
JP2000113748A (en) | Nb3 AL COMPOUND SUPERCONDUCTING CONDUCTOR AND ITS MANUFACTURE | |
JP2893039B2 (en) | Method of manufacturing superconducting three-layer foil material | |
JP3788839B2 (en) | Manufacturing method of NbTi superconducting multilayer board | |
RU2436199C1 (en) | METHOD TO MANUFACTURE COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND | |
WO2008124436A1 (en) | Composite substrates for high temperature superconductors having improved properties | |
RU2367043C1 (en) | Method of making multi-layer tape nanostructure composite based on superconducting niobium-titanium alloy | |
JP5323444B2 (en) | Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire | |
JP4516639B2 (en) | NbTi superconducting multilayer board and manufacturing method thereof | |
JP3948291B2 (en) | Nb3Al compound superconducting wire and method for producing the same | |
JP3178317B2 (en) | High strength superconducting wire | |
JPH0736479B2 (en) | Manufacturing method of Nb-Ti superconducting magnetic shield material | |
JPH05880B2 (en) | ||
JP2002192354A (en) | METHOD FOR PRODUCING NbAl ALLOY BY LAMINATION ROLLING | |
JP2001251090A (en) | NbTi SUPERCONDUCTING MULTILAYER PLATE | |
JP4113031B2 (en) | NbTi superconducting multilayer board and manufacturing method thereof | |
RU2436198C1 (en) | COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND | |
RU2436197C1 (en) | COMPOSITE SUPERCONDUCTING TAPE BASED ON Nb3Sn COMPOUND | |
JP5650098B2 (en) | Rolled copper foil for superconducting film formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |