JPH09310161A - Production of nb-ti superconductive multilayer sheet and nb-ti superconductive multilayer sheet - Google Patents

Production of nb-ti superconductive multilayer sheet and nb-ti superconductive multilayer sheet

Info

Publication number
JPH09310161A
JPH09310161A JP9028636A JP2863697A JPH09310161A JP H09310161 A JPH09310161 A JP H09310161A JP 9028636 A JP9028636 A JP 9028636A JP 2863697 A JP2863697 A JP 2863697A JP H09310161 A JPH09310161 A JP H09310161A
Authority
JP
Japan
Prior art keywords
heat treatment
hours
cold rolling
temperature
nbti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9028636A
Other languages
Japanese (ja)
Other versions
JP3788839B2 (en
Inventor
Hiroaki Otsuka
広明 大塚
Masaaki Sugiyama
昌章 杉山
Ikuo Ito
郁夫 伊藤
Mitsuru Sawamura
充 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02863697A priority Critical patent/JP3788839B2/en
Publication of JPH09310161A publication Critical patent/JPH09310161A/en
Application granted granted Critical
Publication of JP3788839B2 publication Critical patent/JP3788839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Laminated Bodies (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimize the production and to reduce the cost by executing hot rolling, cold rolling and final heat treatment under prescribed conditions. SOLUTION: In this method, a raw material is subjected to hot rolling at 500 to 1000 deg.C at 30 to 98% working ratio, is thereafter subjected to cold rolling at 30 to 70% working ratio and is next held at 600 to 800 deg.C for 30min to 5hr. This treatment is for refining the crystal grains of Nb-Ti. Then, it is subjected to cold rolling at 30 to 98% working ratio and is subjected to heat treatment at 300 to 450 deg.C in which holding time per time is regulated to 1 to 168hr and cold rolling in which working ratio per time is regulated to 30 to 98% alternately for <=6 times to form into a sheet or foil shape. In this way, dislocations and pores to form the driving force of precipitation are introduced therein to precipitate a sufficient amt. of α-Ti. Furthermore, it is subjected to final heat treatment at 300 to 450 deg.C for 1 to 1000hr. This is executed for moreover increasing the density of the α-Ti precipitated by the repetition of the cold working and heat treatment in the process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、MRI(磁気共鳴
医療画像診断装置)、超電導リニアモーターカー等の超
電導機器において主として磁気シールドで使用される超
電導多層板の製造方法及び超電導多層板に関するもので
あり、特にNbTi中のα−Ti析出相を高密度に分散
させる加工熱処理法及び常電導析出物の析出形態に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a superconducting multilayer plate and a superconducting multilayer plate which are mainly used as magnetic shields in superconducting devices such as MRI (magnetic resonance medical image diagnostic apparatus) and superconducting linear motor cars. In particular, the present invention relates to a thermo-mechanical treatment method in which the α-Ti precipitation phase in NbTi is dispersed at high density and a precipitation morphology of normal-conducting precipitates.

【0002】[0002]

【従来の技術】MRIやリニアモーターカー等で使用さ
れる超電導多層板の製造方法については、特開平3−1
36400号公報で示されたように、熱間圧延後に30
0〜450℃の温度で1回当たりの保持時間が1〜16
8時間の熱処理と1回当たりの加工率が30〜98%の
冷間圧延を6回以下交互に繰り返した後、300〜45
0℃の温度で1〜1000時間の最終熱処理を施してN
bTi中に超電導のピン止め点としてα−Tiを析出さ
せる方法がある。析出の駆動力となる転位や空孔等の格
子欠陥を冷間加工によって導入し、熱処理と組み合わせ
て充分な析出を生じさせる方法である。
2. Description of the Related Art A method for producing a superconducting multilayer board used in MRI, a linear motor car, etc.
As shown in Japanese Patent No. 36400, after hot rolling, 30
Holding time per time at a temperature of 0 to 450 ° C 1 to 16
After repeating the heat treatment for 8 hours and the cold rolling with the working rate of 30 to 98% per time alternately 6 times or less, 300 to 45
The final heat treatment is performed for 1 to 1000 hours at a temperature of 0 ° C. to obtain N
There is a method of depositing α-Ti as a superconducting pinning point in bTi. This is a method in which lattice defects such as dislocations and vacancies, which act as a driving force for precipitation, are introduced by cold working and combined with heat treatment to cause sufficient precipitation.

【0003】超電導多芯線においても、同様の加工と熱
処理の組み合わせによりα−Tiを析出させ良好な臨界
電流密度が得られている(特開昭57−210516、
特開平7−141937号公報)が、線材の場合は加工
率を線径の二乗で大きく取れるのに対し、超電導多層板
では板厚の変化率分のみしか取れないため、超電導多芯
線材の場合よりも増して加工・熱処理方法に工夫が必要
となる。
Also in the superconducting multifilamentary wire, a good critical current density is obtained by precipitating α-Ti by the same combination of processing and heat treatment (Japanese Patent Laid-Open No. 57-210516).
In the case of a superconducting multi-core wire, since the processing rate can be largely obtained by the square of the wire diameter in the case of a wire, the superconducting multilayer board can obtain only the rate of change of the plate thickness. It is necessary to devise the processing and heat treatment methods more than before.

【0004】[0004]

【発明が解決しようとする課題】従来技術の製造方法で
作製した材料では、5テスラの強磁場下で臨界電流密度
は10万〜12万A/cm2 であるが、一般的な超電導多芯
線の臨界電流密度は同じ磁場環境で27万A/cm2 程度
(「金属学会セミナーテキスト ナノ・メゾ組織制御と
高機能材料開発」p.93)と超電導板と比べて約倍近
い値となっている。超電導多層板を磁気シールド材とし
て使用する場合、磁気シールド可能な磁場の大きさは臨
界電流密度と磁気シールド材の板厚にほぼ比例する
(「電気学会大学講座 超電導工学 電気学会編」p.
52)。従って、臨界電流密度が低いと材料を多く使わ
ざるを得ないため、重量の割にはシールド性能の低いコ
ストパフォーマンスの悪い材料となる問題がある。
In the material manufactured by the manufacturing method of the prior art, the critical current density is 100,000 to 120,000 A / cm 2 under a strong magnetic field of 5 Tesla, but a general superconducting multifilamentary wire is used. Has a critical current density of about 270,000 A / cm 2 under the same magnetic field environment (“Seminar text of the Institute of Metals, Nano / Mesostructure control and development of high-performance materials” p.93), which is almost double that of the superconducting plate. There is. When a superconducting multilayer board is used as a magnetic shield material, the magnitude of the magnetic field that can be magnetically shielded is approximately proportional to the critical current density and the thickness of the magnetic shield material ("The Institute of Electrical Engineers of Japan, Superconductivity Engineering, The Institute of Electrical Engineers," p.
52). Therefore, if the critical current density is low, many materials have to be used, and there is a problem that the material has low shielding performance and low cost performance in comparison with the weight.

【0005】また、従来法のJc (臨界電流密度)は、
5テスラの磁場下で10万〜12万A/cm2 と小さい割に
熱処理の時間は長く要するという問題がある。従来法の
Jcと同等レベルのJc を得る場合に熱処理時間が低減
できるということも、製造コストの低減という観点から
非常に意味がある。
Further, Jc (critical current density) of the conventional method is
There is a problem that the heat treatment time is long, although it is as small as 100,000 to 120,000 A / cm 2 under a magnetic field of 5 Tesla. The fact that the heat treatment time can be shortened when obtaining Jc of the same level as that of the conventional method is also very significant from the viewpoint of reducing the manufacturing cost.

【0006】NbTi超電導多層板は、良電導体である
CuまたはCu合金基材中に板状のNbTi層が1層以
上Nb層を介して存在する超電導板である。このような
超電導板の臨界電流密度を決定しているのはNbTi層
中に析出した常電導のTiである。特開平2−9449
8号公報に示すような従来のNbTi超電導多層板のN
bTi層中に存在するTi析出物は、長径200nm〜
2μm、短径100nm〜1μm程度の楕円体のような
形をしていた。これらの析出物は、圧延と熱処理の繰り
返しの結果として析出する(特開平3−136400号
公報)。NbTi層中の常電導析出物は、上部臨界磁場
Hc 2以上の磁場で超電導体中に規則的に並んだ配列
(三角配列)で侵入した磁束量子をピン止めすることに
より超電導状態を保つ(これを中間状態という)。磁束
量子の格子間隔は、1テスラの磁場中で約49nm、5
テスラの磁場中で約22nmである。最も効率的に磁束
量子をピン止めできる常電導析出物の大きさは、中間状
態における超電導常電導領域の界面の大きさ(コヒーレ
ンス長に相当。NbTiの場合5.5nm)と同程度で
かつ磁束量子の格子間隔と同程度(数十nm)に分散し
たものであるといわれている。本観点から見て、従来の
NbTi合金系超電導板のNbTi層中のTi析出物
は、短径100〜200nm、長径200nm〜500
nmの楕円体形状をしており、理想のTi析出物の大き
さに比べてかなり大きく、臨界電流密度は、前述したよ
うに5テスラにおいて10〜12万A/cm2 と市販のNb
Ti合金系超電導線にくらべ低い値であった(磁場を板
に対して平行に印加した場合)。
The NbTi superconducting multilayer plate is a superconducting plate in which one or more plate-shaped NbTi layers are present in a Cu or Cu alloy base material which is a good electric conductor via Nb layers. The critical current density of such a superconducting plate is determined by normal-conducting Ti deposited in the NbTi layer. JP-A-2-9449
N of the conventional NbTi superconducting multilayer board as shown in Japanese Patent No. 8
The Ti precipitate existing in the bTi layer has a major axis of 200 nm to
It had an ellipsoidal shape with a diameter of 2 μm and a minor axis of 100 nm to 1 μm. These precipitates are deposited as a result of repeated rolling and heat treatment (JP-A-3-136400). The normal-conducting precipitates in the NbTi layer maintain the superconducting state by pinning the magnetic flux quanta that enter the superconductor in a regularly arranged array (triangular array) in a magnetic field of the upper critical magnetic field Hc 2 or more (this Is called an intermediate state). The lattice spacing of the magnetic flux quantum is about 49 nm in a 1 Tesla magnetic field, 5
It is about 22 nm in the Tesla magnetic field. The size of the normal-conducting precipitate that can pin the magnetic flux quantum most efficiently is about the same as the size of the interface (coherence length; 5.5 nm in the case of NbTi) of the superconducting normal-conducting region in the intermediate state and the magnetic flux. It is said that they are dispersed in the same degree as the quantum lattice spacing (tens of nm). From this viewpoint, the Ti precipitate in the NbTi layer of the conventional NbTi alloy-based superconducting plate has a minor axis of 100 to 200 nm and a major axis of 200 nm to 500.
It has an ellipsoidal shape of nm and is considerably larger than the ideal size of Ti precipitates, and the critical current density is 100 to 120,000 A / cm 2 at 5 Tesla as described above, which is a commercially available Nb.
The value was lower than that of the Ti alloy-based superconducting wire (when a magnetic field was applied parallel to the plate).

【0007】本発明は、こうした問題に鑑みてなされた
ものであり、超電導多層板の製造法を最適化し、臨界電
流密度の大きい材料の製造方法及びこうした材料をでき
るだけ短時間の熱処理で低コストに製造する方法を提供
及び超電導多層板のNbTi層中の常電導析出物の形態
を特定するものである。
The present invention has been made in view of these problems, and optimizes the method for producing a superconducting multilayer board to produce a material having a large critical current density and heat-treating such a material in the shortest possible time to reduce the cost. A method of manufacturing and specifying the morphology of normal conducting precipitates in the NbTi layer of a superconducting multilayer board.

【0008】[0008]

【課題を解決するための手段】第1の発明は、少なくと
も1層のNbTi合金と高導電率金属が交互に積層さ
れ、かつ前記NbTi合金と前記高導電率金属の間にN
bまたはTaのバリヤー層が存在する超電導多層板の製
造方法であって、温度500〜1000℃で加工率30
〜98%の熱間圧延を施した後、加工率30〜70%で
冷間圧延し、次に温度600〜800℃で30分〜5時
間保持した後、加工率30〜98%の冷間圧延を施し、
300〜450℃の温度で1回当たりの保持時間が1〜
168時間の熱処理と1回当たりの加工率が30〜98
%の冷間圧延を6回以下交互に繰り返し施して板状また
は、箔状とした後、300〜450℃の温度で保持時間
が1〜1000時間の最終熱処理を施す方法である。高
導電率金属とは銅、アルミニウム等を指す。
According to a first aspect of the present invention, at least one layer of an NbTi alloy and a high-conductivity metal are alternately stacked, and NbTi alloy and a high-conductivity metal are interposed between the NbTi alloy and the high-conductivity metal.
A method for producing a superconducting multilayer board having a barrier layer of b or Ta, wherein the processing rate is 30 at a temperature of 500 to 1000 ° C.
~ 98% hot rolling, cold rolling at a working rate of 30 to 70%, then holding at a temperature of 600 to 800 ° C for 30 minutes to 5 hours, and then cold rolling at a working rate of 30 to 98%. Rolled,
Holding time per time at a temperature of 300 to 450 ° C is 1 to
Heat treatment for 168 hours and processing rate of 30 to 98
% Cold rolling is repeated 6 times or less alternately to form a plate or foil, and a final heat treatment is performed at a temperature of 300 to 450 ° C. for a holding time of 1 to 1000 hours. The high conductivity metal refers to copper, aluminum and the like.

【0009】本発明材料は直流強磁場中で使用されるた
め、超電導的に安定であることが必要である。磁気シー
ルド材料として、超電導材料と高導電率金属の複合材料
を用いる理由は、この超電導安定性を高めるためであ
る。超電導材料は超電導状態においては、電気抵抗がゼ
ロであるが、何らかの理由で部分的に常電導に転移する
と、常電導状態では電気抵抗が大きいため発熱し、常電
導部分が拡大して材料全体の超電導状態が一気に破れる
現象が起こる(クエンチ現象)。
Since the material of the present invention is used in a DC strong magnetic field, it must be superconductingly stable. The reason for using a composite material of a superconducting material and a metal of high conductivity as the magnetic shield material is to improve the superconducting stability. The superconducting material has zero electrical resistance in the superconducting state, but if it partially transitions to normal conduction for some reason, it generates heat due to the large electric resistance in the normal conducting state, and the normal conducting portion expands to increase the overall material. A phenomenon occurs in which the superconducting state is broken at once (quench phenomenon).

【0010】一方、超電導材料に高導電率材料が隣接し
た複合材料では、部分的な常電導転移が起こっても、超
電導材料に流れていた電流は高導電性金属を経由して流
れ、一旦常電導に転移した部分も超電導状態に復帰する
ことができ、超電導状態が安定に保たれる。1テスラ以
上の直流の強磁場下においても超電導状態を保つために
は、超電導材料として臨界磁場Hc2が高い(1テスラ以
上)材料であることが必要であることと、圧延などの加
工性が良好なことから、超電導材料としてNbTi合金
を選定した。NbTi層と高導電率材料層の間にNbま
たはTaのバリヤー層を配したのは、製造工程における
熱間圧延工程で銅等の高導電金属とNbTi中のTiと
が金属間化合物を形成させないようにするためである。
On the other hand, in a composite material in which a high-conductivity material is adjacent to a superconducting material, even if a partial normal-conduction transition occurs, the current flowing in the superconducting material flows through the high-conductivity metal and is once The part that has been transferred to the conductive state can be returned to the superconducting state, and the superconducting state can be kept stable. In order to maintain the superconducting state even under a direct magnetic field of 1 Tesla or more, it is necessary that the superconducting material has a high critical magnetic field Hc2 (1 Tesla or more) and the workability such as rolling is good. Therefore, NbTi alloy was selected as the superconducting material. The reason why the Nb or Ta barrier layer is disposed between the NbTi layer and the high conductivity material layer is that the highly conductive metal such as copper and Ti in NbTi do not form an intermetallic compound in the hot rolling step in the manufacturing process. That's why.

【0011】熱間圧延の後、30〜70%の冷間圧延を
施し600〜800℃で30分〜5時間保持した後再び
冷間圧延を継続する理由は、NbTiの結晶粒を細粒化
するためである。NbTiのような第2種超電導体が磁
場中におかれると磁場は磁束量子φ0 を持つ量子化磁束
線に分割されて超電導体に侵入する。この状態で超電導
体に電流を流すと量子化磁束線にはローレンツ力が働
く。ここでもし量子化磁束線が動くと起電力が生じ、最
終的には電気抵抗ゼロの超電導状態が破れてしまう。ロ
ーレンツ力に抗して量子化磁束線の運動をくい止めるの
が、NbTiの場合、合金中に析出したチタン(α−T
i)の析出物である。この量子化磁束線の運動をくい止
める役割をするものとして、α−Tiなどの析出物の他
に材料中の欠陥、不純物等があり、これらを総称して磁
束ピン止め点という。本発明者によるこれまでの研究に
より、NbTi中のα−Tiは結晶粒界に析出しやすい
ことが分かっている。そこで、NbTiの結晶粒径が小
さくなれば量的に多くの析出物が得られるためピン止め
の効率が良く大きな臨界電流密度が得られる。
After the hot rolling, cold rolling of 30 to 70% is performed, and the cold rolling is continued at 600 to 800 ° C. for 30 minutes to 5 hours and then the cold rolling is continued again. This is because When a type II superconductor such as NbTi is placed in a magnetic field, the magnetic field is divided into quantized magnetic flux lines having a magnetic flux quantum φ 0 and penetrates into the superconductor. When an electric current is passed through the superconductor in this state, Lorentz force acts on the quantized magnetic flux line. Here, if the quantized magnetic flux lines move, electromotive force is generated, and eventually the superconducting state with zero electric resistance is broken. In the case of NbTi, which blocks the motion of the quantized magnetic flux lines against the Lorentz force, titanium (α-T) precipitated in the alloy is used.
It is the precipitate of i). There are defects, impurities, etc. in the material as well as precipitates such as α-Ti that play a role in stopping the movement of the quantized magnetic flux lines, and these are collectively referred to as magnetic flux pinning points. The research conducted by the present inventor so far has revealed that α-Ti in NbTi is likely to precipitate at the grain boundaries. Therefore, if the crystal grain size of NbTi is small, a large amount of precipitates can be obtained quantitatively, so that pinning efficiency is good and a large critical current density can be obtained.

【0012】熱間圧延時の加熱温度の下限を500℃と
したのは、500℃未満ではNbTi及びNbまたはT
aが充分軟化せず銅との密着性が不十分なためである。
同上限を1000℃としたのは1000℃を超えると銅
の融点に近く軟化しすぎるためである。熱間圧延の加工
率を30〜98%としたのは、30%未満では温度が高
くても充分な密着性が得られにくく、98%を超えると
以降の冷間加工率が小さくなりすぎるためである。最初
の冷間圧延の圧下率を30〜70%とした理由は、30
%未満の圧下率では再結晶の駆動力が材料中に残らない
ため加熱温度をかなり高くしなければ再結晶しないため
であり、上限を70%としたのは再結晶後の冷間加工で
材料中に充分転位を導入できる圧下代を充分に残すため
である。最初の熱処理温度の下限を600℃としたのは
これ以下の温度では材料中に転位等が多く入っている場
合でも再結晶しないためであり、上限を800℃とした
のはこれ以上の温度では再結晶粒が粗大化する危険が大
きいためである。
The lower limit of the heating temperature during hot rolling is set to 500 ° C. because NbTi and Nb or T are lower than 500 ° C.
This is because a is not sufficiently softened and the adhesion to copper is insufficient.
The reason why the upper limit is set to 1000 ° C. is that if the temperature exceeds 1000 ° C., the temperature is close to the melting point of copper and the material is excessively softened. The working ratio of hot rolling is set to 30 to 98% because if it is less than 30%, it is difficult to obtain sufficient adhesion even if the temperature is high, and if it exceeds 98%, the subsequent cold working ratio becomes too small. Is. The reason why the reduction ratio of the first cold rolling was set to 30 to 70% was 30.
If the rolling reduction is less than%, the driving force for recrystallization does not remain in the material, so that recrystallization does not occur unless the heating temperature is considerably raised. The upper limit of 70% is the material used in cold working after recrystallization. This is to leave a sufficient reduction margin in which dislocations can be sufficiently introduced. The lower limit of the first heat treatment temperature is 600 ° C. because it does not recrystallize even if the material contains many dislocations at a temperature lower than this, and the upper limit is 800 ° C. at a temperature higher than this. This is because the risk of coarsening of the recrystallized grains is great.

【0013】再結晶後の冷間圧延により結晶粒は微細と
なる。最終的に析出するα−Tiは粒界に多く析出する
ため、結晶粒の微細化により析出の密度は大いに向上す
る。再結晶後の冷間圧延の圧下率を30〜98%とした
のは、30%未満では導入される格子欠陥の量が不十分
で熱処理の効果を活かすことができず、98%を超える
と材料の一部または全体が破壊されて加工不良が生じる
ためである。以降の中間熱処理の温度を300〜450
℃とするのは、300℃未満では磁束ピン止め点のα−
Tiの析出速度が小さすぎて時間がかかりすぎるためで
あり、450℃を超えると析出物が粗大化し、以降の冷
間加工に支障を来すためである。熱処理1回当たりの保
持時間を1〜168時間とするのは、1時間未満では析
出量が不十分であるためであり、168時間を超えた場
合析出物が粗大化し、以降の冷間加工に支障を来すため
である。
The crystal grains become fine by cold rolling after recrystallization. Since a large amount of α-Ti finally precipitated is precipitated at the grain boundaries, the density of precipitation is greatly improved by refining the crystal grains. The reduction ratio of the cold rolling after recrystallization is set to 30 to 98% because when the amount is less than 30%, the amount of lattice defects introduced is insufficient and the heat treatment effect cannot be utilized, and when it exceeds 98%. This is because some or all of the material is destroyed and processing defects occur. The temperature of the subsequent intermediate heat treatment is 300 to 450.
℃ is below 300 ℃, the flux pinning point α-
This is because the precipitation rate of Ti is too small and it takes too much time, and if it exceeds 450 ° C., the precipitates become coarse and hinder the subsequent cold working. The holding time per heat treatment is set to 1 to 168 hours, because the amount of precipitation is insufficient if it is less than 1 hour, and if it exceeds 168 hours, the precipitates become coarse, and the subsequent cold working is performed. This is because it causes trouble.

【0014】析出の駆動力となる転位や空孔を導入し、
充分な量のα−Tiを析出させるためには冷間加工と熱
処理を交互に繰り返すことにより尚いっそうの効果があ
る。この繰り返しを6回以下としたのは、6回を超える
と各熱処理間の冷間圧下率を充分に取れず析出量に対す
る効果が飽和するためである。各熱処理間及び最終形状
に至るまでの冷間加工率を30〜98%とする理由は、
再結晶後の冷間圧延の場合と同じである。最終板厚で最
終熱処理をするのは、途中の冷間加工と熱処理の繰り返
しで析出したα−Tiの密度をさらに増大させるためで
ある。この熱処理の温度範囲を300〜450℃とした
のは、先に記した熱処理の場合と同じである。また、保
持時間を1〜1000時間とするのは、1時間未満では
析出量の増大の効果が得られず、1000時間を超える
と析出が飽和してしまうためである。
Introducing dislocations and vacancies that act as a driving force for precipitation,
In order to precipitate a sufficient amount of α-Ti, it is even more effective to repeat cold working and heat treatment alternately. The reason for repeating this 6 times or less is that if it exceeds 6 times, the cold reduction ratio during each heat treatment cannot be sufficiently obtained and the effect on the amount of precipitation is saturated. The reason why the cold working ratio between each heat treatment and until reaching the final shape is 30 to 98% is as follows.
This is the same as in the case of cold rolling after recrystallization. The reason why the final heat treatment is performed with the final plate thickness is to further increase the density of α-Ti precipitated by repeating cold working and heat treatment during the process. The temperature range of this heat treatment is set to 300 to 450 ° C. as in the case of the heat treatment described above. The holding time is set to 1 to 1000 hours because the effect of increasing the amount of precipitation cannot be obtained when the time is less than 1 hour, and the precipitation is saturated when the time exceeds 1000 hours.

【0015】第2の発明について説明する前に従来の発
明(特開平3−136400号公報)の範囲内での工夫
について述べる。前述した従来の発明(特開平3−13
6400号公報)における最終熱処埋での300〜45
0℃、1〜1000時間の保定を前半を300℃以上、
350℃未満の温度で10〜500時間を施し、続けて
後半の熱処理を350℃以上、450℃以下の温度でト
ータルの時間が1000時間以下になるように施すと、
一定温度で同じ時間だけ熱処理した場合に比べて高いJ
c が得られる。例えば、800℃で1時間保定後、50
%の圧下率で熱間圧延した後、380℃で5時間の熱処
理と圧下率50%の冷間圧延を4回繰り返した後、最終
熱処理として350℃で700時間保定したものと、最
終熱処理を310℃で400時間保定した後、連続して
360℃で300時間保定した材料のJc は、前者が5
Tでおよそ1200A/mm2 であるのに対し、後者は、お
よそ1600A/mm2 と30%以上向上する。
Before explaining the second invention, a device within the scope of the conventional invention (Japanese Patent Laid-Open No. 3-136400) will be described. The conventional invention described above (Japanese Patent Laid-Open No. 3-13
No. 6400) 300-45 in the final heat treatment.
0 ℃, hold for 1 to 1000 hours in the first half of 300 ℃ or more,
When the heat treatment of the latter half is carried out at a temperature of 350 ° C. or higher and 450 ° C. or lower for a total time of 1000 hours or shorter,
Higher J than heat treated at the same temperature for the same time
c is obtained. For example, after holding at 800 ℃ for 1 hour, 50
After hot rolling at a reduction rate of 5%, heat treatment at 380 ° C. for 5 hours and cold rolling at a reduction rate of 50% were repeated 4 times, and the final heat treatment was held at 350 ° C. for 700 hours and the final heat treatment. The Jc of the material that was retained at 310 ° C for 400 hours and then continuously retained at 360 ° C for 300 hours was 5 for the former.
Whereas T is about 1200 A / mm 2 , the latter is improved to about 1600 A / mm 2 by 30% or more.

【0016】最終熱処理を前半を比較的低温で、後半を
比較的高温で行うとJc が向上する理由は以下の通りで
ある。NbTi合金の状態図(L.Kaufman and B.Bemste
in:Computer calculatin of Phase Diagrams,Academic
Press 1970 )を見ると、α−Tiはβ固溶域で過飽和
したTiが低温のα+β域における保持により析出する
が、比較的低温の方が析出核の発生量は多い。そこで最
終熱処理過程において前半を比較的低温で熱処理して析
出核を多く出し、次に比較的高温で熱処理することによ
り先の過程で析出したα−Tiを成長させる方法であ
る。前半の熱処理温度の下限を300℃としたのは、そ
れ以下の温度では析出速度が小さすぎるため析出の核の
発生が妨げられるためであり、上限を350℃未満とし
たのはこれ以上の温度ではα−Tiの成長が早く粗大化
する危険があるためである。前半の熱処理時間を10〜
500時間としたのは、10時間未満では充分な量の析
出核が生じないためであり、500時間を超えると析出
核の量が飽和するためである。後半の熱処理温度を35
0℃以上、450℃以下としたのは350℃未満では析
出核の成長を進展させるには低すぎるためであり、45
0℃を超えると析出物が粗大化してしまうからである。
第2の発明は、NbTiを細粒化させる第1の発明と前
述した従来の発明における最終熱処理の工夫よる製造法
を組み合わせ、α−Tiの析出量を多く、かつ緻密に分
散させる方法である。
The reason why Jc is improved by performing the final heat treatment at a relatively low temperature in the first half and at a relatively high temperature in the second half is as follows. Phase diagram of NbTi alloy (L. Kaufman and B. Bemste
in: Computer calculatin of Phase Diagrams, Academic
Looking at Press 1970), α-Ti precipitates due to Ti supersaturated in the β solid solution region by holding in the α + β region at low temperature, but the amount of precipitation nuclei generated at relatively low temperature. Therefore, in the final heat treatment process, the first half is heat-treated at a relatively low temperature to generate a large amount of precipitation nuclei, and then heat-treated at a relatively high temperature to grow α-Ti precipitated in the previous process. The reason why the lower limit of the heat treatment temperature in the first half is 300 ° C. is that the precipitation rate is too low to prevent the generation of precipitation nuclei at a temperature lower than that, and the upper limit is less than 350 ° C. Then, there is a risk that α-Ti grows rapidly and becomes coarse. The first half heat treatment time is 10
The reason for setting it to 500 hours is that a sufficient amount of precipitation nuclei is not generated in less than 10 hours, and the amount of precipitation nuclei is saturated in more than 500 hours. The latter half heat treatment temperature is set to 35
The reason why the temperature is higher than or equal to 0 ° C. and lower than or equal to 450 ° C. is that a temperature lower than 350 ° C. is too low to promote the growth of precipitation nuclei.
This is because if the temperature exceeds 0 ° C., the precipitate will become coarse.
The second invention is a method of combining the first invention for atomizing NbTi and the manufacturing method by devising the final heat treatment in the above-mentioned conventional invention to disperse a large amount of α-Ti and disperse it densely. .

【0017】第3の発明は、少なくとも1層のNbTi
合金と高導電率金属が交互に積層され、かつ前記NbT
i合金と前記高導電率金属の間にNbまたはTaのバリ
ヤー層が存在する複合超電導板の製造方法であって、温
度500〜1000℃で加工率30〜98%の熱問圧延
を施した後、加工率30〜98%で冷間圧延し、300
〜450℃の温度で1回当たりの保持時間が1〜168
時間の熱処理と1回当たりの加工率が30〜98%の冷
間圧延を6回以下交互に繰り返し施して板状または、箔
状とした後、300〜450℃の温度で保持時間が1〜
1000時間の熱処理を施した後、30〜90%の冷間
圧延を施す方法である。
The third invention is to provide at least one layer of NbTi.
The alloy and the high conductivity metal are alternately laminated, and the NbT
A method for manufacturing a composite superconducting plate in which a barrier layer of Nb or Ta is present between the i alloy and the high conductivity metal, after hot rolling at a working rate of 30 to 98% at a temperature of 500 to 1000 ° C. , Cold rolling at a working rate of 30 to 98%, 300
Hold time of 1 to 168 at a temperature of ~ 450 ° C
After heat treatment for a period of time and cold rolling with a working rate of 30 to 98% per time are alternately repeated 6 times or less to form a plate or foil, a holding time of 1 to 300 at 450 to 450 ° C.
This is a method in which after performing heat treatment for 1000 hours, cold rolling of 30 to 90% is performed.

【0018】加工率及び熱処理の温度時間等の制限理由
は第1の発明で記したものと同じである。本発明の最終
熱処理の工程までで析出したα−Ti析出物の粒径はお
よそ数百nmである。本発明ではこの析出物を圧延でさ
らに薄く、析出間隔を小さくすることにより、α−Ti
ピン止め点の大きさ及び分布を量子化磁束線のピン止め
に適した粒径数十nmで、分布間隔数十nmにするもの
である。最終熱処理後の圧下率の下限を30%としたの
は30%未満ではα−Ti小型化の効果が小さいため
で、上限を90%としたのは、90%を超えると加工性
が悪くなりNbTiの層状構造に乱れが生じるためであ
る。α−Tiを理論的に最適なサイズに小型化する観点
と、層状構造を乱さないという観点から、最終の冷間加
工率としては、50以上75%以下の範囲が望ましい。
The reasons for limiting the processing rate and the temperature time of the heat treatment are the same as those described in the first invention. The particle size of the α-Ti precipitates deposited up to the final heat treatment step of the present invention is about several hundreds nm. In the present invention, this precipitate is made even thinner by rolling and the precipitation interval is made smaller, so that α-Ti
The size and distribution of pinning points are set to a particle size of several tens nm and a distribution interval of several tens nm, which are suitable for pinning the quantized magnetic flux lines. The lower limit of the rolling reduction after the final heat treatment is set to 30% because the effect of downsizing of α-Ti is small when it is less than 30%, and the upper limit is set to 90% when the workability deteriorates when it exceeds 90%. This is because disorder occurs in the layered structure of NbTi. From the viewpoint of miniaturizing α-Ti to a theoretically optimum size and the viewpoint of not disturbing the layered structure, the final cold working rate is preferably in the range of 50% to 75%.

【0019】第4の発明は、第3の発明に、300〜4
50℃の温度で保定時間1秒〜5時間の熱処理を施すこ
とを特徴とするNbTi超電導多層板の製造方法であ
る。第3の発明では、最終の冷間圧延で材料が加工硬化
する。NbTi超電導多層板を板のまま使用する用途の
場合これで問題はないが、プレス加工が必要な場合等で
は、材料が硬くなっているため都合が悪い。また、Cu
層部分も多くの転位が導入されているため残留抵抗比も
小さく、したがって超電導安定性の観点からも若干問題
がある。この問題を解決するため最終の冷間圧延の後に
300〜450℃の温度で1秒以上5時間以下の熱処理
を施した。熱処理温度を300℃の温度としたのは、そ
れより低い温度では、材料が充分軟化しないためであ
り、450℃以下としたのは、それより高い温度では、
最終冷延で小型化したα‐Tiが成長を始めてしまうか
らである。時間を1秒以上としたのは、材料が設定した
温度になれば軟化が起こるという意味で、最少の時間と
して1秒とした。時間を5時間以下としたのは、これを
超えると最終冷延で小型化したα−Tiが再び大型化し
てしまうためである。
The fourth aspect of the present invention is the same as the third aspect of the invention.
A method of manufacturing an NbTi superconducting multilayer plate, characterized by performing a heat treatment at a temperature of 50 ° C. for a holding time of 1 second to 5 hours. In the third invention, the material is work hardened by the final cold rolling. This is not a problem in the case where the NbTi superconducting multilayer plate is used as a plate, but it is inconvenient in the case where press working is necessary because the material is hard. Also, Cu
Since many dislocations are also introduced in the layer portion, the residual resistance ratio is small, and therefore there is a slight problem from the viewpoint of superconducting stability. In order to solve this problem, after the final cold rolling, heat treatment was performed at a temperature of 300 to 450 ° C. for 1 second or more and 5 hours or less. The heat treatment temperature is set to 300 ° C. because the material does not soften sufficiently at a lower temperature, and the heat treatment temperature is set to 450 ° C. or lower at a higher temperature.
This is because α-Ti, which has been miniaturized by the final cold rolling, starts to grow. The time of 1 second or longer means that the material softens when the temperature reaches the set temperature, and the minimum time is set to 1 second. The time is set to 5 hours or less because if it exceeds this time, α-Ti, which has been downsized in the final cold rolling, becomes large again.

【0020】第5の発明は、CuまたはCu合金基材中
に板状NbTi合金層がNb層を介して配置されている
NbTi超電導多層板において、NbTi超電導多層板
のNbTi層中に、板面に平行に板状に析出し、かつ厚
さが1nm以上、100nm以下、板厚方向の間隔が1
nm以上、500nm以下、NbTi合金層全体に対す
る体積分率が3%以上、50%以下の常電導析出物が存
在することを特徴とするNbTi超電導多層板である。
A fifth aspect of the present invention is an NbTi superconducting multilayer plate in which a plate-shaped NbTi alloy layer is arranged in a Cu or Cu alloy base material with the Nb layer interposed therebetween. Is deposited in a plate shape in parallel with, and the thickness is 1 nm or more and 100 nm or less, and the distance in the plate thickness direction is 1
The NbTi superconducting multilayer plate is characterized in that normal conductive precipitates having a volume fraction of 3 nm or more and 500 nm or less and a volume fraction of 3% or more and 50% or less with respect to the entire NbTi alloy layer are present.

【0021】これを図1において詳述する。図1はNb
Ti超電導多層板のNbTi層の形態を示す。NbTi
層1の中に厚さtの常電導析出物2が間隔dで存在する
としたとき、 1nm≦t≦100nm、 1nm≦d≦500nm、 NbTi層中の常電導析出物の体積分率をvとすると、 3%≦v≦50% とするものである。ここで、常電導析出物の幅wと長さ
Lについては特に制限はなく任意の大きさで良い。
This will be described in detail with reference to FIG. Figure 1 shows Nb
The morphology of the NbTi layer of a Ti superconducting multilayer board is shown. NbTi
Assuming that the normal-conducting precipitates 2 having a thickness t are present in the layer 1 at an interval d, 1 nm ≦ t ≦ 100 nm, 1 nm ≦ d ≦ 500 nm, and the volume fraction of the normal-conducting precipitates in the NbTi layer is v. Then, 3% ≦ v ≦ 50%. Here, the width w and the length L of the normal-conducting precipitate are not particularly limited and may be any size.

【0022】このように構成すると、印加磁場がBまた
はB′の方向で、電流をIまたはI′の方向に流す場
合、常電導析出物2はローレンツ力FまたはF′の力に
打ち勝って量子磁束を有効にピン止めし、臨界電流密度
が高くなる。
With this structure, when the applied magnetic field is in the direction B or B'and a current is passed in the direction I or I ', the normal conducting precipitate 2 overcomes the Lorentz force F or F'. Effectively pin the magnetic flux and increase the critical current density.

【0023】常電導析出物の厚さを1nm以上としたの
は、これより小さいとNbTiの超電導と常電導界面の
領域の大きさよりも小さくなりすぎて磁束量子のピン止
めが十分にできないためであり、常電導析出物の厚さを
l00nm以下としたのは、これより大きいと磁束量子
の間隔よりも大きくなり常電導析出物中に磁束量子が何
本も入って十分なピン止めができないためである。
The thickness of the normal-conducting precipitate is set to 1 nm or more because if it is smaller than this, it becomes too small as compared with the size of the region of the superconducting and normal-conducting interfaces of NbTi and the pinning of the magnetic flux quantum cannot be sufficiently performed. The reason for setting the thickness of the normal conducting precipitate to 100 nm or less is that if it is larger than this, it becomes larger than the interval of the magnetic flux quanta, and many magnetic flux quanta enter into the normal conducting precipitate and cannot be sufficiently pinned. Is.

【0024】常電導析出物同士の間隔を1nm以上とし
たのは、これより小さいと磁束量子の間隔にピン止めに
寄与しない常電導析出物が多く存在することになって、
NbTi超電導体の断面積をいたずらに減少することに
なるためであり、常電導析出物同士の間隔を500nm
以下としたのはこれ以上離れるとピン止めされない磁束
量子の数が多くなりすぎるためである。
The spacing between the normal conducting precipitates is set to 1 nm or more. If the spacing is smaller than this, there are many normal conducting deposits that do not contribute to pinning in the spacing of the magnetic flux quantum.
This is because the cross-sectional area of the NbTi superconductor is unnecessarily reduced, and the distance between the normal-conducting precipitates is 500 nm.
The reason for this is that the number of unpinned magnetic flux quanta becomes too large when the distance is further.

【0025】常電導析出物のNbTi層中の体積分率を
3%以上としたのは、これよりも小さいと磁束量子を十
分ピン止めできないためであり、50%以下としたの
は、これよりも大きいと超電導の断面積が小さくなって
臨界電流密度が上昇しても意味がなくなるためである。
The reason why the volume fraction of the normal-conducting precipitate in the NbTi layer is 3% or more is that the flux quantum cannot be sufficiently pinned if the volume fraction is smaller than this, and the volume fraction is set to 50% or less. This is because if is too large, the cross-sectional area of superconductivity becomes small and the increase in critical current density is meaningless.

【0026】印加磁場と平行な方向に常電導析出物が長
く延びていると、磁束量子はエネルギー的に安定な常電
導析出物の中に多く捕捉されているため常電導析出物ピ
ン止め点から磁束量子を引き離すには大きな力が必要に
なり、力の強いピン止めとなる。また、常電導析出物の
幅Wは、磁場と電流の向きが図1と同じである限り大き
くても小さくてもピン止め力には関係しない。したがっ
て常電導析出物の幅と長さについては任意で良い。
When the normal-conducting precipitates extend long in the direction parallel to the applied magnetic field, the magnetic flux quanta are mostly trapped in the energetically stable normal-conducting precipitates, so that the normal-conducting precipitates pinning point is reached. A large force is required to separate the magnetic flux quanta, resulting in a strong pinning. Further, the width W of the normal-conducting precipitate is not related to the pinning force, whether it is large or small as long as the directions of the magnetic field and the current are the same as in FIG. Therefore, the width and length of the normal-conducting precipitate may be arbitrary.

【0027】[0027]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]表1に本発明により製造した超電導多層板
と従来の方法で製造した超電導多層板の臨界電流密度
(Jc )の測定結果と熱問圧延以後の中間熱処理と最終
熱処理のトータル時間に対するJc (8T)の比を示し
た。この比が大きいほど熱処理のコストをかけずに高い
Jc が得られることになる。Jc は5T(テスラ)にお
ける値及び8T(テスラ)における値である。実施例に
示した超電導多層板は、いずれも多層構造は同じであ
る。最終的な板厚は発明1及び2の実施例では1mm、発
明3の実施例では0.5mm、0.2mm、0.1mmの板厚
の材料についてJcを測定した。総厚さ1mmの超電導多
層板の構造は以下の通りである。最外層は銅層でおよそ
0.11mm、その中に約11μmのNbTi層が30
層、同じ厚さの銅層と交互に積層きれている。さらに、
NbTi層と銅層の間には約1μmのNb層が挿入され
ている。総厚さ0.5、0.2及び0.1mmの超電導多
層板は1mmの板をそれぞれ50%、80%、90%圧下
率で圧延したものである。
[Example 1] Table 1 shows the measurement results of the critical current density (Jc) of the superconducting multilayer plate manufactured by the present invention and the superconducting multilayer plate manufactured by the conventional method, and the total time of the intermediate heat treatment and the final heat treatment after hot rolling. The ratio of Jc (8T) to The larger this ratio, the higher the Jc can be obtained without incurring the cost of heat treatment. Jc is a value at 5T (tesla) and a value at 8T (tesla). The superconducting multilayer plates shown in the examples have the same multilayer structure. The final plate thickness was 1 mm in the examples of Inventions 1 and 2, and Jc was measured for the materials having the plate thicknesses of 0.5 mm, 0.2 mm, and 0.1 mm in the examples of Invention 3. The structure of the superconducting multilayer plate having a total thickness of 1 mm is as follows. The outermost layer is a copper layer with a thickness of about 0.11 mm, and an NbTi layer with a thickness of about 11 μm is 30
Layers, alternating with layers of copper of the same thickness. further,
An Nb layer of about 1 μm is inserted between the NbTi layer and the copper layer. The superconducting multilayer plates with total thicknesses of 0.5, 0.2 and 0.1 mm are obtained by rolling 1 mm plates at 50%, 80% and 90% reduction rates, respectively.

【0028】臨界電流密度は、板厚は供試材ままで幅
0.5mmの試験片に10mm間隔で電圧端子を付け、端子
間電圧が1μVとなるまで流すことのできた電流値を臨
界電流値(Ic )とし、これをNbTiの総断面積で割
った値を臨界電流密度(Jc )とした。熱間及び冷間圧
延とも圧延の方向は一定方向とし、臨界電流密度測定用
の試料は圧延方向と垂直な方向に採取した。液体ヘリウ
ム中に浸漬した状態で試料に電流を流し臨界電流を測定
した。本発明のNo.1〜No.9及びNo.12、N
o.13の製造工程及び比較例のNo.10、No.1
1及びNo.14の製造工程は以下の通りである。
The critical current density is the critical current value which is the current value that can be applied until the inter-terminal voltage becomes 1 μV by attaching voltage terminals to the test piece having a width of 0.5 mm and a width of 0.5 mm at intervals of 10 mm. (Ic) and the value obtained by dividing this by the total cross-sectional area of NbTi was taken as the critical current density (Jc). The rolling direction was fixed in both hot and cold rolling, and the sample for measuring the critical current density was taken in the direction perpendicular to the rolling direction. A current was passed through the sample while it was immersed in liquid helium, and the critical current was measured. No. 1 of the present invention. 1 to No. 9 and No. 9 12, N
o. No. 13 of the manufacturing process and the comparative example. 10, No. 1
1 and No. 1 The manufacturing process of 14 is as follows.

【0029】No.1(本発明1):熱間圧延(800
℃1時間保定後、圧下率60%)→冷間圧延(圧下率5
0%)→熱処理(750℃30分保定)→冷間圧延(圧
下率50%)→熱処理(380℃5時間保定)→冷間圧
延(圧下率50%)→熱処理(380℃5時間保定)→
冷間圧延(圧下率75%)→熱処理(350℃336時
間)、最終板厚1mm。熱延後トータル熱処理時間:34
6.5時間。
No. 1 (Invention 1): Hot rolling (800
After holding at ℃ for 1 hour, rolling reduction 60% → cold rolling (rolling reduction 5
0%) → heat treatment (750 ° C, hold for 30 minutes) → cold rolling (rolling reduction: 50%) → heat treatment (380 ° C, hold for 5 hours) → cold rolling (rolldown: 50%) → heat treatment (380 ° C, hold for 5 hours) →
Cold rolling (75% reduction) → heat treatment (350 ° C 336 hours), final plate thickness 1 mm. Total heat treatment time after hot rolling: 34
6.5 hours.

【0030】No.2(本発明1):熱間圧延(550
℃3時間保定後、圧下率35%)→冷間圧延(圧下率3
0%)→熱処理(700℃1時間保定)→冷間圧延(圧
下率50%)→熱処理(380℃168時間保定)→冷
間圧延(圧下率95%)→熱処理(370℃168時
間)、最終板厚1mm。熱延後トータル熱処理時間:33
7時間。
No. 2 (Invention 1): Hot rolling (550
After holding at ℃ for 3 hours, reduction ratio 35%) → cold rolling (reduction ratio 3
0%) → Heat treatment (700 ° C. hold for 1 hour) → Cold rolling (reduction of 50%) → Heat treatment (380 ° C. hold for 168 hours) → Cold rolling (reduction of 95%) → Heat treatment (370 ° C.168 hours), Final plate thickness 1mm. Total heat treatment time after hot rolling: 33
7 hours.

【0031】No.3(本発明1):熱間圧延(950
℃1時間保定後、圧下率85%)→冷間圧延(圧下率3
0%)→熱処理(600℃4時間保定)→冷間圧延(圧
下率50%)→熱処理(430℃10時間)→冷間圧延
(圧下率75%)→熱処理(330℃500時間)、最
終板厚1mm。熱延後トータル熱処理時間:514時間。
No. 3 (Invention 1): Hot rolling (950
After holding for 1 hour at ℃, reduction rate 85%) → cold rolling (reduction rate 3
0%) → heat treatment (holding at 600 ° C for 4 hours) → cold rolling (rolling rate 50%) → heat treatment (430 ° C 10 hours) → cold rolling (rolling rate 75%) → heat treatment (330 ° C 500 hours), final Plate thickness 1 mm. Total heat treatment time after hot rolling: 514 hours.

【0032】No.4(本発明2):熱間圧延(800
℃1時間保定後、圧下率50%)→冷間圧延(圧下率5
0%)→熱処理(750℃30分保定)→冷間圧延(圧
下率50%)→熱処理(430℃1時間保定)→冷間圧
延(圧下率50%)→熱処理(380℃5時間保定)→
冷間圧延(圧下率80%)→熱処理(300℃168時
間→370℃168時間)、最終板厚1mm。熱延後トー
タル熱処理時間:342.5時間。
No. 4 (Invention 2): Hot rolling (800
After holding at ℃ for 1 hour, rolling reduction 50%) → cold rolling (rolling reduction 5
0%) → heat treatment (holding at 750 ° C for 30 minutes) → cold rolling (holding rate at 50%) → heat treatment (holding at 430 ° C for 1 hour) → cold rolling (holding rate at 50%) → heat treatment (holding at 380 ° C for 5 hours) →
Cold rolling (80% reduction) → heat treatment (300 ° C 168 hours → 370 ° C 168 hours), final plate thickness 1 mm. Total heat treatment time after hot rolling: 342.5 hours.

【0033】No.5(本発明2):熱間圧延(550
℃3時間保定後、圧下率35%)→冷間圧延(圧下率3
0%)→熱処理(700℃1時間保定)→冷間圧延(圧
下率50%)→熱処理(380℃168時間保定)→冷
間圧延(圧下率95%)→熱処理(340℃72時間→
380℃264時間)、最終板厚1mm。熱延後トータル
熱処理時間:505時間。
No. 5 (Invention 2): Hot rolling (550
After holding at ℃ for 3 hours, reduction ratio 35%) → cold rolling (reduction ratio 3
0%) → heat treatment (holding at 700 ° C for 1 hour) → cold rolling (50% rolling reduction) → heat treatment (holding at 380 ° C 168 hours) → cold rolling (95% rolling reduction) → heat treatment (72 hours at 340 ° C →
380 ° C for 264 hours), final plate thickness 1 mm. Total heat treatment time after hot rolling: 505 hours.

【0034】No.6(本発明2):熱間圧延(950
℃1時間保定後、圧下率85%)→冷間圧延(圧下率3
0%)→熱処理(600℃4時間保定)→冷間圧延(圧
下率50%)→熱処理(320℃168時間)→冷間圧
延(圧下率75%)→熱処理(320℃264時間→4
40℃72時間)、最終板厚1mm。熱延後トータル熱処
理時間:508時間。
No. 6 (Invention 2): Hot rolling (950
After holding for 1 hour at ℃, reduction rate 85%) → cold rolling (reduction rate 3
0%) → Heat treatment (holding at 600 ° C. for 4 hours) → Cold rolling (reduction of 50%) → Heat treatment (320 ° C. for 168 hours) → Cold rolling (reduction of 75%) → Heat treatment (320 ° C. for 264 hours → 4)
40 ° C for 72 hours), final plate thickness 1 mm. Total heat treatment time after hot rolling: 508 hours.

【0035】No.7(本発明3):熱間圧延(800
℃1時間保定後、圧下率50%)→冷間圧延(圧下率5
0%)→熱処理(400℃2時間保定)→冷間圧延(圧
下率50%)→熱処理(380℃5時間保定)→冷間圧
延(圧下率50%)→熱処理(380℃5時間保定)→
冷間圧延(圧下率80%)→熱処理(380℃240時
間)→冷間圧延(圧下率50%)、最終板厚0.5mm。
熱延後トータル熱処理時間:252時間。
No. 7 (Invention 3): Hot rolling (800
After holding at ℃ for 1 hour, rolling reduction 50%) → cold rolling (rolling reduction 5
0%) → heat treatment (400 ° C, hold for 2 hours) → cold rolling (rolldown: 50%) → heat treatment (380 ° C, hold for 5 hours) → cold rolling (rolldown: 50%) → heat treatment (380 ° C, hold for 5 hours) →
Cold rolling (80% reduction) → heat treatment (240 ° C for 240 hours) → cold rolling (50% reduction), final plate thickness 0.5 mm.
Total heat treatment time after hot rolling: 252 hours.

【0036】No.8(本発明3):熱間圧延(550
℃3時間保定後、圧下率35%)→冷間圧延(圧下率3
0%)→熱処理(400℃3時間保定)→冷間圧延(圧
下率50%)→熱処理(380℃168時間保定)→冷
間圧延(圧下率95%)→熱処理(340℃336時
間)→冷間圧延(圧下率80%)、最終板厚0.2mm。
熱延後トータル熱処理時間:507時間。
No. 8 (Invention 3): Hot rolling (550
After holding at ℃ for 3 hours, reduction ratio 35%) → cold rolling (reduction ratio 3
0%) → heat treatment (400 ° C. hold for 3 hours) → cold rolling (roll reduction of 50%) → heat treatment (380 ° C. hold for 168 hours) → cold rolling (roll reduction of 95%) → heat treatment (340 ° C.336 hours) → Cold rolling (80% reduction), final thickness 0.2mm.
Total heat treatment time after hot rolling: 507 hours.

【0037】No.9(本発明3):熱間圧延(950
℃1時間保定後、圧下率85%)→冷間圧延(圧下率3
0%)→熱処理(320℃96時間保定)→冷間圧延
(圧下率50%)→熱処理(320℃96時間)→冷間
圧延(圧下率75%)→熱処理(400℃168時間)
→冷間圧延(圧下率90%)、最終板厚0.1mm。熱延
後トータル熱処理時間:360時間。
No. 9 (Invention 3): Hot rolling (950
After holding for 1 hour at ℃, reduction rate 85%) → cold rolling (reduction rate 3
0%) → heat treatment (holding at 320 ° C for 96 hours) → cold rolling (50% reduction) → heat treatment (96 hours at 320 ° C) → cold rolling (75% reduction) → heat treatment (168 hours at 400 ° C)
→ Cold rolling (reduction rate 90%), final plate thickness 0.1mm. Total heat treatment time after hot rolling: 360 hours.

【0038】No.10(比較例1):熱間圧延(80
0℃1時間保定後、圧下率50%)→熱処理(380℃
5時間保定)→冷間圧延(圧下率50%)→熱処理(3
80℃5時間保定)→冷間圧延(圧下率50%)→熱処
理(380℃5時間保定)→冷間圧延(圧下率50%)
→熱処理(380℃5時間保定)→冷間圧延(圧下率8
5%)→熱処理(350℃700時間)、最終板厚1.
0mm。熱延後トータル熱処理時間:720時間。
No. 10 (Comparative Example 1): Hot rolling (80
After holding at 0 ° C for 1 hour, rolling reduction 50%) → heat treatment (380 ° C
Hold for 5 hours) → Cold rolling (50% reduction) → Heat treatment (3
80 ° C for 5 hours) → cold rolling (50% reduction) → heat treatment (380 ° C, 5 hours retention) → cold rolling (50% reduction)
→ Heat treatment (holding at 380 ° C for 5 hours) → Cold rolling (reduction rate 8
5%) → heat treatment (350 ° C. 700 hours), final plate thickness 1.
0mm. Total heat treatment time after hot rolling: 720 hours.

【0039】No.11(比較例2):熱間圧延(80
0℃1時間保定後、圧下率50%)→熱処理(380℃
5時間保定)→冷間圧延(圧下率50%)→熱処理(3
80℃5時間保定)→冷間圧延(圧下率50%)→熱処
理(380℃5時間保定)一玲間圧延(圧下率50%)
・熱処理(380℃5時間保定)一冷間圧延(圧下率8
5%)→熱処理(310℃400時間→360℃300
時間)、最終板厚1.0mm。熱延後トータル熱処理時
間:720時間。
No. 11 (Comparative Example 2): Hot rolling (80
After holding at 0 ° C for 1 hour, rolling reduction 50%) → heat treatment (380 ° C
Hold for 5 hours) → Cold rolling (50% reduction) → Heat treatment (3
80 ℃ hold for 5 hours) → cold rolling (50% reduction) → heat treatment (hold at 380 ℃ for 5 hours) Illama rolling (50% reduction)
・ Heat treatment (holding at 380 ° C for 5 hours), one cold rolling (reduction rate 8
5%) → heat treatment (310 ° C 400 hours → 360 ° C 300)
Time), final plate thickness 1.0 mm. Total heat treatment time after hot rolling: 720 hours.

【0040】No.12(本発明1):熱間圧延(80
0℃1時間保定後、圧下率50%)→冷間圧延(圧下率
50%)→熱処理(750℃30分保定)→冷間圧延
(圧下率50%)→熱処理(380℃5時間保定)→冷
間圧延(圧下率50%)→熱処理(380℃5時間保
定)→冷間圧延(圧下率85%)→熱処理(350℃7
20時間)、最終板厚1mm。熱延後トータル熱処理時
間:730.5時間。
No. 12 (Invention 1): Hot rolling (80
After holding at 0 ° C for 1 hour, reduction rate 50%) → cold rolling (reduction rate 50%) → heat treatment (750 ° C 30 minutes retention) → cold rolling (reduction rate 50%) → heat treatment (380 ° C 5 hours retention) → Cold rolling (reduction of 50%) → Heat treatment (holding at 380 ° C for 5 hours) → Cold rolling (reduction of 85%) → Heat treatment (350 ° C 7
20 hours), final thickness 1mm. Total heat treatment time after hot rolling: 730.5 hours.

【0041】No.13(本発明2):熱間圧延(80
0℃1時間保定後、圧下率50%)→冷間圧延(圧下率
50%)→熱処理(750℃30分保定)→冷間圧延
(圧下率50%)→熱処理(430℃1時間保定)→冷
間圧延(圧下率50%)→熱処理(380℃5時間保
定)→冷間圧延(圧下率80%)→熱処理(300℃1
68時間→370℃504時間)、最終板厚1mm。熱延
後トータル熱処理時間:678.5時間。
No. 13 (Invention 2): Hot rolling (80
After holding at 0 ° C for 1 hour, rolling reduction 50%) → cold rolling (rolling reduction 50%) → heat treatment (750 ° C 30 minutes holding) → cold rolling (rolling reduction 50%) → heat treatment (430 ° C 1 hour holding) → Cold rolling (50% reduction) → Heat treatment (380 ° C, hold for 5 hours) → Cold rolling (80% reduction) → Heat treatment (300 ° C 1
68 hours → 370 ° C. 504 hours), final plate thickness 1 mm. Total heat treatment time after hot rolling: 678.5 hours.

【0042】No.14(比較例3):熱間圧延(80
0℃1時間保定後、圧下率50%)→熱処理(380℃
5時間保定)→冷間圧延(圧下率50%)→熱処理(3
80℃5時間保定)→冷間圧延(圧下率50%)→熱処
理(380℃5時間保定)→冷間圧延(圧下率50%)
→熱処理(380℃5時間保定)→冷間圧延(圧下率8
5%)→熱処理(350℃1000時間)、最終板厚
1.0mm。熱延後トータル熱処理時間:1020時間。
No. 14 (Comparative Example 3): Hot rolling (80
After holding at 0 ° C for 1 hour, rolling reduction 50%) → heat treatment (380 ° C
Hold for 5 hours) → Cold rolling (50% reduction) → Heat treatment (3
80 ° C for 5 hours) → cold rolling (50% reduction) → heat treatment (380 ° C, 5 hours retention) → cold rolling (50% reduction)
→ Heat treatment (holding at 380 ° C for 5 hours) → Cold rolling (reduction rate 8
5%) → heat treatment (350 ° C 1000 hours), final plate thickness 1.0 mm. Total heat treatment time after hot rolling: 1020 hours.

【0043】[0043]

【表1】 [Table 1]

【0044】[実施例2]実施例1のNo.8の材料に
350℃1時間の熱処理を施した本発明4の材料をN
o.15とする。No.15の5テスラ、8テスラ下の
臨界電流密度を表1に示した。5テスラ下で約3%、8
テスラ下で約5%No.8よりも減少しているが、1テ
スラ下の臨界電流密度を比べると、No.8では、39
45A/mm2 であったのに対し、No.15では、408
5A/mm2 と約3.5%増加した。これは、Cuの在留抵
抗比が上がったため超電導安定性が向上し、特に低磁場
側で効果を発揮したものと考えられる。また、No.8
とNo.15の材料の圧延方向の機械的伸びを測定した
ところ、No.8ではおよそ1%であったのに対し、N
o.15ではおよそ11%であった。加工せずに板のま
ま使用する用途の場合はNo.8で十分であるが、プレ
ス加工を施すような場合は、No.15(本発明4)の
方が適している。
[Embodiment 2] No. 1 of the first embodiment. The material of the present invention 4 obtained by heat treating the material of No. 8 at 350 ° C. for 1 hour is
o. Set to 15. No. Table 1 shows the critical current densities under 15 and 5 Tesla and 8 Tesla. 3% under 5 Tesla, 8
About 5% under Tesla Although it is smaller than No. 8, comparing the critical current densities under 1 Tesla, No. In 8, 39
It was 45 A / mm 2 , whereas No. In 15, 408
It was 5 A / mm 2 and increased by about 3.5%. It is considered that this is because the superconducting stability was improved due to the increase in the residence resistance ratio of Cu, and the effect was exhibited particularly in the low magnetic field side. In addition, No. 8
And No. No. 15 was measured when the mechanical elongation of the material of No. 15 in the rolling direction was measured. 8 was about 1%, while N
o. At 15, it was about 11%. For applications where the plate is used without processing, use No. No. 8 is sufficient, but when press working is performed, No. 8 is used. 15 (Invention 4) is more suitable.

【0045】[実施例3]総厚1mmで、30層のNbT
i層(厚さ約12μm)がNb層(厚さ約1μm)を介
して銅層(厚さ約12μm)と交互に積層した構成をし
たNbTi/Nb/Cu多層板を作製した。製造工程を
実施例1の例に倣い下記に示した。
[Example 3] A total thickness of 1 mm and 30 layers of NbT
An NbTi / Nb / Cu multilayer plate having a structure in which i layers (about 12 μm in thickness) and Nb layers (about 1 μm in thickness) and copper layers (about 12 μm in thickness) were alternately laminated was produced. The manufacturing process is shown below, following the example of Example 1.

【0046】No.16(本発明5):熱間圧延(83
0℃2時間保定後、圧下率60%)→冷間圧延(圧下率
50%)→熱処理(380℃5時間)→冷間圧延(圧下
率50%)→熱処理(380℃5時間)→冷間圧延(圧
下率50%)→熱処理(380℃5時間)→冷間圧延
(圧下率80%)→熱処理(370℃500時間)→冷
間圧延(圧下率60%)→熱処理(350℃l時間)。
本材料の圧延方向断面から見たNbTi層中の常電導T
i析出物の平均の厚さは30nm、平均間隔100n
m、体積分率10%の図2に示すようなNbTi層を有
する本発明5の超電導板を得た。
No. 16 (Invention 5): Hot rolling (83
After holding at 0 ° C for 2 hours, rolling reduction 60%) → cold rolling (rolling reduction 50%) → heat treatment (380 ° C 5 hours) → cold rolling (rolling reduction 50%) → heat treatment (380 ° C 5 hours) → cooling Cold rolling (50% reduction) → heat treatment (380 ° C 5 hours) → cold rolling (80% reduction) → heat treatment (370 ° C 500 hours) → cold rolling (60% reduction) → heat treatment (350 ° Cl) time).
Normal conductivity T in the NbTi layer seen from the cross section in the rolling direction of this material
i The average thickness of precipitates is 30 nm, the average interval is 100 n
m, a superconducting plate of the present invention 5 having an NbTi layer as shown in FIG. 2 having a volume fraction of 10% was obtained.

【0047】また、比較例として、下記の製造工程によ
りNo.17の材料を製造した。 No.17(比較例4):熱問圧延(830℃2時間保
定後、圧下率60%)→冷間圧延(圧下率50%)→熱
処理(380℃5時間)→冷間圧延(圧下率50%)→
熱処理(380℃5時間)→冷間圧延(圧下率50%)
→熱処理(380℃5時間)→冷間圧延(圧下率80
%)→熱処理(370℃500時間)。
As a comparative example, No. 1 was manufactured by the following manufacturing process. Seventeen materials were produced. No. 17 (Comparative Example 4): Hot rolling (holding at 830 ° C. for 2 hours, rolling reduction 60%) → cold rolling (rolling reduction 50%) → heat treatment (380 ° C. 5 hours) → cold rolling (rolling reduction 50%) ) →
Heat treatment (380 ° C 5 hours) → cold rolling (rolling reduction 50%)
→ Heat treatment (380 ° C for 5 hours) → Cold rolling (Reduction rate 80
%) → heat treatment (370 ° C. 500 hours).

【0048】比較例4の圧延方向断面からみたNbTi
層中には、長径平均250nm、短径平均150nmの
楕円状の常電導Ti析出物が、平均間隔250nm、体
積分率で10%析出していた(図3)。No.16(本
発明5)とNo.17(比較例4)の圧延材の幅方向の
臨界電流密度を測定した結果は表2のとおりであった。
NbTi as seen from the section in the rolling direction of Comparative Example 4.
In the layer, elliptical normal-conducting Ti precipitates having an average major axis of 250 nm and an average minor axis of 150 nm were precipitated with an average interval of 250 nm and a volume fraction of 10% (FIG. 3). No. 16 (Invention 5) and No. Table 2 shows the results of measuring the critical current density in the width direction of the rolled material of No. 17 (Comparative Example 4).

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明の製造工程を製造した超電導多層
板は、従来の製造工程で作られたものに比べて最大2倍
の臨界電流密度を有しており、同じ磁場をシールドする
場合に使用する板の厚さを低減することができ、磁気シ
ールドの軽量化と製造コストの大幅な低減が実現でき
た。単位熱処理時間当たりのJc (8Tにおける)を比
較して分かるとおり、従来技術に比べ、効率の良い製造
方法となり、製造コストの低減が実現できた。
The superconducting multilayer board manufactured by the manufacturing process of the present invention has a maximum critical current density twice as high as that manufactured by the conventional manufacturing process, and when the same magnetic field is shielded. The thickness of the plate to be used can be reduced, and the weight of the magnetic shield can be reduced and the manufacturing cost can be significantly reduced. As can be seen by comparing Jc (at 8T) per unit heat treatment time, the manufacturing method was more efficient than the conventional technology, and the manufacturing cost could be reduced.

【0051】また、第5の発明では超電導/常電導界面
の大きさに匹敵する厚さに圧延方向に薄く延びた板状の
常電導析出物が、磁束量子の間隔に近い間隔で配置して
いるため、中間状態で侵入した磁束量子を効率的に捕
捉、大きな力でピン止めするため、大きな臨界電流密度
を得ることが可能となった。
Further, in the fifth invention, plate-shaped normal-conducting precipitates thinly extending in the rolling direction to a thickness comparable to the size of the superconducting / normal-conducting interface are arranged at intervals close to the magnetic flux quantum intervals. Therefore, it is possible to obtain a large critical current density because the magnetic flux quantum that has entered in the intermediate state is efficiently captured and pinned with a large force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関わる超電導板中のNbTi合金層を
示す全体図である。
FIG. 1 is an overall view showing an NbTi alloy layer in a superconducting plate according to the present invention.

【図2】本発明の実施例を示す超電導板中のNbTi合
金層の圧延方向断面図である。
FIG. 2 is a rolling direction sectional view of an NbTi alloy layer in a superconducting plate showing an example of the present invention.

【図3】従来の超電導板中のNbTi合金層の圧延方向
断面図である。
FIG. 3 is a sectional view in the rolling direction of an NbTi alloy layer in a conventional superconducting plate.

【符号の説明】[Explanation of symbols]

1 NbTi 2 常電導Ti析出物 3 粒界 1 NbTi 2 Normal Conductive Ti Precipitate 3 Grain Boundary

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 9/00 ZAA H05K 9/00 ZAAW (72)発明者 沢村 充 神奈川県川崎市中原区井田3丁目35番1号 新日本製鐵株式会社技術開発本部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical location H05K 9/00 ZAA H05K 9/00 ZAAW (72) Inventor Mitsuru Sawamura 3 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa No.35-1 Nippon Steel Co., Ltd. Technology Development Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1層のNbTi合金と高導電
率金属が交互に積層され、かつ前記NbTi合金と前記
高導電率金属の間にNbまたはTaのバリヤー層が存在
する超電導多層板の製造方法であって、温度500〜1
000℃で加工率30〜98%の熱間圧延を施した後、
加工率30〜70%で冷間圧延し、次に温度600〜8
00℃で30分〜5時間保持した後、加工率30〜98
%の冷間圧延を施し、300〜450℃の温度で1回当
たりの保持時間が1〜168時間の熱処理と1回当たり
の加工率が30〜98%の冷間圧延を6回以下交互に繰
り返し施して板状または、箔状とした後、300〜45
0℃の温度で保持時間が1〜1000時間の最終熱処理
を施すことを特徴とするNbTi超電導多層板の製造方
法。
1. A method for producing a superconducting multilayer plate, wherein at least one layer of NbTi alloy and high conductivity metal are alternately laminated, and a barrier layer of Nb or Ta is present between the NbTi alloy and the high conductivity metal. And a temperature of 500 to 1
After hot rolling at a working rate of 30 to 98% at 000 ° C.,
Cold rolling at a working rate of 30-70%, then temperature of 600-8
After holding at 00 ° C for 30 minutes to 5 hours, processing rate 30 to 98
% Cold rolling, heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours per time, and cold rolling at a working rate of 30 to 98% per time of 6 times or less alternately. Repeatedly applied to form a plate or foil, then 300 to 45
A method for producing an NbTi superconducting multilayer plate, which comprises performing a final heat treatment at a temperature of 0 ° C. and a holding time of 1 to 1000 hours.
【請求項2】 少なくとも1層のNbTi合金と高導電
率金属が交互に積層され、かつ前記NbTi合金と前記
高導電率金属の間にNbまたはTaのバリヤー層が存在
する超電導多層板の製造方法であって、温度500〜1
000℃で加工率30〜98%の熱間圧延を施した後、
加工率30〜70%で冷間圧延し、次に温度600〜8
00℃で30分〜5時間保持した後、加工率30〜98
%の冷間圧延を施し、300〜450℃の温度で1回当
たりの保持時間が1〜168時間の熱処理と1回当たり
の加工率が30〜98%の冷間圧延を6回以下交互に繰
り返し施して板状または、箔状とした後、300℃以上
350℃未満の温度で10〜500時間施した後引き続
き350℃以上450℃未満の温度で保持時間が1〜1
000時間の最終熱処理を施すことを特徴とするNbT
i超電導多層板の製造方法。
2. A method for manufacturing a superconducting multilayer plate, wherein at least one layer of NbTi alloy and high conductivity metal are alternately laminated, and a barrier layer of Nb or Ta is present between the NbTi alloy and the high conductivity metal. And a temperature of 500 to 1
After hot rolling at a working rate of 30 to 98% at 000 ° C.,
Cold rolling at a working rate of 30-70%, then temperature of 600-8
After holding at 00 ° C for 30 minutes to 5 hours, processing rate 30 to 98
% Cold rolling, heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours per time, and cold rolling at a working rate of 30 to 98% per time of 6 times or less alternately. After being repeatedly applied into a plate shape or a foil shape, it is applied at a temperature of 300 ° C. or higher and lower than 350 ° C. for 10 to 500 hours, and subsequently, a holding time of 1 to 1 at a temperature of 350 ° C. or higher and lower than 450 ° C.
NbT characterized by being subjected to a final heat treatment of 000 hours
i A method for manufacturing a superconducting multilayer board.
【請求項3】 少なくとも1層のNbTi合金と高導電
率金属が交互に積層され、かつ前記NbTi合金と前記
高導電率金属の間にNbまたはTaのバリヤー層が存在
する超電導多層板の製造方法であって、温度500〜1
000℃で加工率30〜98%の熱間圧延を施した後、
加工率30〜98%で冷間圧延し、300〜450℃の
温度で1回当たりの保持時間が1〜168時間の熱処理
と1回当たりの加工率が30〜98%の冷間圧延を6回
以下交互に繰り返し施して板状または、箔状とした後、
300〜450℃の温度で保持時間が1〜1000時間
の熱処理を施した後、30〜90%の冷間圧延を施すこ
とを特徴とするNbTi超電導多層板の製造方法。
3. A method for producing a superconducting multilayer plate, wherein at least one layer of NbTi alloy and high conductivity metal are alternately laminated, and a barrier layer of Nb or Ta is present between the NbTi alloy and the high conductivity metal. And a temperature of 500 to 1
After hot rolling at a working rate of 30 to 98% at 000 ° C.,
Cold rolling at a working rate of 30 to 98%, heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 168 hours per time, and cold rolling at a working rate of 30 to 98% for 6 times. Repeatedly repeated less than once to make a plate or foil,
A method for producing an NbTi superconducting multilayer plate, which comprises performing a heat treatment at a temperature of 300 to 450 ° C. for a holding time of 1 to 1000 hours and then performing a cold rolling of 30 to 90%.
【請求項4】 少なくとも1層のNbTi合金と高導電
率金属が交互に積層され、かつ前記NbTi合金と前記
高導電率金属の間にNbまたはTaのバリヤー層が存在
する超電導多層板であって、温度500〜1000℃で
加工率30〜98%の熱間圧延を施した後、加工率30
〜98%で冷間圧延し、300〜450℃の温度で1回
当たり保持時間が1〜168時間の熱処理と1回当たり
の加工率が30〜98%の冷間圧延を6回以下交互に繰
り返して板状または、箔状とした後、300〜450℃
の温度で保持時間が1〜1000時間の熱処理を施した
後、30〜90%の冷間圧延を施し、さらに300〜4
50℃の温度で1秒〜5時間熱処理を施すことを特徴と
するNbTi超電導多層板の製造方法。
4. A superconducting multilayer plate comprising at least one layer of NbTi alloy and high conductivity metal alternately laminated, and a Nb or Ta barrier layer being present between said NbTi alloy and said high conductivity metal. After performing hot rolling with a processing rate of 30 to 98% at a temperature of 500 to 1000 ° C., a processing rate of 30
~ 98% cold rolling, heat treatment at a temperature of 300 ~ 450 ° C for a holding time of 1 ~ 168 hours per time, and cold rolling with a working rate of 30 ~ 98% per time alternate up to 6 times. Repeatedly plate-shaped or foil-shaped, then 300-450 ℃
After the heat treatment at the temperature of 1 to 1000 hours, the cold rolling of 30 to 90% is performed, and further 300 to 4
A method for producing an NbTi superconducting multilayer plate, which comprises performing heat treatment at a temperature of 50 ° C. for 1 second to 5 hours.
【請求項5】 CuまたはCu合金基材中に板状NbT
i合金層がNb層を介して配置されているNbTi超電
導多層板において、NbTi超電導多層板のNbTi層
中に、板面に平行に板状に析出し、かつ厚さが1nm以
上、100nm以下、板厚方向の間隔が1nm以上、5
00nm以下、NbTi合金層全体に対する体積分率が
3%以上、50%以下の常電導析出物が存在することを
特徴とするNbTi超電導多層板。
5. A plate-shaped NbT in a Cu or Cu alloy substrate.
In the NbTi superconducting multilayer plate in which the i alloy layer is arranged via the Nb layer, in the NbTi layer of the NbTi superconducting multilayer plate, a plate shape is deposited parallel to the plate surface, and a thickness of 1 nm or more and 100 nm or less, Distance in the plate thickness direction is 1 nm or more, 5
An NbTi superconducting multilayer plate, which has a normal-conducting precipitate having a volume fraction of 3% to 50% with respect to the entire NbTi alloy layer of 00 nm or less.
JP02863697A 1996-03-19 1997-02-13 Manufacturing method of NbTi superconducting multilayer board Expired - Fee Related JP3788839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02863697A JP3788839B2 (en) 1996-03-19 1997-02-13 Manufacturing method of NbTi superconducting multilayer board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-62277 1996-03-19
JP6227796 1996-03-19
JP02863697A JP3788839B2 (en) 1996-03-19 1997-02-13 Manufacturing method of NbTi superconducting multilayer board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006049793A Division JP4571918B2 (en) 1996-03-19 2006-02-27 Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board

Publications (2)

Publication Number Publication Date
JPH09310161A true JPH09310161A (en) 1997-12-02
JP3788839B2 JP3788839B2 (en) 2006-06-21

Family

ID=26366774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02863697A Expired - Fee Related JP3788839B2 (en) 1996-03-19 1997-02-13 Manufacturing method of NbTi superconducting multilayer board

Country Status (1)

Country Link
JP (1) JP3788839B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330574A (en) * 1998-03-13 1999-11-30 Nippon Steel Corp Nbti superconductor multilayer board and its manufacture
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP2006185925A (en) * 1996-03-19 2006-07-13 Nippon Steel Corp MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE
CN117619883A (en) * 2023-12-01 2024-03-01 北京理工大学 Three-dimensional brick composite material and technological preparation method thereof
WO2024093998A1 (en) * 2022-10-31 2024-05-10 宁夏中色金航钛业有限公司 Niobium-titanium alloy precision strip and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185925A (en) * 1996-03-19 2006-07-13 Nippon Steel Corp MANUFACTURING METHOD OF NbTi SUPERCONDUCTING MULTI-LAYER PLATE, AND NbTi SUPERCONDUCTING MULTI-LAYER PLATE
JPH11330574A (en) * 1998-03-13 1999-11-30 Nippon Steel Corp Nbti superconductor multilayer board and its manufacture
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP4495426B2 (en) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 Superconducting film and manufacturing method thereof
US7772157B2 (en) 2003-08-29 2010-08-10 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
US8148300B2 (en) 2003-08-29 2012-04-03 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
WO2024093998A1 (en) * 2022-10-31 2024-05-10 宁夏中色金航钛业有限公司 Niobium-titanium alloy precision strip and manufacturing method therefor
CN117619883A (en) * 2023-12-01 2024-03-01 北京理工大学 Three-dimensional brick composite material and technological preparation method thereof

Also Published As

Publication number Publication date
JP3788839B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
Collings Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys: Fundamentals Alloy Superconductors: Their Metallurgical, Physical, and Magnetic-Mixed-State Properties
EP2696381B1 (en) Niobium-titanium based superconducting wire
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
JPH09310161A (en) Production of nb-ti superconductive multilayer sheet and nb-ti superconductive multilayer sheet
Suenaga et al. The fabrication and properties of Nb 3 Sn superconductors by the solid diffusion process
Devred Practical low-temperature superconductors for electromagnets
Sekine et al. Improvements in current-carrying capacities of Nb 3 Sn composites in high fields through titanium addition to the matrix
Dietderich et al. The critical current density and microstructural state of an internal tin multifilamentary superconducting wire
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JP4571918B2 (en) Manufacturing method of NbTi superconducting multilayer board and NbTi superconducting multilayer board
JP3629527B2 (en) Manufacturing method of Nb3Al compound-based superconducting wire and superconducting wire obtained by the method
Takeuchi et al. Effect of flat-roll forming on critical current density characteristics and microstructure of Nb/sub 3/Al multifilamentary conductors
JPH06509675A (en) How to make superconducting alloys
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JP4516639B2 (en) NbTi superconducting multilayer board and manufacturing method thereof
JPH0619930B2 (en) Niobium / Titanium extra fine multi-core superconducting wire
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP4142770B2 (en) NbTi superconducting multilayer rolled plate and method for producing the same
Sudyev et al. Recent progress in a development of Nb3Sn internal tin strand for fusion application
Miyashita et al. The structure and superconducting properties of multifilamentary Nb 3 Sn wires prepared by internal Sn diffusion process using Sn-Ti cores
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
Miyashita et al. Effects of titanium addition to the Nb 3 Sn wires fabricated by the internal tin diffusion process
JPH0642334B2 (en) Composite multi-core superconducting wire
Yoshida et al. Improvement in high‐field critical currents of in situ processed Nb3Sn by titanium addition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees