JPS61231143A - Manufacture of stabilizing material for composite superconductor - Google Patents

Manufacture of stabilizing material for composite superconductor

Info

Publication number
JPS61231143A
JPS61231143A JP60069761A JP6976185A JPS61231143A JP S61231143 A JPS61231143 A JP S61231143A JP 60069761 A JP60069761 A JP 60069761A JP 6976185 A JP6976185 A JP 6976185A JP S61231143 A JPS61231143 A JP S61231143A
Authority
JP
Japan
Prior art keywords
stabilizing material
alloy
purity
manufacture
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60069761A
Other languages
Japanese (ja)
Other versions
JPH0713282B2 (en
Inventor
Hiromi Takei
武井 広見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60069761A priority Critical patent/JPH0713282B2/en
Publication of JPS61231143A publication Critical patent/JPS61231143A/en
Publication of JPH0713282B2 publication Critical patent/JPH0713282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a stabilizing material for composite superconductor having superior mechanical strength by CONSTITUTION:The pure Al rod with >=99.9wt% purity is coated with the Al alloy containing 0.2-0.6% each of Mg and Si. Then the.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は複合超電導導体用安定化材の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a stabilizing material for a composite superconducting conductor.

〈従来の技術とその問題点〉 核融合、エネルギー貯蔵などに応用する大型超電導マグ
ネットでは、マグネット保護の観点からインダクタンス
を小さくして高磁界を発生させるため、大容量導体を用
いることが不可欠である。
<Conventional technology and its problems> For large superconducting magnets used in nuclear fusion, energy storage, etc., it is essential to use large-capacity conductors in order to generate a high magnetic field by reducing inductance in order to protect the magnet. .

また、これらの大型マグネットの超電導安定化の設計は
、導体の一部に常電導転移がRっだ場合の発熱(G)よ
り冷却熱!(Q)を大ぎくし、常電導部が伝播すること
なく超電導状態に復帰するようにするクライオスタティ
ックな安定化法によっている。
In addition, the superconducting stabilization design of these large magnets reduces the heat generated by cooling (G) rather than the heat generated when a part of the conductor has a normal conduction transition (R)! A cryostatic stabilization method is used to increase (Q) so that the normal conducting part returns to the superconducting state without propagating.

上記の発熱(G)および冷却熱fi(Q)は次式により
示される。
The above heat generation (G) and cooling heat fi (Q) are expressed by the following equations.

即ち、G=ρ/5−IL  ・・・・・・(1)Q=p
−h     ・・・・・・(2)但し、■二通電電流
値 ρ:安定化材の抵抗率 S二安定化材の断面積 p:冷却表面積 h:導体とヘリウム間の熱流束 である。
That is, G=ρ/5-IL (1) Q=p
-h (2) However, (2) Current value ρ: Resistivity of the stabilizing material S Cross-sectional area of the stabilizing material p: Cooling surface area h: Heat flux between the conductor and helium.

この式から超電導導体としては、ρを小ざくし、s、p
、hを大きくすることが必要である。
From this equation, for a superconducting conductor, ρ is reduced, s, p
, h must be increased.

これらのうち、p、hは導体寸法、形状により、はぼ決
められてしまい、またSを大きくすると、マグネットが
大型化し、コスト的に問題である。
Of these, p and h are roughly determined by the dimensions and shape of the conductor, and if S is increased, the magnet becomes larger, which is a problem in terms of cost.

従って、超電導導体の安定化材としては抵抗率ρが小さ
いことが必要で、通常は純銅が用いられる。
Therefore, as a stabilizing material for a superconducting conductor, it is necessary that the resistivity ρ is small, and pure copper is usually used.

しかし、安定化材としてへを用いた場合は、特に高磁界
での安定性が悪い。そしてこの安定性を十分にするには
多量の伍が必要となり、電流密度が減少し、マグネット
寸法が増大する。
However, when aluminum is used as a stabilizing material, stability is poor especially in high magnetic fields. In order to achieve sufficient stability, a large amount of heat is required, reducing the current density and increasing the magnet size.

これは仮の電気抵抗は磁気抵抗効果により磁界と共に著
しく増加するため、電気抵抗と共に熱電導が低下するた
めである。
This is because the temporary electrical resistance increases significantly with the magnetic field due to the magnetoresistance effect, so that the thermal conductivity decreases with the electrical resistance.

要するに、へは磁界の増加に伴なう抵抗率の増加、即ち
磁気抵抗効果が大ぎいことが欠点であり、このことから
磁気抵抗効果の小さな高純度Nを安定化材として用いる
ことが望まれている。しかしながら高純度Nは機械強度
、特に耐疲労強度が小さい欠点があり、繰返し電磁力が
導体に加えられるパルスマグネットでは大きな問題とな
るのである。
In short, the disadvantage of FE is that the resistivity increases with an increase in the magnetic field, that is, the magnetoresistive effect is large, and for this reason, it is desirable to use high-purity N, which has a small magnetoresistive effect, as a stabilizing material. ing. However, high-purity N has the disadvantage of low mechanical strength, particularly low fatigue strength, which poses a major problem in pulsed magnets where electromagnetic force is repeatedly applied to the conductor.

〈問題点を解決するための手段〉 この発明は、上記した従来の欠陥に鑑み、これを解消す
べく検討結果、得られたものである。
<Means for Solving the Problems> The present invention was obtained as a result of studies to solve the above-mentioned conventional defects.

即ち、この発明は純度99.9重量%以上の純Al棒を
MgおよびSiを夫々0.2〜0.6重量%含有したN
合金で被覆し、最終形状に成形後150℃以上、190
℃以下で1時間以上、70時間以下にて熱処理すること
を特徴とする複合超電導導体用安定化材の製造方法を提
供するものである。
That is, this invention uses a pure Al rod with a purity of 99.9% by weight or more and an N containing 0.2 to 0.6% by weight of Mg and Si, respectively.
After coating with alloy and forming into final shape, heat at 150℃ or higher, 190℃
The present invention provides a method for producing a stabilizing material for a composite superconducting conductor, which is characterized by heat treatment at a temperature of 1 hour or more and 70 hours or less at a temperature of 0.degree. C. or lower.

〈作用〉 以下、この発明を図面を参照しつつ説明する。<Effect> The present invention will be explained below with reference to the drawings.

第1図において、1は一1SLを夫々0.2〜0.6%
含有したN合金層2を被覆した高純度Nである。
In Figure 1, 1 is 0.2 to 0.6% of -1SL, respectively.
This is high-purity N that coats the containing N alloy layer 2.

この発明は第1図に断面構造を示すように、集合導体に
N合金被覆したN材を安定化材として用いるものである
。ここでN合金被覆高純度NはN合金管中に高純度N棒
を入れて作製した複合ビレットの押出し、あるいはN合
金パイプと高純度N棒の複合伸線によって作製される。
As shown in the cross-sectional structure of FIG. 1, this invention uses an N material coated with an N alloy on a collective conductor as a stabilizing material. Here, the N alloy-coated high-purity N is produced by extruding a composite billet prepared by placing a high-purity N rod in an N-alloy tube, or by composite wire drawing of an N-alloy pipe and a high-purity N rod.

なお、第1図における3はNb  TiまたはNb、S
Tl極細多芯超電導線である。
In addition, 3 in FIG. 1 is Nb Ti or Nb, S
This is a Tl ultrafine multicore superconducting wire.

この発明において、高純度N棒の外周を被覆するN合金
層の素材となるN合金には1、SLの夫々0.2〜0.
6%を含有させたことが特徴であるが、これは電気抵抗
を低下させることなく、Mの強度を増加させるためであ
る。
In this invention, the N alloy that is the material of the N alloy layer covering the outer periphery of the high purity N rod has a SL of 1 and an SL of 0.2 to 0.
It is characterized by containing 6% of M, and this is to increase the strength of M without reducing the electrical resistance.

この−1SLのN合金中への含有量を0.2〜0.6%
とするのは、0.2%以下では機械的強度を増加させる
のに不十分であること、また0、6%以上では電気抵抗
の大きな増加を生じること、ざらに加、工性を劣化させ
るので好ましくないためである。
The content of this -1SL in the N alloy is 0.2 to 0.6%.
This is because if it is less than 0.2%, it is insufficient to increase mechanical strength, and if it is more than 0.6%, it will cause a large increase in electrical resistance, rough processing, and deteriorate workability. This is because it is not desirable.

また、この発明による安定化材の他の一例を示すと、第
2図のように隆−TL極細多芯超電導線からなるモノリ
シック導体4の外周を高純度M1、ざらにその最外周を
N合金層2で被覆したものである。これは複合ビレット
の押出し、またはN合金パイプ、高純度Nパイプ、隆−
T、超電導導体の複合伸線によって作製することもでき
る。
In addition, to show another example of the stabilizing material according to the present invention, as shown in FIG. It is coated with layer 2. This can be done by extruding composite billets, or by extruding N alloy pipes, high purity N pipes, or
It can also be produced by composite wire drawing of T and superconducting conductors.

〈実施例〉 以下、この発明を実施例により説明する。<Example> This invention will be explained below with reference to Examples.

下記の第1表に示した組成のN合金よりなる外径70、
の管の中に99.92%のN棒を入れ、上、下に同じN
合金からなる蓋をし、真空室中でN合金管内部を真空引
きした後、蓋を電子ビーム溶接して複合ビレットを作製
した。
Outer diameter 70 made of N alloy with the composition shown in Table 1 below,
Put a 99.92% N rod into the tube, and add the same N to the top and bottom.
A lid made of an alloy was placed on the tube, the inside of the N alloy tube was evacuated in a vacuum chamber, and then the lid was electron beam welded to produce a composite billet.

これを静水圧押出機を用いて30.ψに押出しした。こ
こでN合金の被覆率は15%である。
This was processed using a hydrostatic extruder for 30. Extruded to ψ. Here, the N alloy coverage is 15%.

次に押出材を伸縮および圧延し、3 X 16m−の板
を2枚、5X10mJの板を1枚作製し、第1表に示す
条件で熱処理した。
Next, the extruded material was stretched and rolled to produce two 3 x 16 m-sized plates and one 5 x 10 mJ plate, and heat treated under the conditions shown in Table 1.

これらの板材と、別途作製した5 X 5 mtaのm
−T、極細多芯超電導線を半田(Pb −Sn共晶合金
)で接着合体して大容量の超電導導体を得た。
These plate materials and a separately manufactured 5 x 5 mta m
-T, a large-capacity superconducting conductor was obtained by adhesively bonding ultrafine multicore superconducting wires with solder (Pb-Sn eutectic alloy).

なお、N合金層表面には半田接着可能とするため、予め
Snを電気めっきした。
Note that Sn was electroplated in advance on the surface of the N alloy layer to enable solder bonding.

一方、この発明による8!M4径のM合金被覆高純度M
棒を用い、回転曲げ疲労試験により耐疲労強度を調べた
。また4、2Kにおいて電気抵抗率を測定した。その結
果は第1表に示した。
On the other hand, 8! according to this invention! M4 diameter M alloy coated high purity M
The fatigue strength of the rod was investigated by rotating bending fatigue test. Furthermore, the electrical resistivity was measured at 4 and 2K. The results are shown in Table 1.

なお、比較のために測定した99.92%M棒に比べ、
電気抵抗率は減少し、かつ耐疲労強度も著しく改善され
ていることが認められた。
In addition, compared to the 99.92% M bar measured for comparison,
It was observed that the electrical resistivity was reduced and the fatigue strength was also significantly improved.

第1表 〈発明の効果〉 以上のように、この発明の安定化材の製法は超電導複合
導体用の安定化材として一1SLを夫々0.2〜0.6
%含有したN合金で被覆した高純度M棒を用いるもので
あり、通常、超電導の安定化材として用いられているへ
に比べ、超電導を安定化させる力が大きい。
Table 1 <Effects of the Invention> As described above, the method for producing the stabilizing material of the present invention uses 0.2 to 0.6 SL of each SL as a stabilizing material for superconducting composite conductors.
This method uses a high-purity M rod coated with an N alloy containing % of N, and has a greater ability to stabilize superconductivity than that normally used as a stabilizing material for superconductivity.

これは極低温で、特に高磁界において、伍に比べ電気抵
抗率の小さいNを用いているためであるとともに、最終
形状に成形後、熱処理することにより高純度Mの電気抵
抗が減少するためである。
This is because N is used, which has a lower electrical resistivity than Go at extremely low temperatures, especially in high magnetic fields, and also because the electrical resistance of high-purity M is reduced by heat treatment after forming it into the final shape. be.

また、通常安定化材における疲労クランクは、材料の表
面で発生し、内部に伝播する。
Additionally, fatigue cranks in normal stabilized materials occur on the surface of the material and propagate internally.

この発明は材料外周を1、Sjを夫々0.2〜0.6%
添加したN合金で被覆したため耐疲労強度を向上させる
ことができたのである
In this invention, the outer circumference of the material is 1, and the Sj is 0.2 to 0.6%.
By coating it with the added N alloy, we were able to improve its fatigue resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法よりなる安定化材の一例を示す
断面構造図、第2図はこの発明の他の一例を示す平面図
である。
FIG. 1 is a sectional structural view showing an example of a stabilizing material made by the method of the present invention, and FIG. 2 is a plan view showing another example of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  純度99.9重量%以上の純Al棒をMgおよびSi
を夫々0.2〜0.6重量%含有したAl合金で被覆し
、最終形状に成形後150℃以上、190℃以下で1時
間以上、70時間以下熱処理することを特徴とする複合
超電導導体用安定化材の製造方法。
A pure Al rod with a purity of 99.9% by weight or more is mixed with Mg and Si.
For use in composite superconducting conductors, which is coated with an Al alloy containing 0.2 to 0.6% by weight of each of Method of manufacturing stabilizing material.
JP60069761A 1985-04-02 1985-04-02 Method for manufacturing stabilizer for composite superconducting conductor Expired - Lifetime JPH0713282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069761A JPH0713282B2 (en) 1985-04-02 1985-04-02 Method for manufacturing stabilizer for composite superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069761A JPH0713282B2 (en) 1985-04-02 1985-04-02 Method for manufacturing stabilizer for composite superconducting conductor

Publications (2)

Publication Number Publication Date
JPS61231143A true JPS61231143A (en) 1986-10-15
JPH0713282B2 JPH0713282B2 (en) 1995-02-15

Family

ID=13412104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069761A Expired - Lifetime JPH0713282B2 (en) 1985-04-02 1985-04-02 Method for manufacturing stabilizer for composite superconducting conductor

Country Status (1)

Country Link
JP (1) JPH0713282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266416A (en) * 1991-02-20 1993-11-30 The Furukawa Electric Co., Ltd. Aluminum-stabilized superconducting wire
JPH0612926A (en) * 1992-06-30 1994-01-21 Hitachi Ltd Superconductive wire and composite superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266416A (en) * 1991-02-20 1993-11-30 The Furukawa Electric Co., Ltd. Aluminum-stabilized superconducting wire
JPH0612926A (en) * 1992-06-30 1994-01-21 Hitachi Ltd Superconductive wire and composite superconductor

Also Published As

Publication number Publication date
JPH0713282B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US3743986A (en) Improved resistive envelope for a multifilament superconductor wire
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
US3930903A (en) Stabilized superconductive wires
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JPS6150136B2 (en)
Akihama et al. Fabrication of multifilamentary Nb-Al by a powder metallurgy process
US3817746A (en) Ductile superconducting alloys
US6699821B2 (en) Nb3Al superconductor and method of manufacture
JPS61231143A (en) Manufacture of stabilizing material for composite superconductor
US3616530A (en) Method of fabricating a superconducting composite
US5628835A (en) Nb3 Al Group superconductor containing ultrafine Nb2 Al particles
US4391657A (en) Manufacture of niobium-aluminum superconducting material
JPS61227306A (en) Stabilizing material for superconducting composite body
JPH0251807A (en) Manufacture of nb3al superconducting wire rod with extremely fine multiplex structure
JPH03156809A (en) Application of oxide superconductive conductor
JPH0568805B2 (en)
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
Howe et al. Metallurgical Processing and Superconducting Properties of V 3 Ga Formed in the V-Ga/Cu-Ga-Al Composite System
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JPH01163911A (en) Wire drawing method for oxide type superconductor
JPS61201766A (en) Manufacture of cu-stabilized nb-ti superconducting wire
JPS6313286B2 (en)
JPS6086704A (en) Method of producing nb3sn superconductive wire material using sn-iva group element alloy
JPH0317332B2 (en)
JPS60107213A (en) Aluminum stabilized superconductive wire