JP2006185925A - MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE - Google Patents

MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE Download PDF

Info

Publication number
JP2006185925A
JP2006185925A JP2006049793A JP2006049793A JP2006185925A JP 2006185925 A JP2006185925 A JP 2006185925A JP 2006049793 A JP2006049793 A JP 2006049793A JP 2006049793 A JP2006049793 A JP 2006049793A JP 2006185925 A JP2006185925 A JP 2006185925A
Authority
JP
Japan
Prior art keywords
nbti
plate
heat treatment
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049793A
Other languages
Japanese (ja)
Other versions
JP4571918B2 (en
Inventor
Hiroaki Otsuka
広明 大塚
Masaaki Sugiyama
昌章 杉山
Ikuo Ito
郁夫 伊藤
Mitsuru Sawamura
充 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006049793A priority Critical patent/JP4571918B2/en
Publication of JP2006185925A publication Critical patent/JP2006185925A/en
Application granted granted Critical
Publication of JP4571918B2 publication Critical patent/JP4571918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an NbTi superconducting multi-layer plate, and an NbTi superconducting multi-layer plate having large critical current density which can be manufactured by heat treatment within a short time at low cost. <P>SOLUTION: The NbTi superconducting multi-layer plate is formed by arranging plate-shaped NbTi alloy layers in Cu or Cu alloy base materials through Nb layers. Plate-shaped normal conducting depositions, having a thickness of not more than 1 nm and not less than 100 nm, a distance in a plate thickness direction of not less than 1 nm and not more than 500 nm, and a volume percentage to the total volume of the NbTi alloy layer of not less than 3% and not more than 50%, are deposited in parallel with a plate face in the NbTi layer. On the manufacturing method, the superconducting multi-layer is formed into a plate shape or foil shape by applying cold rolling with a processing percentage of 30 to 98% after hot rolling with a processing percentage of 30 to 98% at 500 to 1,000°C, and repeating a heat treatment with a holding time of 1 to 168 hours at every turn and the cold rolling with a processing percentage of 30 to 98% by six times or less at 300 to 450°C. Afterwards, cold rolling of a 30 to 90% processing percentage is applied after heat treatment with a holding time of 168 to 1,000 hours at 300 to 450°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、MRI(磁気共鳴医療画像診断装置)、超電導リニアモーターカー等の超電導機器において主として磁気シールドで使用される超電導多層板の製造方法及び超電導多層板に関するものであり、特にNbTi中のα−Ti析出相を高密度に分散させる加工熱処理法及び常電導析出物の析出形態に関するものである。   The present invention relates to a method of manufacturing a superconducting multilayer plate mainly used in a magnetic shield in superconducting equipment such as MRI (Magnetic Resonance Medical Imaging), superconducting linear motor car, and the like, and particularly relates to α in NbTi. -It relates to a thermomechanical treatment method in which the Ti precipitate phase is dispersed at a high density and the precipitation form of the normal conductive precipitate.

MRIやリニアモーターカー等で使用される超電導多層板の製造方法については、特許文献1で示されたように、熱間圧延後に300〜450℃の温度で1回当たりの保持時間が1〜168時間の熱処理と1回当たりの加工率が30〜98%の冷間圧延を6回以下交互に繰り返した後、300〜450℃の温度で1〜1000時間の最終熱処理を施してNbTi中に超電導のピン止め点としてα−Tiを析出させる方法がある。析出の駆動力となる転位や空孔等の格子欠陥を冷間加工によって導入し、熱処理と組み合わせて充分な析出を生じさせる方法である。   About the manufacturing method of the superconducting multilayer board used by MRI, a linear motor car, etc., as shown in patent document 1, the holding time per time is 1 to 168 at a temperature of 300 to 450 ° C. after hot rolling. Super heat conduction in NbTi by repeating heat treatment for a period of time and cold rolling with a processing rate of 30 to 98% per turn alternately, followed by a final heat treatment for 1 to 1000 hours at a temperature of 300 to 450 ° C. There is a method of precipitating α-Ti as a pinning point. This is a method in which dislocations and vacancies as a driving force for precipitation are introduced by cold working and combined with heat treatment to cause sufficient precipitation.

超電導多芯線においても、同様の加工と熱処理の組み合わせによりα−Tiを析出させ良好な臨界電流密度が得られている(特許文献2、特許文献3)が、線材の場合は加工率を線径の二乗で大きく取れるのに対し、超電導多層板では板厚の変化率分のみしか取れないため、超電導多芯線材の場合よりも増して加工・熱処理方法に工夫が必要となる。
特開平3−136400号公報 特開昭57−210516号公報 特開平7−141937号公報
Even in a superconducting multi-core wire, α-Ti is precipitated by a combination of the same processing and heat treatment, and a good critical current density is obtained (Patent Document 2 and Patent Document 3). In contrast to the superconducting multi-layered plate, only the change rate of the plate thickness can be obtained, and therefore, it is necessary to devise the processing and heat treatment method more than in the case of the superconducting multi-core wire.
Japanese Patent Laid-Open No. 3-136400 JP 57-210516 A Japanese Patent Laid-Open No. 7-141937

従来技術の製造方法で作製した材料では、5テスラの強磁場下で臨界電流密度は10万〜12万A/cmであるが、一般的な超電導多芯線の臨界電流密度は同じ磁場環境で27万A/cm程度(「金属学会セミナーテキスト ナノ・メゾ組織制御と高機能材料開発」p.93)と超電導板と比べて約倍近い値となっている。超電導多層板を磁気シールド材として使用する場合、磁気シールド可能な磁場の大きさは臨界電流密度と磁気シールド材の板厚にほぼ比例する(「電気学会大学講座 超電導工学 電気学会編」p.52)。従って、臨界電流密度が低いと材料を多く使わざるを得ないため、重量の割にはシールド性能の低いコストパフォーマンスの悪い材料となる問題がある。 The material produced by the conventional manufacturing method has a critical current density of 100,000 to 120,000 A / cm 2 under a strong magnetic field of 5 Tesla, but the critical current density of a general superconducting multicore wire is the same in a magnetic field environment. About 270,000 A / cm 2 (“Metal Society Seminar Text: Nano / Meso-Structure Control and Development of High-Functional Materials” p. 93), the value is about twice that of the superconducting plate. When a superconducting multilayer board is used as a magnetic shield material, the magnitude of the magnetic field that can be magnetically shielded is approximately proportional to the critical current density and the thickness of the magnetic shield material ("The Institute of Electrical Engineers of Japan, Superconducting Engineering, Electrical Society of Japan" p.52). ). Therefore, if the critical current density is low, a large amount of material must be used. Therefore, there is a problem that the material has low shielding performance and poor cost performance for its weight.

また、従来法のJc(臨界電流密度)は、5テスラの磁場下で10万〜12万A/cmと小さい割に熱処理の時間は長く要するという問題がある。従来法のJcと同等レベルのJcを得る場合に熱処理時間が低減できるということも、製造コストの低減という観点から非常に意味がある。 In addition, Jc (critical current density) of the conventional method has a problem that it takes a long time for heat treatment to be as small as 100,000 to 120,000 A / cm 2 under a magnetic field of 5 Tesla. The fact that the heat treatment time can be reduced when obtaining a Jc equivalent to the Jc of the conventional method is very meaningful from the viewpoint of reducing the manufacturing cost.

NbTi超電導多層板は、良電導体であるCuまたはCu合金基材中に板状のNbTi層が1層以上Nb層を介して存在する超電導板である。このような超電導板の臨界電流密度を決定しているのはNbTi層中に析出した常電導のTiである。特開平2−94498号公報に示すような従来のNbTi超電導多層板のNbTi層中に存在するTi析出物は、長径200nm〜2μm、短径100nm〜1μm程度の楕円体のような形をしていた。これらの析出物は、圧延と熱処理の繰り返しの結果として析出する(特許文献1)。NbTi層中の常電導析出物は、上部臨界磁場Hc2以上の磁場で超電導体中に規則的に並んだ配列(三角配列)で侵入した磁束量子をピン止めすることにより超電導状態を保つ(これを中間状態という)。磁束量子の格子間隔は、1テスラの磁場中で約49nm、5テスラの磁場中で約22nmである。最も効率的に磁束量子をピン止めできる常電導析出物の大きさは、中間状態における超電導常電導領域の界面の大きさ(コヒーレンス長に相当。NbTiの場合5.5nm)と同程度でかつ磁束量子の格子間隔と同程度(数十nm)に分散したものであるといわれている。本観点から見て、従来のNbTi合金系超電導板のNbTi層中のTi析出物は、短径100〜200nm、長径200nm〜500nmの楕円体形状をしており、理想のTi析出物の大きさに比べてかなり大きく、臨界電流密度は、前述したように5テスラにおいて10〜12万A/cmと市販のNbTi合金系超電導線にくらべ低い値であった(磁場を板に対して平行に印加した場合)。 The NbTi superconducting multilayer plate is a superconducting plate in which one or more plate-like NbTi layers are present via a Nb layer in a Cu or Cu alloy base material which is a good conductor. The critical current density of such a superconducting plate is determined by normal conducting Ti deposited in the NbTi layer. The Ti precipitates present in the NbTi layer of the conventional NbTi superconducting multilayer plate as shown in JP-A-2-94498 have an ellipsoidal shape having a major axis of 200 nm to 2 μm and a minor axis of about 100 nm to 1 μm. It was. These precipitates are deposited as a result of repeated rolling and heat treatment (Patent Document 1). The normal conducting precipitate in the NbTi layer is kept in a superconducting state by pinning magnetic flux quanta that has entered the superconductor in a regular arrangement (triangular arrangement) in a magnetic field higher than the upper critical magnetic field Hc2. Intermediate state). The lattice spacing of the flux quanta is about 49 nm in a 1 Tesla magnetic field and about 22 nm in a 5 Tesla magnetic field. The size of the normal conducting precipitate that can pin the magnetic flux quantum most efficiently is about the same as the size of the interface of the superconducting normal conducting region in the intermediate state (corresponding to the coherence length; 5.5 nm for NbTi) and the magnetic flux. It is said that it is dispersed to the same degree as the quantum lattice spacing (several tens of nm). From this point of view, the Ti precipitate in the NbTi layer of the conventional NbTi alloy-based superconducting plate has an ellipsoidal shape with a minor axis of 100 to 200 nm and a major axis of 200 nm to 500 nm, and the ideal size of the Ti precipitate. As described above, the critical current density was 10 to 120,000 A / cm 2 at 5 Tesla, which was lower than that of a commercially available NbTi alloy superconducting wire (the magnetic field was parallel to the plate). When applied).

本発明は、こうした問題に鑑みてなされたものであり、超電導多層板の製造法を最適化し、臨界電流密度の大きいNbTi超電導多層板をできるだけ短時間の熱処理で低コストに製造することのできる、NbTi超電導多層板の製造方法及びNbTi超電導多層板を提供することを目的とするものである。   The present invention has been made in view of these problems, and it is possible to optimize the manufacturing method of the superconducting multilayer plate and to manufacture the NbTi superconducting multilayer plate having a large critical current density at a low cost by heat treatment as short as possible. An object of the present invention is to provide a method for producing an NbTi superconducting multilayer plate and an NbTi superconducting multilayer plate.

第1の発明は、少なくとも1層のNbTi合金と高導電率金属が交互に積層され、前記NbTi合金と前記高導電率金属の間にNbまたはTaのバリヤー層が存在し、かつ、NbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在する超電導多層板の製造方法であって、温度500〜1000℃で加工率30〜98%の熱間圧延を施した後、加工率30〜98%の冷間圧延し、300〜450℃の温度で1回当たりの保持時間が1〜168時間の熱処理と1回当たりの加工率が30〜98%の冷間圧延を6回以下交互に繰り返し施して板状または、箔状とした後、300〜450℃の温度で保持時間が168〜1000時間の熱処理を施した後、30〜90%の冷間圧延を施す方法である。高導電率金属とは銅、アルミニウム等を指す。   In the first invention, at least one NbTi alloy and a high conductivity metal are alternately laminated, a Nb or Ta barrier layer exists between the NbTi alloy and the high conductivity metal, and the NbTi layer includes Further, it is deposited in a plate shape parallel to the plate surface, and the thickness is 1 nm or more and 100 nm or less, the interval in the plate thickness direction is 1 nm or more and 500 nm or less, and the volume fraction with respect to the entire NbTi alloy layer is 3% or more and 50%. A method for producing a superconducting multilayer board in which the following normal conductive precipitates are present, and after hot rolling at a processing rate of 30 to 98% at a temperature of 500 to 1000 ° C., cold rolling at a processing rate of 30 to 98% The sheet is formed by alternately repeating heat treatment with a holding time of 1 to 168 hours at a temperature of 300 to 450 ° C. and cold rolling with a processing rate of 30 to 98% per turn alternately 6 times or less. After forming a foil, 300-4 0 After holding time at a temperature of ℃ was heat-treated at 168 to 1000 hours, a method for performing rolling 30% to 90% of the cold. High conductivity metals refer to copper, aluminum, and the like.

第2の発明は、第1の発明に、300〜450℃の温度で保持時間1秒〜5時間の熱処理を施すことを特徴とするNbTi超電導多層板の製造方法である。
第3の発明は、CuまたはCu合金基材中に板状NbTi合金層がNb層を介して配置されているNbTi超電導多層板において、NbTi超電導多層板のNbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在することを特徴とするNbTi超電導多層板である。
2nd invention is a manufacturing method of the NbTi superconducting multilayer board characterized by performing the heat processing for 1 second-5 hours with the temperature of 300-450 degreeC to 1st invention.
According to a third invention, in a NbTi superconducting multilayer plate in which a plate-like NbTi alloy layer is arranged via a Nb layer in a Cu or Cu alloy substrate, the NbTi layer of the NbTi superconducting multilayer plate is parallel to the plate surface. A normal conducting precipitate having a thickness of 1 nm or more and 100 nm or less, a distance in the thickness direction of 1 nm or more and 500 nm or less, and a volume fraction with respect to the entire NbTi alloy layer of 3% or more and 50% or less. It is a NbTi superconducting multilayer board characterized by existing.

本発明の製造工程で製造した超電導多層板は、従来の製造工程で作られたものに比べて最大2倍の臨界電流密度を有しており、同じ磁場をシールドする場合に使用する板の厚さを低減することができ、磁気シールドの軽量化と製造コストの大幅な低減が実現できた。単位熱処理時間当たりのJc(8Tにおける)を比較して分かるとおり、従来技術に比べ、効率の良い製造方法となり、製造コストの低減が実現できた。   The superconducting multilayer board manufactured by the manufacturing process of the present invention has a critical current density of up to twice that of the conventional manufacturing process, and the thickness of the board used when shielding the same magnetic field. As a result, the weight of the magnetic shield was reduced and the manufacturing cost was significantly reduced. As can be seen from the comparison of Jc per unit heat treatment time (in 8T), the manufacturing method is more efficient than the conventional technology, and the manufacturing cost can be reduced.

また、第3の発明では超電導/常電導界面の大きさに匹敵する厚さに圧延方向に薄く延びた板状の常電導析出物が、磁束量子の間隔に近い間隔で配置しているため、中間状態で侵入した磁束量子を効率的に捕捉、大きな力でピン止めするため、大きな臨界電流密度を得ることが可能となった。   Further, in the third invention, the plate-like normal conductive precipitates extending thinly in the rolling direction to a thickness comparable to the size of the superconductive / normal conductive interface are arranged at intervals close to the magnetic flux quantum intervals. A large critical current density can be obtained because the flux quantum that has entered in the intermediate state is efficiently captured and pinned with a large force.

本発明材料は直流強磁場中で使用されるため、超電導的に安定であることが必要である。磁気シールド材料として、超電導材料と高導電率金属の複合材料を用いる理由は、この超電導安定性を高めるためである。超電導材料は超電導状態においては、電気抵抗がゼロであるが、何らかの理由で部分的に常電導に転移すると、常電導状態では電気抵抗が大きいため発熱し、常電導部分が拡大して材料全体の超電導状態が一気に破れる現象が起こる(クエンチ現象)。   Since the material of the present invention is used in a DC strong magnetic field, it is necessary to be superconductively stable. The reason for using a composite material of a superconducting material and a high conductivity metal as the magnetic shield material is to increase the superconducting stability. The superconducting material has zero electrical resistance in the superconducting state, but if for some reason it partially transitions to normal conduction, it will generate heat because of its large electrical resistance in the normal conduction state, and the normal conducting part will expand and the entire material will A phenomenon occurs in which the superconducting state is broken all at once (quenching phenomenon).

一方、超電導材料に高導電率材料が隣接した複合材料では、部分的な常電導転移が起こっても、超電導材料に流れていた電流は高導電性金属を経由して流れ、一旦常電導に転移した部分も超電導状態に復帰することができ、超電導状態が安定に保たれる。1テスラ以上の直流の強磁場下においても超電導状態を保つためには、超電導材料として臨界磁場Hc2が高い(1テスラ以上)材料であることが必要であることと、圧延などの加工性が良好なことから、超電導材料としてNbTi合金を選定した。NbTi層と高導電率材料層の間にNbまたはTaのバリヤー層を配したのは、製造工程における熱間圧延工程で銅等の高導電金属とNbTi中のTiとが金属間化合物を形成させないようにするためである。   On the other hand, in a composite material in which a high-conductivity material is adjacent to a superconducting material, even if a partial normal-conducting transition occurs, the current flowing in the superconducting material flows through the high-conducting metal, and once transitions to normal-conducting This part can also return to the superconducting state, and the superconducting state can be kept stable. In order to maintain a superconducting state even in a DC strong magnetic field of 1 Tesla or higher, the superconducting material must be a material having a high critical magnetic field Hc2 (1 Tesla or higher), and workability such as rolling is good. Therefore, an NbTi alloy was selected as the superconducting material. The barrier layer of Nb or Ta is arranged between the NbTi layer and the high conductivity material layer because the high conductivity metal such as copper and Ti in NbTi do not form an intermetallic compound in the hot rolling process in the manufacturing process. It is for doing so.

熱間圧延の後、30〜98%の冷間圧延を施し、300〜450℃の温度で1回当たりの保持時間が1〜168時間の熱処理と1回当たりの加工率が30〜98%の冷間圧延を6回以下交互に繰り返し施す理由は、NbTiの結晶粒を細粒化するためである。NbTiのような第2種超電導体が磁場中におかれると磁場は磁束量子φを持つ量子化磁束線に分割されて超電導体に侵入する。この状態で超電導体に電流を流すと量子化磁束線にはローレンツ力が働く。ここでもし量子化磁束線が動くと起電力が生じ、最終的には電気抵抗ゼロの超電導状態が破れてしまう。ローレンツ力に抗して量子化磁束線の運動をくい止めるのが、NbTiの場合、合金中に析出したチタン(α−Ti)の析出物である。この量子化磁束線の運動をくい止める役割をするものとして、α−Tiなどの析出物の他に材料中の欠陥、不純物等があり、これらを総称して磁束ピン止め点という。本発明者によるこれまでの研究により、NbTi中のα−Tiは結晶粒界に析出しやすいことが分かっている。そこで、NbTiの結晶粒径が小さくなれば量的に多くの析出物が得られるためピン止めの効率が良く大きな臨界電流密度が得られる。 After hot rolling, 30 to 98% cold rolling is performed, and heat treatment with a holding time of 1 to 168 hours at a temperature of 300 to 450 ° C. and a processing rate of 30 to 98% at one time. The reason why the cold rolling is alternately repeated 6 times or less is to make the NbTi crystal grains fine. When a second type superconductor such as NbTi is placed in a magnetic field, the magnetic field is divided into quantized magnetic flux lines having a magnetic flux quantum φ 0 and enters the superconductor. When a current is passed through the superconductor in this state, Lorentz force acts on the quantized magnetic flux lines. If the quantized magnetic flux lines move here, an electromotive force is generated, and eventually the superconducting state with zero electric resistance is broken. In the case of NbTi, titanium (α-Ti) precipitates deposited in the alloy prevent the movement of the quantized magnetic flux lines against the Lorentz force. In addition to precipitates such as α-Ti, there are defects, impurities, etc. in the material that play a role in stopping the movement of the quantized magnetic flux lines, and these are collectively called a magnetic flux pinning point. Previous studies by the inventor have shown that α-Ti in NbTi tends to precipitate at the grain boundaries. Therefore, if the crystal grain size of NbTi is reduced, a large amount of precipitates can be obtained, so that the pinning efficiency is good and a large critical current density can be obtained.

熱間圧延時の加熱温度の下限を500℃としたのは、500℃未満ではNbTi及びNbまたはTaが充分軟化せず銅との密着性が不十分なためである。同上限を1000℃としたのは1000℃を超えると銅の融点に近く軟化しすぎるためである。熱間圧延の加工率を30〜98%としたのは、30%未満では温度が高くても充分な密着性が得られにくく、98%を超えると以降の冷間加工率が小さくなりすぎるためである。   The reason why the lower limit of the heating temperature during hot rolling is 500 ° C. is that if it is less than 500 ° C., NbTi and Nb or Ta are not sufficiently softened and the adhesiveness with copper is insufficient. The reason why the upper limit is set to 1000 ° C. is that when the temperature exceeds 1000 ° C., the melting point of copper is too soft. The reason why the hot rolling processing rate is 30 to 98% is that if it is less than 30%, it is difficult to obtain sufficient adhesion even if the temperature is high, and if it exceeds 98%, the subsequent cold working rate becomes too small. It is.

再結晶後の冷間圧延により結晶粒は微細となる。最終的に析出するα−Tiは粒界に多く析出するため、結晶粒の微細化により析出の密度は大いに向上する。再結晶後の冷間圧延の圧下率を30〜98%としたのは、30%未満では導入される格子欠陥の量が不十分で熱処理の効果を活かすことができず、98%を超えると材料の一部または全体が破壊されて加工不良が生じるためである。以降の中間熱処理の温度を300〜450℃とするのは、300℃未満では磁束ピン止め点のα−Tiの析出速度が小さすぎて時間がかかりすぎるためであり、450℃を超えると析出物が粗大化し、以降の冷間加工に支障を来すためである。熱処理1回当たりの保持時間を1〜168時間とするのは、1時間未満では析出量が不十分であるためであり、168時間を超えた場合析出物が粗大化し、以降の冷間加工に支障を来すためである。   The crystal grains become fine by cold rolling after recrystallization. Since a large amount of α-Ti finally precipitates at the grain boundaries, the density of precipitation is greatly improved by refinement of the crystal grains. The reason why the reduction ratio of cold rolling after recrystallization is 30 to 98% is that if it is less than 30%, the amount of lattice defects to be introduced is insufficient and the effect of heat treatment cannot be utilized, and if it exceeds 98% This is because a part or the whole of the material is destroyed and processing defects occur. The reason why the temperature of the subsequent intermediate heat treatment is set to 300 to 450 ° C. is that if it is less than 300 ° C., the precipitation rate of α-Ti at the magnetic flux pinning point is too small and takes too much time. This is because the grain size becomes coarse and hinders the subsequent cold working. The reason why the holding time per heat treatment is 1 to 168 hours is that the amount of precipitation is insufficient if it is less than 1 hour, and if it exceeds 168 hours, the precipitate is coarsened and is used for the subsequent cold working. This is to cause trouble.

析出の駆動力となる転位や空孔を導入し、充分な量のα−Tiを析出させるためには冷間加工と熱処理を交互に繰り返すことにより尚いっそうの効果がある。この繰り返しを6回以下としたのは、6回を超えると各熱処理間の冷間圧下率を充分に取れず析出量に対する効果が飽和するためである。各熱処理間及び最終形状に至るまでの冷間加工率を30〜98%とする理由は、再結晶後の冷間圧延の場合と同じである。最終板厚で最終熱処理をするのは、途中の冷間加工と熱処理の繰り返しで析出したα−Tiの密度をさらに増大させるためである。この熱処理の温度範囲を300〜450℃としたのは、先に記した熱処理の場合と同じである。また、保持時間を168〜1000時間とするのは、168時間未満では析出量の増大の効果が得られず、1000時間を超えると析出が飽和してしまうためである。   In order to introduce dislocations and vacancies as a driving force for precipitation and to precipitate a sufficient amount of α-Ti, the cold working and the heat treatment are alternately repeated to further increase the effect. The reason why the number of repetitions is set to 6 times or less is that if the number of repetitions exceeds 6 times, a sufficient cold reduction ratio between the heat treatments cannot be obtained and the effect on the precipitation amount is saturated. The reason why the cold work rate between each heat treatment and the final shape is 30 to 98% is the same as in the case of cold rolling after recrystallization. The reason why the final heat treatment is performed with the final plate thickness is to further increase the density of α-Ti precipitated by repeated cold working and heat treatment in the middle. The reason why the temperature range of this heat treatment is set to 300 to 450 ° C. is the same as the case of the heat treatment described above. The reason why the holding time is set to 168 to 1000 hours is that if the retention time is less than 168 hours, the effect of increasing the precipitation amount cannot be obtained, and if it exceeds 1000 hours, the precipitation is saturated.

本発明の最終熱処理の工程までで析出したα−Ti析出物の粒径はおよそ数百nmである。本発明ではこの析出物を圧延でさらに薄く、析出間隔を小さくすることにより、α−Tiピン止め点の大きさ及び分布を量子化磁束線のピン止めに適した粒径数十nmで、分布間隔数十nmにするものである。最終熱処理後の圧下率の下限を30%としたのは30%未満ではα−Ti小型化の効果が小さいためで、上限を90%としたのは、90%を超えると加工性が悪くなりNbTiの層状構造に乱れが生じるためである。α−Tiを理論的に最適なサイズに小型化する観点と、層状構造を乱さないという観点から、最終の冷間加工率としては、50以上75%以下の範囲が望ましい。   The particle diameter of the α-Ti precipitate deposited up to the final heat treatment step of the present invention is approximately several hundred nm. In the present invention, this precipitate is further thinned by rolling and the precipitation interval is reduced, so that the size and distribution of α-Ti pinning points are distributed with a particle size of several tens of nanometers suitable for pinning quantized magnetic flux lines. The interval is several tens of nm. The lower limit of the rolling reduction after the final heat treatment is set to 30% because the effect of downsizing the α-Ti is small if it is less than 30%, and the upper limit is set to 90%. This is because disorder occurs in the layered structure of NbTi. From the viewpoint of downsizing α-Ti to a theoretically optimum size and not disturbing the layered structure, the final cold working rate is preferably in the range of 50 to 75%.

このような方法により、NbTi超電導多層板のNbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在することを特徴とする超電導多層板が得られる。   By such a method, in the NbTi layer of the NbTi superconducting multilayer plate, it is deposited in a plate shape parallel to the plate surface, and the thickness is 1 nm or more and 100 nm or less, the interval in the plate thickness direction is 1 nm or more and 500 nm or less, NbTi A superconducting multilayer board characterized by the presence of normal conductive precipitates having a volume fraction of 3% or more and 50% or less with respect to the entire alloy layer is obtained.

これを図1において詳述する。図1はNbTi超電導多層板のNbTi層の形態を示す。NbTi層1の中に厚さtの常電導析出物2が間隔dで存在するとしたとき、
1nm≦t≦100nm、
1nm≦d≦500nm、
NbTi層中の常電導析出物の体積分率をvとすると、
3%≦v≦50%
とするものである。ここで、常電導析出物の幅wと長さLについては特に制限はなく任意の大きさで良い。
このように構成すると、印加磁場がBまたはB′の方向で、電流をIまたはI′の方向に流す場合、常電導析出物2はローレンツ力FまたはF′の力に打ち勝って量子磁束を有効にピン止めし、臨界電流密度が高くなる。
This is described in detail in FIG. FIG. 1 shows the form of the NbTi layer of the NbTi superconducting multilayer board. When normal conducting precipitates 2 having a thickness t exist in the NbTi layer 1 at intervals d,
1 nm ≦ t ≦ 100 nm,
1 nm ≦ d ≦ 500 nm,
When the volume fraction of normal conducting precipitates in the NbTi layer is v,
3% ≦ v ≦ 50%
It is what. Here, the width w and the length L of the normal conductive precipitate are not particularly limited and may be any size.
With this configuration, when the applied magnetic field is in the direction of B or B 'and the current is passed in the direction of I or I', the normal conducting precipitate 2 overcomes the Lorentz force F or F 'and effectively uses the quantum magnetic flux. The critical current density is increased.

常電導析出物の厚さを1nm以上としたのは、これより小さいとNbTiの超電導と常電導界面の領域の大きさよりも小さくなりすぎて磁束量子のピン止めが十分にできないためであり、常電導析出物の厚さをl00nm以下としたのは、これより大きいと磁束量子の間隔よりも大きくなり常電導析出物中に磁束量子が何本も入って十分なピン止めができないためである。   The reason why the thickness of the normal conductive precipitate is set to 1 nm or more is that if it is smaller than this, the size of the region of the NbTi superconductive and normal conductive interface is too small to sufficiently pin the magnetic flux quantum. The reason why the thickness of the conductive precipitate is set to 100 nm or less is that if it is larger than this, it becomes larger than the interval between the magnetic flux quanta, and there are many magnetic flux quanta in the normal conductive precipitate, and sufficient pinning cannot be performed.

常電導析出物同士の間隔を1nm以上としたのは、これより小さいと磁束量子の間隔にピン止めに寄与しない常電導析出物が多く存在することになって、NbTi超電導体の断面積をいたずらに減少することになるためであり、常電導析出物同士の間隔を500nm以下としたのはこれ以上離れるとピン止めされない磁束量子の数が多くなりすぎるためである。   The reason why the interval between the normal conductive precipitates is set to 1 nm or more is that if it is smaller than this, there are many normal conductive precipitates that do not contribute to pinning in the magnetic flux quantum interval, and the cross-sectional area of the NbTi superconductor is mischievous. The reason why the interval between the normal conductive precipitates is set to 500 nm or less is that the number of magnetic flux quanta that are not pinned becomes too large if the distance is further away.

常電導析出物のNbTi層中の体積分率を3%以上としたのは、これよりも小さいと磁束量子を十分ピン止めできないためであり、50%以下としたのは、これよりも大きいと超電導の断面積が小さくなって臨界電流密度が上昇しても意味がなくなるためである。   The reason why the volume fraction in the NbTi layer of the normal conducting precipitate is set to 3% or more is that if it is smaller than this, the magnetic flux quantum cannot be pinned sufficiently, and the reason why it is set to 50% or less is larger than this. This is because it does not make sense even if the superconducting cross-sectional area is reduced and the critical current density is increased.

印加磁場と平行な方向に常電導析出物が長く延びていると、磁束量子はエネルギー的に安定な常電導析出物の中に多く捕捉されているため常電導析出物ピン止め点から磁束量子を引き離すには大きな力が必要になり、力の強いピン止めとなる。また、常電導析出物の幅Wは、磁場と電流の向きが図1と同じである限り大きくても小さくてもピン止め力には関係しない。したがって常電導析出物の幅と長さについては任意で良い。   When normal conducting precipitates extend long in the direction parallel to the applied magnetic field, many flux quanta are trapped in energetically stable normal conducting precipitates. To pull apart, a large force is required, and the pin is strong. Further, the width W of the normal conductive precipitate is not related to the pinning force regardless of whether it is large or small as long as the direction of the magnetic field and current is the same as in FIG. Therefore, the width and length of the normal conductive precipitate may be arbitrary.

第2の発明は、上述の如く、第1の発明に、300〜450℃の温度で保持時間1秒〜5時間の熱処理を施すことを特徴とする。第1の発明では、最終の冷間圧延で材料が加工硬化する。NbTi超電導多層板を板のまま使用する用途の場合これで問題はないが、プレス加工が必要な場合等では、材料が硬くなっているため都合が悪い。また、Cu層部分も多くの転位が導入されているため残留抵抗比も小さく、したがって超電導安定性の観点からも若干問題がある。この問題を解決するため最終の冷間圧延の後に300〜450℃の温度で1秒以上5時間以下の熱処理を施した。熱処理温度を300℃の温度としたのは、それより低い温度では、材料が充分軟化しないためであり、450℃以下としたのは、それより高い温度では、最終冷延で小型化したα‐Tiが成長を始めてしまうからである。時間を1秒以上としたのは、材料が設定した温度になれば軟化が起こるという意味で、最少の時間として1秒とした。時間を5時間以下としたのは、これを超えると最終冷延で小型化したα−Tiが再び大型化してしまうためである。   As described above, the second invention is characterized in that the first invention is subjected to heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 second to 5 hours. In the first invention, the material is work-hardened in the final cold rolling. In the case of using the NbTi superconducting multilayer board as it is, there is no problem with this. However, in the case where press working is necessary, the material is hard, so it is not convenient. Also, since many dislocations are introduced into the Cu layer portion, the residual resistance ratio is small, and therefore there is a slight problem from the viewpoint of superconducting stability. In order to solve this problem, a heat treatment was performed at a temperature of 300 to 450 ° C. for 1 second to 5 hours after the final cold rolling. The reason why the heat treatment temperature is set to 300 ° C. is that the material is not sufficiently softened at a temperature lower than that, and the temperature of 450 ° C. or lower is set to α− which has been downsized by the final cold rolling at a temperature higher than that. This is because Ti starts to grow. The reason for setting the time to 1 second or longer is that the softening occurs when the temperature reaches the set temperature, and the minimum time is 1 second. The reason for setting the time to 5 hours or less is that if this time is exceeded, α-Ti that has been reduced in size by the final cold rolling will increase in size again.

第3の発明は、上述の如く、CuまたはCu合金基材中に板状NbTi合金層がNb層を介して配置されているNbTi超電導多層板において、NbTi超電導多層板のNbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在することを特徴とするが、常電導析出物の大きさ、体積分率を規定した理由は、第1の発明の詳細な説明で述べたとおりである。   As described above, the third invention is a NbTi superconducting multilayer plate in which a plate-like NbTi alloy layer is arranged in a Cu or Cu alloy base material via an Nb layer, and the NbTi superconducting multilayer plate includes a plate in the NbTi layer. Usually deposited in a plate shape parallel to the surface, the thickness is 1 nm or more and 100 nm or less, the interval in the plate thickness direction is 1 nm or more and 500 nm or less, and the volume fraction of the entire NbTi alloy layer is 3% or more and 50% or less. The conductive precipitate is present, but the reason for defining the size and volume fraction of the normal conductive precipitate is as described in the detailed description of the first invention.

表1に本発明により製造した超電導多層板と従来の方法で製造した超電導多層板の臨界電流密度(Jc)の測定結果と熱間圧延以後の中間熱処理と最終熱処理のトータル時間に対するJc(8T)の比を示した。この比が大きいほど熱処理のコストをかけずに高いJcが得られることになる。Jcは5T(テスラ)における値及び8T(テスラ)における値である。実施例に示した超電導多層板は、いずれも多層構造は同じである。総厚さ1mmの超電導多層板の構造は以下の通りである。最外層は銅層でおよそ0.11mm、その中に約11μmのNbTi層が30層、同じ厚さの銅層と交互に積層きれている。さらに、NbTi層と銅層の間には約1μmのNb層が挿入されている。総厚さ0.5、0.2及び0.1mmの超電導多層板は1mmの板をそれぞれ50%、80%、90%圧下率で圧延したものである。   Table 1 shows the results of measurement of critical current density (Jc) of the superconducting multilayer plate manufactured according to the present invention and the superconducting multilayer plate manufactured by the conventional method, and Jc (8T) relative to the total time of intermediate heat treatment and final heat treatment after hot rolling. The ratio of The higher this ratio, the higher Jc can be obtained without the cost of heat treatment. Jc is a value at 5T (Tesla) and a value at 8T (Tesla). The superconducting multilayer plates shown in the examples all have the same multilayer structure. The structure of the superconducting multilayer plate having a total thickness of 1 mm is as follows. The outermost layer is a copper layer of approximately 0.11 mm, and 30 NbTi layers of about 11 μm are stacked alternately with copper layers of the same thickness. Further, an Nb layer of about 1 μm is inserted between the NbTi layer and the copper layer. Superconducting multilayer plates having a total thickness of 0.5, 0.2 and 0.1 mm are 1 mm plates rolled at 50%, 80% and 90% reduction, respectively.

臨界電流密度は、板厚は供試材ままで幅0.5mmの試験片に10mm間隔で電圧端子を付け、端子間電圧が1μVとなるまで流すことのできた電流値を臨界電流値(Ic)とし、これをNbTiの総断面積で割った値を臨界電流密度(Jc)とした。熱間及び冷間圧延とも圧延の方向は一定方向とし、臨界電流密度測定用の試料は圧延方向と垂直な方向に採取した。液体ヘリウム中に浸漬した状態で試料に電流を流し臨界電流を測定した。本発明のNo.1〜No.3の製造工程及び比較例のNo.4、No.5及びNo.6の製造工程は以下の通りである。   The critical current density is the current value that can be applied until the voltage between terminals is 1 μV by attaching voltage terminals to a test piece with a width of 0.5 mm with a thickness of 10 mm between the test pieces with the plate thickness kept as the test material. The critical current density (Jc) was obtained by dividing this by the total cross-sectional area of NbTi. The direction of rolling was constant for both hot and cold rolling, and samples for critical current density measurement were taken in a direction perpendicular to the rolling direction. A critical current was measured by passing a current through the sample while immersed in liquid helium. No. of the present invention. 1-No. No. 3 production process and Comparative Example No. 4, no. 5 and no. The manufacturing process of 6 is as follows.

No.1(本発明1):熱間圧延(800℃1時間保持後、圧下率50%)→冷間圧延(圧下率50%)→熱処理(400℃2時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率80%)→熱処理(380℃240時間)→冷間圧延(圧下率50%)、最終板厚0.5mm。熱延後トータル熱処理時間:252時間。   No. 1 (Invention 1): Hot rolling (holding at 800 ° C. for 1 hour, reduction rate 50%) → cold rolling (reduction rate 50%) → heat treatment (holding 400 ° C. for 2 hours) → cold rolling (reduction rate 50) %) → heat treatment (retained at 380 ° C. for 5 hours) → cold rolling (reduction rate 50%) → heat treatment (retained at 380 ° C. for 5 hours) → cold rolling (reduction rate 80%) → heat treatment (380 ° C. 240 hours) → cold Hot rolling (rolling ratio 50%), final plate thickness 0.5 mm. Total heat treatment time after hot rolling: 252 hours.

No.2(本発明1):熱間圧延(550℃3時間保持後、圧下率35%)→冷間圧延(圧下率30%)→熱処理(400℃3時間保持)→冷間圧延(圧下率50%)→熱処理(380℃168時間保持)→冷間圧延(圧下率95%)→熱処理(340℃336時間)→冷間圧延(圧下率80%)、最終板厚0.2mm。熱延後トータル熱処理時間:507時間。   No. 2 (Invention 1): Hot rolling (holding at 550 ° C. for 3 hours, reduction rate 35%) → cold rolling (rolling rate 30%) → heat treatment (holding at 400 ° C. for 3 hours) → cold rolling (reduction rate 50) %) → heat treatment (held at 380 ° C. for 168 hours) → cold rolling (reduction rate of 95%) → heat treatment (340 ° C. for 336 hours) → cold rolling (reduction rate of 80%), final thickness 0.2 mm. Total heat treatment time after hot rolling: 507 hours.

No.3(本発明1):熱間圧延(950℃1時間保持後、圧下率85%)→冷間圧延(圧下率30%)→熱処理(320℃96時間保持)→冷間圧延(圧下率50%)→熱処理(320℃96時間)→冷間圧延(圧下率75%)→熱処理(400℃168時間)→冷間圧延(圧下率90%)、最終板厚0.1mm。熱延後トータル熱処理時間:360時間。   No. 3 (Invention 1): Hot rolling (holding at 950 ° C. for 1 hour, reduction rate 85%) → cold rolling (rolling rate 30%) → heat treatment (320 ° C. holding for 96 hours) → cold rolling (reduction rate 50) %) → heat treatment (320 ° C. 96 hours) → cold rolling (rolling rate 75%) → heat treatment (400 ° C. 168 hours) → cold rolling (rolling rate 90%), final plate thickness 0.1 mm. Total heat treatment time after hot rolling: 360 hours.

No.4(比較例1):熱間圧延(800℃1時間保持後、圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率85%)→熱処理(350℃700時間)、最終板厚1.0mm。熱延後トータル熱処理時間:720時間。   No. 4 (Comparative Example 1): Hot rolling (holding 800 ° C. for 1 hour, reduction rate 50%) → heat treatment (holding 380 ° C. for 5 hours) → cold rolling (rolling rate 50%) → heat treatment (holding 380 ° C. for 5 hours) ) → Cold rolling (reduction rate 50%) → Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 50%) → Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 85%) → Heat treatment (350 ° C. 700 hours), final plate thickness 1.0 mm. Total heat treatment time after hot rolling: 720 hours.

No.5(比較例2):熱間圧延(800℃1時間保持後、圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)・熱処理(380℃5時間保持)→冷間圧延(圧下率85%)→熱処理(310℃400時間→360℃300時間)、最終板厚1.0mm。熱延後トータル熱処理時間:720時間。   No. 5 (Comparative Example 2): Hot rolling (holding 800 ° C. for 1 hour, reduction rate 50%) → heat treatment (holding 380 ° C. for 5 hours) → cold rolling (rolling rate 50%) → heat treatment (holding 380 ° C. for 5 hours) ) → Cold rolling (reduction rate 50%) → Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 50%) / Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 85%) → Heat treatment (310 ° C. 400 hours → 360 ° C. 300 hours), final plate thickness 1.0 mm. Total heat treatment time after hot rolling: 720 hours.

No.6(比較例3):熱間圧延(800℃1時間保持後、圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率50%)→熱処理(380℃5時間保持)→冷間圧延(圧下率85%)→熱処理(350℃1000時間)、最終板厚1.0mm。熱延後トータル熱処理時間:1020時間。   No. 6 (Comparative Example 3): Hot rolling (holding at 800 ° C. for 1 hour, reduction rate 50%) → heat treatment (holding at 380 ° C. for 5 hours) → cold rolling (rolling rate 50%) → heat treatment (holding at 380 ° C. for 5 hours) ) → Cold rolling (reduction rate 50%) → Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 50%) → Heat treatment (holding at 380 ° C. for 5 hours) → Cold rolling (reduction rate 85%) → Heat treatment (350 ° C., 1000 hours), final plate thickness 1.0 mm. Total heat treatment time after hot rolling: 1020 hours.

Figure 2006185925
Figure 2006185925

実施例1のNo.2の材料に350℃1時間の熱処理を施した本発明2の材料をNo.7とする。No.7の5テスラ、8テスラ下の臨界電流密度を表1に示した。5テスラ下で約3%、8テスラ下で約5%No.2よりも減少しているが、1テスラ下の臨界電流密度を比べると、No.2では、3945A/mmであったのに対し、No.7では、4085A/mmと約3.5%増加した。これは、Cuの在留抵抗比が上がったため超電導安定性が向上し、特に低磁場側で効果を発揮したものと考えられる。また、No.2とNo.7の材料の圧延方向の機械的伸びを測定したところ、No.2ではおよそ1%であったのに対し、No.7ではおよそ11%であった。加工せずに板のまま使用する用途の場合はNo.2で十分であるが、プレス加工を施すような場合は、No.7(本発明2)の方が適している。 No. of Example 1 The material of the present invention 2 obtained by subjecting the material of No. 2 to a heat treatment at 350 ° C. for 1 hour was designated as No. 2. 7 No. Table 1 shows the critical current density of 7 under 5 Tesla and 8 Tesla. About 3% under 5 Tesla and about 5% under 8 Tesla. However, when the critical current density under 1 Tesla is compared, 2 was 3945 A / mm 2 , whereas 7 increased by about 3.5% to 4085 A / mm 2 . This is presumably because the superconducting stability was improved due to an increase in the Cu resistance ratio, and the effect was exhibited particularly on the low magnetic field side. No. 2 and No. No. 7 was measured for mechanical elongation in the rolling direction. No. 2 was about 1%, whereas No. 2 7 was approximately 11%. No. for applications where the plate is used without being processed. 2 is sufficient. 7 (Invention 2) is more suitable.

総厚1mmで、30層のNbTi層(厚さ約12μm)がNb層(厚さ約1μm)を介して銅層(厚さ約12μm)と交互に積層した構成をしたNbTi/Nb/Cu多層板を作製した。製造工程を実施例1の例に倣い下記に示した。   NbTi / Nb / Cu multilayer with a total thickness of 1 mm and 30 NbTi layers (thickness of about 12 μm) stacked alternately with copper layers (thickness of about 12 μm) via Nb layers (thickness of about 1 μm) A plate was made. The manufacturing process is shown below, following the example of Example 1.

No.8(本発明3):熱間圧延(830℃2時間保持後、圧下率60%)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率80%)→熱処理(370℃500時間)→冷間圧延(圧下率60%)→熱処理(350℃l時間)。本材料の圧延方向断面から見たNbTi層中の常電導Ti析出物の平均の厚さは30nm、平均間隔100nm、体積分率10%の図2に示すようなNbTi層を有する本発明3の超電導板を得た。   No. 8 (Invention 3): Hot rolling (reduction rate 60% after holding at 830 ° C. for 2 hours) → cold rolling (reduction rate 50%) → heat treatment (380 ° C. 5 hours) → cold rolling (reduction rate 50%) ) → Heat treatment (380 ° C. for 5 hours) → Cold rolling (50% reduction) → Heat treatment (380 ° C. for 5 hours) → Cold rolling (80% reduction) → Heat treatment (370 ° C. for 500 hours) → Cold rolling ( Reduction ratio 60%) → heat treatment (350 ° C. for 1 hour). The average thickness of normal conducting Ti precipitates in the NbTi layer as viewed from the cross section in the rolling direction of this material is 30 nm, the average interval is 100 nm, and the volume fraction is 10%. A superconducting plate was obtained.

また、比較例として、下記の製造工程によりNo.9の材料を製造した。No.9(比較例4):熱問圧延(830℃2時間保持後、圧下率60%)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率50%)→熱処理(380℃5時間)→冷間圧延(圧下率80%)→熱処理(370℃500時間)。   In addition, as a comparative example, No. 1 was prepared by the following manufacturing process. Nine materials were produced. No. 9 (Comparative Example 4): Hot rolling (holding at 830 ° C. for 2 hours, reduction rate 60%) → cold rolling (reduction rate 50%) → heat treatment (380 ° C. 5 hours) → cold rolling (reduction rate 50%) ) → heat treatment (380 ° C., 5 hours) → cold rolling (rolling rate 50%) → heat treatment (380 ° C., 5 hours) → cold rolling (rolling rate 80%) → heat treatment (370 ° C., 500 hours).

比較例4の圧延方向断面からみたNbTi層中には、長径平均250nm、短径平均150nmの楕円状の常電導Ti析出物が、平均間隔250nm、体積分率で10%析出していた(図3)。No.8(本発明3)とNo.9(比較例4)の圧延材の幅方向の臨界電流密度を測定した結果は表2のとおりであった。   In the NbTi layer as seen from the cross section in the rolling direction of Comparative Example 4, ellipsoidal normal conducting Ti precipitates having an average major axis of 250 nm and an average minor axis of 150 nm were deposited with an average interval of 250 nm and a volume fraction of 10% (see FIG. 3). No. 8 (Invention 3) and No. 8 Table 2 shows the results of measurement of the critical current density in the width direction of the rolled material of No. 9 (Comparative Example 4).

Figure 2006185925
Figure 2006185925

本発明に関わる超電導板中のNbTi合金層を示す全体図である。It is a general view which shows the NbTi alloy layer in the superconducting plate in connection with this invention. 本発明の実施例を示す超電導板中のNbTi合金層の圧延方向断面図である。It is rolling direction sectional drawing of the NbTi alloy layer in the superconducting plate which shows the Example of this invention. 従来の超電導板中のNbTi合金層の圧延方向断面図である。It is sectional drawing of the rolling direction of the NbTi alloy layer in the conventional superconducting plate.

符号の説明Explanation of symbols

1 NbTi
2 常電導Ti析出物
3 粒界
1 NbTi
2 Normal conducting Ti precipitate 3 Grain boundary

Claims (3)

少なくとも1層のNbTi合金と高導電率金属が交互に積層され、前記NbTi合金と前記高導電率金属の間にNbまたはTaのバリヤー層が存在し、かつ、NbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在する超電導多層板の製造方法であって、温度500〜1000℃で加工率30〜98%の熱間圧延を施した後、加工率30〜98%で冷間圧延し、300〜450℃の温度で1回当たりの保持時間が1〜168時間の熱処理と1回当たりの加工率が30〜98%の冷間圧延を6回以下交互に繰り返し施して板状または、箔状とした後、300〜450℃の温度で保持時間が168〜1000時間の熱処理を施した後、30〜90%の冷間圧延を施すことを特徴とする、NbTi超電導多層板の製造方法。   At least one NbTi alloy and a high conductivity metal are alternately laminated, a Nb or Ta barrier layer exists between the NbTi alloy and the high conductivity metal, and the NbTi layer is parallel to the plate surface. A normal conductive precipitate having a thickness of 1 nm or more and 100 nm or less, a thickness direction interval of 1 nm or more and 500 nm or less, and a volume fraction of 3% or more and 50% or less with respect to the entire NbTi alloy layer. Is a method of manufacturing a superconducting multilayer board, in which hot rolling is performed at a processing rate of 30 to 98% at a temperature of 500 to 1000 ° C, followed by cold rolling at a processing rate of 30 to 98% and 300 to 450 ° C. After the heat treatment with a holding time of 1 to 168 hours at one temperature and the cold rolling with a processing rate of 30 to 98% per turn are repeated alternately 6 times or less to form a plate or foil At a temperature of 300-450 ° C After the lifting time is subjected to a heat treatment of 168 to 1000 hours, and characterized by applying rolling 30% to 90% of the cold method for producing a NbTi superconducting multilayer board. 前記30〜90%の冷間圧延の後、さらに300〜450℃の温度で1秒〜5時間熱処理を施すことを特徴とする、請求項1に記載のNbTi超電導多層板の製造方法。   2. The method for producing a NbTi superconducting multilayer board according to claim 1, wherein after the cold rolling of 30 to 90%, heat treatment is further performed at a temperature of 300 to 450 ° C. for 1 second to 5 hours. CuまたはCu合金基材中に板状NbTi合金層がNb層を介して配置されているNbTi超電導多層板において、NbTi超電導多層板のNbTi層中に、板面に平行に板状に析出し、かつ厚さが1nm以上、100nm以下、板厚方向の間隔が1nm以上、500nm以下、NbTi合金層全体に対する体積分率が3%以上、50%以下の常電導析出物が存在することを特徴とする、NbTi超電導多層板。   In the NbTi superconducting multilayer plate in which the plate-like NbTi alloy layer is arranged via the Nb layer in the Cu or Cu alloy base material, the NbTi layer of the NbTi superconducting multilayer plate is deposited in a plate shape parallel to the plate surface, And a normal conductive precipitate having a thickness of 1 nm or more and 100 nm or less, an interval in the plate thickness direction of 1 nm or more and 500 nm or less, and a volume fraction of 3% or more and 50% or less with respect to the entire NbTi alloy layer. NbTi superconducting multilayer board.
JP2006049793A 1996-03-19 2006-02-27 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board Expired - Fee Related JP4571918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049793A JP4571918B2 (en) 1996-03-19 2006-02-27 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6227796 1996-03-19
JP2006049793A JP4571918B2 (en) 1996-03-19 2006-02-27 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02863697A Division JP3788839B2 (en) 1996-03-19 1997-02-13 Manufacturing method of NbTi superconducting multilayer board

Publications (2)

Publication Number Publication Date
JP2006185925A true JP2006185925A (en) 2006-07-13
JP4571918B2 JP4571918B2 (en) 2010-10-27

Family

ID=36738846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049793A Expired - Fee Related JP4571918B2 (en) 1996-03-19 2006-02-27 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board

Country Status (1)

Country Link
JP (1) JP4571918B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294498A (en) * 1988-09-30 1990-04-05 Nippon Steel Corp Nb-ti superconductive magnetic shielding material and its manufacture
JPH03136400A (en) * 1989-10-23 1991-06-11 Nippon Steel Corp Manufacture of nb-ti superconducting magnetic shielding material
JPH03273700A (en) * 1990-03-23 1991-12-04 Nippon Steel Corp Superconductive magnetic shield and manufacture thereof
JPH09283812A (en) * 1996-04-11 1997-10-31 Nippon Steel Corp Manufacture of nb-ti superconducting multi-layer plate
JPH09310161A (en) * 1996-03-19 1997-12-02 Nippon Steel Corp Production of nb-ti superconductive multilayer sheet and nb-ti superconductive multilayer sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294498A (en) * 1988-09-30 1990-04-05 Nippon Steel Corp Nb-ti superconductive magnetic shielding material and its manufacture
JPH03136400A (en) * 1989-10-23 1991-06-11 Nippon Steel Corp Manufacture of nb-ti superconducting magnetic shielding material
JPH03273700A (en) * 1990-03-23 1991-12-04 Nippon Steel Corp Superconductive magnetic shield and manufacture thereof
JPH09310161A (en) * 1996-03-19 1997-12-02 Nippon Steel Corp Production of nb-ti superconductive multilayer sheet and nb-ti superconductive multilayer sheet
JPH09283812A (en) * 1996-04-11 1997-10-31 Nippon Steel Corp Manufacture of nb-ti superconducting multi-layer plate

Also Published As

Publication number Publication date
JP4571918B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
Hong et al. Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites
Glowacki Niobium aluminide as a source of high-current superconductors
Lee et al. Niobium-titanium superconducting wires: Nanostructures by extrusion and wiredrawing
EP2696381B1 (en) Niobium-titanium based superconducting wire
Cooley et al. Processing of Low T c Conductors: The Alloy Nb–Ti
Devred Practical low-temperature superconductors for electromagnets
JP3788839B2 (en) Manufacturing method of NbTi superconducting multilayer board
JP4571918B2 (en) Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board
Tsuei Ductile superconducting Cu-rich alloys containing A-15 filaments
JP2000113748A (en) Nb3 AL COMPOUND SUPERCONDUCTING CONDUCTOR AND ITS MANUFACTURE
Takeuchi et al. Effect of flat-roll forming on critical current density characteristics and microstructure of Nb/sub 3/Al multifilamentary conductors
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP4516639B2 (en) NbTi superconducting multilayer board and manufacturing method thereof
Witcomb et al. Effect of microstructure on superconducting properties of Mo/34 at.% Re alloy
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
JPS62110207A (en) Niobium titunite fine multi-core superconductor
JPH0714442A (en) Nbti superconducting wire for palse or ac
JP2011214124A (en) Method for producing alloy superconductor, and alloy superconductor
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP4142770B2 (en) NbTi superconducting multilayer rolled plate and method for producing the same
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JPH09147635A (en) Type a15 superconducting wire and its manufacture
Heussner Flux pinning in superconducting Nb-Ti wires with Nb artificial pinning centers
Chawla et al. Multifilamentary Superconducting Composites

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees