JPH09283468A - Manufacture of low-resistant conductive film - Google Patents

Manufacture of low-resistant conductive film

Info

Publication number
JPH09283468A
JPH09283468A JP11949596A JP11949596A JPH09283468A JP H09283468 A JPH09283468 A JP H09283468A JP 11949596 A JP11949596 A JP 11949596A JP 11949596 A JP11949596 A JP 11949596A JP H09283468 A JPH09283468 A JP H09283468A
Authority
JP
Japan
Prior art keywords
conductive film
film
low
substrate
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11949596A
Other languages
Japanese (ja)
Other versions
JP3638055B2 (en
Inventor
Paru Gosain Daramu
パル ゴサイン ダラム
Miyako Nakakoshi
美弥子 中越
Uesutouootaa Jiyonasan
ウエストウォーター ジョナサン
Setsuo Usui
節夫 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11949596A priority Critical patent/JP3638055B2/en
Publication of JPH09283468A publication Critical patent/JPH09283468A/en
Application granted granted Critical
Publication of JP3638055B2 publication Critical patent/JP3638055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To work for low resistance while preventing generation of film breakage at the time of crystallization, by irradiating an energy beam on a conductive film after forming the conductive film by a sputtering method. SOLUTION: After forming a buffer layer consisting of a silicon nitride film 12 and a silicon dioxide film 13 on a low heat-resistant substrate 10 and while holding the low heat-resistant substrate 10 from a room temperature up to a temperature not exceeding 200 deg.C, magnetron sputtering is performed in an atmosphere of rare gas having a smaller atomic radius, for instance, helium(He) so as to form a thin ITO(indium oxide tin) film 13. After forming the ITO film 13, a laser beam (wavelength 308nm, energy 50 to 190mJ/cm<2> , pulse width 30ns) 14 by an XeCl eximer laser is irradiated on the ITO film 13 so as to perform a heat treatment (annealing). As a result, the ITO film 13 is crystallized so as to become low resistant. At this time, rare gas does not boil away but is easily released from the ITO film 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体デバイスにお
ける電極や配線として用いられる低抵抗導電膜の作製方
法に係り、特にガラス,プラスチック等からなる低耐熱
性基板の上にスパッタリング法により形成される低抵抗
導電膜の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-resistance conductive film used as an electrode or wiring in a semiconductor device, and particularly to a low-resistance conductive film formed on a low heat resistant substrate made of glass, plastic or the like by a sputtering method. The present invention relates to a method for manufacturing a resistive conductive film.

【0002】[0002]

【従来の技術】近年の大画面ディスプレイの開発に伴
い、ポリカーボネイト(PC)等のプラスチックからな
る低耐熱性基板上に形成される透明電極(透明導電膜)
として、より低抵抗で高透過率のものが要望されてい
る。
2. Description of the Related Art With the recent development of large-screen displays, transparent electrodes (transparent conductive films) formed on a low heat resistant substrate made of plastic such as polycarbonate (PC).
As such, a material having a lower resistance and a higher transmittance is desired.

【0003】従来、この透明導電膜の形成方法として
は、ITOターゲットを、スパッタレートの大きなアル
ゴン(Ar)ガス雰囲気中においてマグネトロンスパッ
タリングを行うことにより基板上にITO(Indium Tin
Oxide,酸化インジウムすず) 膜を堆積させる方法が主流
であった。
Conventionally, as a method of forming the transparent conductive film, an ITO target is magnetron sputtered in an argon (Ar) gas atmosphere having a large sputtering rate to form an ITO (Indium Tin) film on the substrate.
The method of depositing Oxide (indium tin oxide) film was the mainstream.

【0004】この従来のスパッタリング法において、透
明導電膜として低抵抗のものを作製するためには、基板
の温度を200℃以上の高温にする必要があり、更に、
低抵抗でしかも高透過率の透明導電膜を得るためには、
ITO薄膜を堆積して形成したのち、酸素雰囲気中にお
いて300〜500℃の高温で熱処理(アニール)を施
す必要があった。しかし、このように高温の熱処理を施
すと、プラスチック等の低耐熱性の基板が軟化する虞れ
があり好ましくない。
In this conventional sputtering method, in order to produce a transparent conductive film having a low resistance, it is necessary to raise the temperature of the substrate to 200 ° C. or higher.
To obtain a transparent conductive film with low resistance and high transmittance,
After depositing and forming the ITO thin film, it was necessary to perform heat treatment (annealing) at a high temperature of 300 to 500 ° C. in an oxygen atmosphere. However, such high-temperature heat treatment is not preferable because it may soften a substrate having low heat resistance such as plastic.

【0005】また、LSI(Large Scale Integrated c
ircuit) の金属配線に用いられるアルミニウム等の導電
膜においても、より低抵抗のものが望まれている。従
来、このような金属配線として用いられる導電膜も、上
記透明導電膜と同様に、アルゴンガス雰囲気中において
マグネトロンスパッタリングを行うことにより基板上に
堆積させて形成されるのが主流であった。
In addition, LSI (Large Scale Integrated c
A conductive film such as aluminum used for metal wiring of ircuit) is also desired to have a lower resistance. Conventionally, a conductive film used as such a metal wiring has been mainly formed by depositing it on a substrate by performing magnetron sputtering in an argon gas atmosphere, like the transparent conductive film.

【0006】しかし、この方法により形成されるアルミ
ニウム等の導電膜は結晶粒径が小さいので、本来の導電
率よりも小さい導電率の膜しか作製することができず、
金属配線の低抵抗化は困難であった。
However, since the conductive film of aluminum or the like formed by this method has a small crystal grain size, only a film having a conductivity smaller than the original conductivity can be produced.
It has been difficult to reduce the resistance of metal wiring.

【0007】これに対して、アルゴンガス雰囲気中のマ
グネトロンスパッタリングにより作製した導電膜に、エ
キシマレーザのような短波長のパルスレーザを照射して
結晶粒径を大きくすることにより導電膜を低抵抗化する
方法が考えられている。この方法では、レーザビームは
導電膜において大部分吸収されるので、導電膜のみを局
所的に加熱することができる。従って、基板の温度は低
温に保ったままで導電膜に熱処理(アニール)を施すこ
とができ、プラスチック等により形成された低耐熱性の
基板を軟化させることなく、透明導電膜や金属配線の低
抵抗化を図ることが可能である。
On the other hand, a conductive film produced by magnetron sputtering in an argon gas atmosphere is irradiated with a short-wavelength pulse laser such as an excimer laser to increase the crystal grain size, thereby reducing the resistance of the conductive film. How to do it is considered. In this method, since the laser beam is mostly absorbed in the conductive film, only the conductive film can be locally heated. Therefore, the conductive film can be heat-treated (annealed) while the substrate temperature is kept low, and the low resistance of the transparent conductive film and the metal wiring can be achieved without softening the low heat resistant substrate made of plastic or the like. Can be realized.

【0008】[0008]

【発明が解決しようとする課題】上述のようにスパッタ
リングにより導電膜を形成したのち、この導電膜に対し
てレーザビームを照射することにより導電膜の低抵抗化
を図ることができるものの、従来の方法には次のような
問題があった。すなわち、従来のアルゴンガス雰囲気中
のマグネトロンスパッタリングにより作製した導電膜に
は、膜中にアルゴンが数10%含まれている。文献によ
ると、アルゴンガスを用いたスパッタリング法により形
成されたタンタルシリサイド(TaSi2 )膜の場合、
膜中に入ったアルゴンを外部に放出させるために必要な
熱処理温度は900℃以上であり、更にアルゴンを10
0%外部に放出させるためには1100℃以上の熱処理
が必要である。従って、これから類推すると、スパッタ
リングにより形成されたITO膜やアルミニウム膜等の
導電膜中のアルゴンを外部に放出させるためには、50
0℃以上の熱処理を施す必要がある。
Although it is possible to reduce the resistance of the conductive film by forming a conductive film by sputtering as described above and then irradiating the conductive film with a laser beam, the conventional method has been used. The method had the following problems. That is, a conductive film produced by magnetron sputtering in a conventional argon gas atmosphere contains several tens% of argon in the film. According to the literature, in the case of a tantalum silicide (TaSi 2 ) film formed by a sputtering method using argon gas,
The heat treatment temperature required to release the argon contained in the film to the outside is 900 ° C. or higher, and the argon content is 10% or more.
To release 0% to the outside, heat treatment at 1100 ° C. or higher is required. Therefore, by analogy with this, in order to release argon in a conductive film such as an ITO film or an aluminum film formed by sputtering to the outside, 50
It is necessary to perform heat treatment at 0 ° C or higher.

【0009】しかしながら、導電膜の結晶粒径を大きく
するためにエキシマレーザ等の短波長のパルスレーザを
照射すると、薄膜はパルス幅20〜30ns程度の極短
時間に1400℃以上の高温に加熱されるため、アルゴ
ンガスは放出されるものの、膜内部から突沸する状態と
なり薄膜を破壊してしまう現象が生じるという問題があ
った。
However, when a short-wavelength pulse laser such as an excimer laser is irradiated to increase the crystal grain size of the conductive film, the thin film is heated to a high temperature of 1400 ° C. or higher in an extremely short time of about 20 to 30 ns in pulse width. Therefore, although the argon gas is released, there is a problem that a phenomenon occurs in which the thin film is broken due to a state of bumping from the inside of the film.

【0010】本発明はかかる問題点に鑑みてなされたも
ので、その目的は、スパッタリング法により導電膜を形
成したのち、導電膜にエネルギービームを照射して結晶
化させる際に、膜の破壊が生ずることを防止しつつ低抵
抗化を図ることができる低抵抗導電膜の作製方法を提供
することにある。
The present invention has been made in view of the above problems, and an object thereof is to destroy a film when the conductive film is formed by a sputtering method and then the conductive film is irradiated with an energy beam to be crystallized. It is an object of the present invention to provide a method for manufacturing a low-resistance conductive film that can reduce the resistance while preventing the occurrence.

【0011】[0011]

【課題を解決するための手段】本発明に係る低抵抗導電
膜の作製方法は、低耐熱性の基板をその軟化温度よりも
低い温度に設定すると共に、アルゴンより原子半径が小
さく、原子量の小さな希ガス元素の雰囲気中において導
電体ターゲットをスパッタリングすることにより低耐熱
性の基板上に導電膜を形成する工程と、基板上に形成さ
れた導電膜にエネルギービームを照射して熱処理を施す
工程とを含むものである。
According to the method for producing a low-resistance conductive film of the present invention, a substrate having low heat resistance is set at a temperature lower than its softening temperature, and its atomic radius is smaller than that of argon and its atomic weight is smaller. A step of forming a conductive film on a substrate having low heat resistance by sputtering a conductive target in an atmosphere of a rare gas element; a step of irradiating the conductive film formed on the substrate with an energy beam to perform heat treatment; Is included.

【0012】本発明による方法は、スパッタガスとして
アルゴンガスを用いた従来のスパッタリング法により導
電膜を作製したとき、成膜中に膜内に入ったアルゴンが
200℃程度の熱処理によって外部に放出されないの
は、主としてアルゴンの原子半径(0.144nm)と
原子量(39.948)が大きいことによるものと考
え、スパッタガスとしてアルゴンよりも原子半径が小さ
く、かつ原子量が小さくて軽い希ガスの元素のガスを用
いることにより、成膜中に膜内に入ったガス元素を低温
の熱処理によって外部に容易に放出させようとするもの
である。
In the method according to the present invention, when a conductive film is formed by a conventional sputtering method using argon gas as a sputtering gas, argon contained in the film during film formation is not released to the outside by a heat treatment at about 200 ° C. It is thought that this is mainly due to the large atomic radius (0.144 nm) and atomic weight (39.948) of argon. By using a gas, the gas element that has entered the film during film formation is easily released to the outside by low temperature heat treatment.

【0013】すなわち、本発明の低抵抗導電膜の作製方
法では、アルゴンよりも原子半径の小さな希ガス雰囲気
中でスパッタリングが行われ、軟化温度よりも低い温度
に設定された低耐熱性の基板上に導電膜が形成される。
続いて、基板上に形成された導電膜にエネルギービーム
が照射され極短時間に結晶化を促進して導電膜の低抵抗
化が図られる。このエネルギービームの照射時におい
て、成膜中に導電膜内に入った希ガスはアルゴンよりも
原子半径が小さく軽いため膜内から外部に容易に放出さ
れる。これにより希ガスが突沸して導電膜を破壊する虞
れがなくなる。
That is, in the method for producing a low-resistance conductive film of the present invention, sputtering is performed in a rare gas atmosphere having an atomic radius smaller than that of argon, and a low heat-resistant substrate is set at a temperature lower than the softening temperature. A conductive film is formed on.
Subsequently, the conductive film formed on the substrate is irradiated with an energy beam to promote crystallization in an extremely short time and reduce the resistance of the conductive film. At the time of irradiation with this energy beam, the rare gas that has entered the conductive film during film formation has a smaller atomic radius and is lighter than argon, and is therefore easily released from the film to the outside. As a result, there is no risk that the rare gas may bump and destroy the conductive film.

【0014】アルゴンよりも原子半径が小さく、軽い希
ガスの元素としてはヘリウム(He)およびネオン(N
e)を挙げることができる。このうちヘリウムは原子半
径(0.095nm)と原子量(4.002)が極めて
小さく、膜から容易に放出されるため、特に本発明に好
適である。
Helium (He) and neon (N) are used as light rare gas elements having a smaller atomic radius than argon.
e) can be mentioned. Of these, helium is particularly suitable for the present invention because it has an extremely small atomic radius (0.095 nm) and atomic weight (4.002) and is easily released from the film.

【0015】低耐熱性の基板としては、例えば軟化温度
が200℃程度以下の基板であり、具体的には例えばポ
リカーボネイト(PC)等のプラスチックからなる基板
が用いられる。この基板上には、基板と導電膜との間
に、エネルギービーム照射時における基板の発熱を防止
するためのバッファ層を形成することが好ましい。
The low heat resistant substrate is, for example, a substrate having a softening temperature of about 200 ° C. or lower, and specifically, a substrate made of plastic such as polycarbonate (PC) is used. On this substrate, it is preferable to form a buffer layer between the substrate and the conductive film for preventing heat generation of the substrate during irradiation of the energy beam.

【0016】また、エネルギービームとしては、導電膜
が吸収する波長のビーム例えばレーザビームが用いら
れ、特にエキシマレーザによるパルスレーザビームを用
いることが好ましい。エキシマレーザとしては、XeC
lエキシマレーザによるパルスレーザビーム(波長30
8nm)やXeFエキシマレーザによるパルスレーザビ
ーム(波長350nm)などが用いられる。
As the energy beam, a beam having a wavelength absorbed by the conductive film, for example, a laser beam is used, and a pulse laser beam of an excimer laser is particularly preferable. As an excimer laser, XeC
Pulsed laser beam (wavelength 30
8 nm) or a pulsed laser beam (wavelength 350 nm) by an XeF excimer laser is used.

【0017】導電体ターゲットは例えばITO(Indium
Tin Oxide),酸化スズ(SnO2 ),三酸化タングステ
ン(WO3 ),酸化亜鉛(ZnO)等の酸化物からなる
透明導電体材料やアルミニウム(Al),銅(Cu),
金(Au)等の金属からなる不透明導電体材料が用いら
れる。
The conductor target is, for example, ITO (Indium).
Tin Oxide), tin oxide (SnO 2 ), tungsten trioxide (WO 3 ), zinc oxide (ZnO), and other transparent conductive material, aluminum (Al), copper (Cu),
An opaque conductor material made of metal such as gold (Au) is used.

【0018】[0018]

【実施の形態】以下、本発明の実施の形態について図面
を参照して詳細に説明する。なお、ここでは、低耐熱性
基板の上に形成される導電膜として透明導電膜(ITO
膜)を用い、このITO膜の低抵抗化を例として説明す
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. Note that here, a transparent conductive film (ITO) is used as a conductive film formed on the low heat resistant substrate.
Film) will be described as an example of lowering the resistance of the ITO film.

【0019】図1(a)〜(c)は本発明の一実施の形
態に係るITO膜の作製工程を表すものである。この方
法は、まず、同図(a)に示したように例えばポリカー
ボネイト(PC)からなる低耐熱性基板10を用意し、
この低耐熱性基板10上に例えばCVD(Chemical Vap
or Deposition:化学的気相成長 )法により例えば膜厚1
00nmの窒化シリコン膜(SiN)11を形成する。
続いて、この窒化シリコン膜11上に例えば同じくCV
D法により例えば膜厚200nmの二酸化シリコン膜
(SiO2 )12を形成する。これら窒化シリコン膜1
2および二酸化シリコン膜13からなる積層膜はバッフ
ァ層を構成しており、後述のレーザビーム照射工程にお
いてレーザによる発熱が低耐熱性基板10に伝わること
を防止するものである。
1 (a) to 1 (c) show a manufacturing process of an ITO film according to an embodiment of the present invention. In this method, first, a low heat resistant substrate 10 made of, for example, polycarbonate (PC) is prepared as shown in FIG.
On this low heat resistant substrate 10, for example, CVD (Chemical Vap
or Deposition: Chemical vapor deposition) method, for example, film thickness 1
A 00 nm silicon nitride film (SiN) 11 is formed.
Subsequently, for example, a CV is also formed on the silicon nitride film 11.
A silicon dioxide film (SiO 2 ) 12 having a film thickness of 200 nm is formed by the D method. These silicon nitride films 1
The laminated film composed of 2 and the silicon dioxide film 13 constitutes a buffer layer, and prevents heat generated by the laser from being transmitted to the low heat resistant substrate 10 in a laser beam irradiation step described later.

【0020】このように窒化シリコン膜11および二酸
化シリコン膜12からなるバッファ層を形成したのち、
次に、低耐熱性基板10をこの基板が軟化しない程度の
温度(室温から200℃以下)に保ちながら同図(b)
に示したように、アルゴンより原子半径の小さな希ガ
ス、例えばヘリウム(He)雰囲気中においてITO(I
ndium Tin Oxide)をターゲットとしたマグネトロンスパ
ッタリングを行い、二酸化シリコン膜12上に膜厚10
0〜200nm程度の薄いITO膜13を形成する。こ
こで、ヘリウムのガス圧は例えば3mTorr、スパッ
タレイトは例えば6nm/分とする。
After the buffer layer composed of the silicon nitride film 11 and the silicon dioxide film 12 is formed in this manner,
Next, while maintaining the low heat resistant substrate 10 at a temperature (room temperature to 200 ° C. or less) at which this substrate does not soften, FIG.
As shown in Fig. 2, ITO (I) is used in an atmosphere of a rare gas having a smaller atomic radius than argon, such as helium (He).
magnetron sputtering with a target of ndium tin oxide) to form a film thickness 10 on the silicon dioxide film 12.
A thin ITO film 13 of about 0 to 200 nm is formed. Here, the gas pressure of helium is, for example, 3 mTorr, and the sputter rate is, for example, 6 nm / min.

【0021】ITO膜13を形成したのち、同図(c)
に示したように、このITO膜13に対してXeClエ
キシマレーザによるレーザビーム(波長308nm,エ
ネルギー50〜190mJ/cm2 ,パルス幅30n
s)14を照射して熱処理(アニール)を施すことによ
り結晶化させる。このエキシマレーザビームの照射は多
段階照射とすることにより結晶化を促進させることがで
きる。
After forming the ITO film 13, FIG.
As shown in FIG. 5, a laser beam (wavelength 308 nm, energy 50 to 190 mJ / cm 2 , pulse width 30 n for the XeCl excimer laser is applied to the ITO film 13.
s) Irradiate 14 and perform heat treatment (annealing) to crystallize. The irradiation of the excimer laser beam can promote crystallization by using multi-step irradiation.

【0022】図2および図3はそれぞれこのエキシマレ
ーザビームのエネルギー量とITO膜13のシート抵抗
値の変化との関係を表す特性図である。ここで、図2は
低耐熱性基板10を室温に保った状態でスパッタリング
を行った場合、一方、図3は低耐熱性基板10を120
℃に保った状態でスパッタリングを行った場合の抵抗変
化をそれぞれ表すものである。これらの図からも明らか
なように、低耐熱性基板10を室温に保った状態でスパ
ッタリングを行った場合にはレーザビーム照射前には4
×106 Ω/□であったシート抵抗が2×103 Ω/□
へと低下し、また低耐熱性基板10を120℃に保った
状態でスパッタリングを行った場合にはレーザ照射前に
は4×105 Ω/□であったシート抵抗が9×102 Ω
/□へと大幅に低下している。これはエキシマレーザビ
ームの照射前と照射後のREED(Reflective High En
ergy Electron Diffraction;反射高速電子線回折) 法に
よる測定の結果、エキシマレーザを照射した後のITO
膜13の結晶性が向上していることから、これによりシ
ート抵抗が低下したものと考えられる。
2 and 3 are characteristic diagrams showing the relationship between the energy amount of the excimer laser beam and the change of the sheet resistance value of the ITO film 13, respectively. Here, FIG. 2 shows the case where the low heat resistant substrate 10 is sputtered at room temperature, while FIG.
It shows the resistance change when sputtering is performed in a state of being kept at ° C. As is clear from these figures, when the low heat resistant substrate 10 is sputtered in a state of being kept at room temperature, 4 times is required before laser beam irradiation.
The sheet resistance, which was × 10 6 Ω / □, is 2 × 10 3 Ω / □.
The sheet resistance was 4 × 10 5 Ω / □ before laser irradiation when the low heat resistant substrate 10 was kept at 120 ° C. and the sheet resistance was 9 × 10 2 Ω.
Significantly decreased to / □. This is the REED (Reflective High Envelope) before and after the excimer laser beam irradiation.
As a result of measurement by the energy electron diffraction method, the ITO after irradiation with the excimer laser
Since the crystallinity of the film 13 is improved, it is considered that this reduces the sheet resistance.

【0023】図4はレーザビームの各波長に対するIT
O膜13の光透過率の変化状態を、レーザビーム照射前
と照射後とを対比して表すものである。ここで、四角印
はレーザ照射前の光透過率、丸印はレーザ照射後の光透
過率を示している。この図からも明らかなように、エキ
シマレーザを照射した後も光透過率が低下していないこ
とかわかる。また、エキシマレーザを照射したときには
ITO膜13からヘリウムが容易に放出され、従って膜
が破壊されることがなかった。
FIG. 4 shows the IT for each wavelength of the laser beam.
The change state of the light transmittance of the O film 13 is represented by comparing before and after laser beam irradiation. Here, the square marks indicate the light transmittance before laser irradiation, and the circle marks indicate the light transmittance after laser irradiation. As is clear from this figure, it can be seen that the light transmittance does not decrease even after irradiation with the excimer laser. Further, when the excimer laser was irradiated, helium was easily released from the ITO film 13, and the film was not destroyed.

【0024】このように本実施の形態では、アルゴンよ
りも原子半径が小さく、軽いヘリウム(He)ガス雰囲
気中においてスパッタリングを行うことによりITO膜
13を作製し、次いでエキシマレーザビーム14を照射
して結晶化させるようにしたので、レーザビーム照射時
にITO膜13から希ガス(ヘリウム)が突沸すること
による膜破壊を伴わないで、しかも基板10を高温に加
熱することなく、低抵抗で高透過率の導電膜を作製する
ことができることがわかった。
As described above, in the present embodiment, the ITO film 13 is formed by performing sputtering in a light helium (He) gas atmosphere having an atomic radius smaller than that of argon, and then the excimer laser beam 14 is irradiated. Since it is made to crystallize, it does not cause film breakage due to bumping of rare gas (helium) from the ITO film 13 during laser beam irradiation, and also does not heat the substrate 10 to a high temperature, and has low resistance and high transmittance. It was found that the above conductive film can be manufactured.

【0025】上記実施の形態では導電膜として透明導電
膜(ITO膜13)を作製するようにしたが、LSI配
線に用いられるアルミニウム膜等の金属薄膜において
も、ヘリウム(He)ガス雰囲気中においてスパッタリ
ングを行うことにより薄膜を作製し、次いでエキシマレ
ーザを照射して熱処理(アニール)を行うことにより、
同じく膜破壊を伴わないで、低抵抗で高透過率の薄膜を
作製することができることは容易に想像できる。
Although the transparent conductive film (ITO film 13) is formed as the conductive film in the above embodiment, even a metal thin film such as an aluminum film used for LSI wiring is sputtered in a helium (He) gas atmosphere. To form a thin film, and then irradiate an excimer laser to perform heat treatment (annealing),
Similarly, it can be easily imagined that a thin film having a low resistance and a high transmittance can be produced without causing film destruction.

【0026】なお、本実施の形態による方法では、レー
ザビームの照射前に導電膜をパターニングし、そののち
レーザビームを照射して低抵抗化することが可能であ
る。この場合は、エッチングしやすい条件(すなわち、
シート抵抗が高い状態)でパターニングできるので、製
造に必要なマスクを少なくすることができ、製造プロセ
スを簡略化することができる。
In the method according to the present embodiment, it is possible to pattern the conductive film before irradiating the laser beam and then irradiate the laser beam to reduce the resistance. In this case, the conditions (ie,
Since the patterning can be performed in a state where the sheet resistance is high), the mask required for manufacturing can be reduced and the manufacturing process can be simplified.

【0027】以上実施の形態を挙げて本発明を説明した
が、本発明は上記実施の形態に限定するものではなく、
種々変形可能である。例えば、上記実施の形態において
は、基板材料としてプラスチックを用いたものについて
説明したが、ガラス等その他の材質を用いるようにして
もよく、この場合にはスパッタリング時における基板温
度はその材質に合わせて軟化しない程度の温度に設定す
ればよい。
Although the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment.
Various modifications are possible. For example, in the above-described embodiment, the case where plastic is used as the substrate material has been described, but other materials such as glass may be used, and in this case, the substrate temperature at the time of sputtering is adjusted according to the material. The temperature may be set so that it does not soften.

【0028】[0028]

【発明の効果】以上説明したように本発明の低抵抗導電
膜の作製方法によれば、従来用いられていたアルゴンガ
スの代わりに、このアルゴンガスよりも原子半径が小さ
く、軽い希ガス、特にヘリウムガスを用いてスパッタリ
ングを行うことにより導電膜を形成し、この導電膜にエ
ネルギービームを照射して熱処理を施すようにしたの
で、ビーム照射時に希ガスを容易に放出することがで
き、膜破壊を生ずることなく、かつ基板温度を上げるこ
となく極短時間に結晶化を促進して低抵抗の導電膜を作
製することができるという効果を奏する。
As described above, according to the method for producing a low-resistance conductive film of the present invention, a rare gas, which has a smaller atomic radius and is lighter than the argon gas, is used instead of the conventionally used argon gas. Since a conductive film is formed by sputtering using helium gas, and this conductive film is irradiated with an energy beam to perform heat treatment, a rare gas can be easily released during beam irradiation, resulting in film destruction. There is an effect that a low resistance conductive film can be produced by promoting crystallization in an extremely short time without increasing the temperature and without increasing the substrate temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係るITO膜の作製方
法を説明するための工程毎の断面図である。
FIG. 1 is a cross-sectional view for each step for explaining a method for manufacturing an ITO film according to an embodiment of the present invention.

【図2】基板を室温に保った状態でのスパッタリングに
よりITO膜を形成した場合のエキシマレーザの照射エ
ネルギー量とシート抵抗値の変化状態との関係を表す特
性図である。
FIG. 2 is a characteristic diagram showing a relationship between an irradiation energy amount of an excimer laser and a change state of a sheet resistance value when an ITO film is formed by sputtering while a substrate is kept at room temperature.

【図3】基板を120℃の温度に保った状態でのスパッ
タリングによりITO膜を形成した場合のエキシマレー
ザの照射エネルギー量とシート抵抗値の変化状態との関
係を表す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between an irradiation energy amount of an excimer laser and a change state of a sheet resistance value when an ITO film is formed by sputtering while a substrate is kept at a temperature of 120 ° C.

【図4】図1の方法により作製されたITO膜のエキシ
マレーザ照射前と照射後でのビーム波長に対する光透過
率の関係を表す特性図である。
FIG. 4 is a characteristic diagram showing a relationship of light transmittance with respect to a beam wavelength before and after the excimer laser irradiation of the ITO film manufactured by the method of FIG.

【符号の説明】[Explanation of symbols]

10…低耐熱性基板、11…窒化シリコン膜、12…二
酸化シリコン膜、13…ITO膜(導電膜)、14…エ
キシマレーザビーム
10 ... Low heat resistant substrate, 11 ... Silicon nitride film, 12 ... Silicon dioxide film, 13 ... ITO film (conductive film), 14 ... Excimer laser beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 碓井 節夫 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Setsuo Usui 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 低耐熱性の基板をその軟化温度よりも低
い温度に設定すると共に、アルゴンより原子半径が小さ
く、原子量の小さな希ガス元素の雰囲気中において導電
体ターゲットをスパッタリングすることにより前記低耐
熱性の基板上に導電膜を形成する工程と、 前記基板上に形成された導電膜にエネルギービームを照
射して熱処理を施す工程とを含むことを特徴とする低抵
抗導電膜の作製方法。
1. A low heat resistant substrate is set to a temperature lower than its softening temperature, and a conductor target is sputtered in an atmosphere of a rare gas element having an atomic radius smaller than that of argon and a small atomic weight. A method of manufacturing a low-resistance conductive film, comprising: a step of forming a conductive film on a heat-resistant substrate; and a step of irradiating an energy beam on the conductive film formed on the substrate to perform heat treatment.
【請求項2】 前記希ガス元素をヘリウムとしたことを
特徴とする請求項1記載の低抵抗導電膜の作製方法。
2. The method for producing a low-resistance conductive film according to claim 1, wherein the rare gas element is helium.
【請求項3】 前記導電体ターゲットは透明導電体材料
により形成されていることを特徴とする請求項1記載の
低抵抗導電膜の作製方法。
3. The method for producing a low resistance conductive film according to claim 1, wherein the conductive target is formed of a transparent conductive material.
【請求項4】 前記透明導電体材料はITOであること
を特徴とする請求項3記載の低抵抗導電膜の作製方法。
4. The method for producing a low resistance conductive film according to claim 3, wherein the transparent conductor material is ITO.
【請求項5】 前記導電体ターゲットは不透明導電体材
料により形成されたことを特徴とする請求項1記載の低
抵抗導電膜の作製方法。
5. The method for producing a low resistance conductive film according to claim 1, wherein the conductive target is formed of an opaque conductive material.
【請求項6】 更に、前記基板と導電膜との間に前記エ
ネルギービーム照射時における前記基板の発熱を防止す
るためのバッファ層を形成する工程を含むことを特徴と
する請求項1記載の低抵抗導電膜の作製方法。
6. The low-temperature resist according to claim 1, further comprising the step of forming a buffer layer between the substrate and the conductive film to prevent heat generation of the substrate during the irradiation of the energy beam. A method for manufacturing a resistive conductive film.
【請求項7】 前記エネルギービームは前記導電膜によ
り吸収される波長のビームを用いることを特徴とする請
求項1記載の低抵抗導電膜の作製方法。
7. The method of manufacturing a low resistance conductive film according to claim 1, wherein a beam having a wavelength absorbed by the conductive film is used as the energy beam.
JP11949596A 1996-04-18 1996-04-18 Method for manufacturing low-resistance conductive film Expired - Fee Related JP3638055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11949596A JP3638055B2 (en) 1996-04-18 1996-04-18 Method for manufacturing low-resistance conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11949596A JP3638055B2 (en) 1996-04-18 1996-04-18 Method for manufacturing low-resistance conductive film

Publications (2)

Publication Number Publication Date
JPH09283468A true JPH09283468A (en) 1997-10-31
JP3638055B2 JP3638055B2 (en) 2005-04-13

Family

ID=14762688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11949596A Expired - Fee Related JP3638055B2 (en) 1996-04-18 1996-04-18 Method for manufacturing low-resistance conductive film

Country Status (1)

Country Link
JP (1) JP3638055B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007171A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Substrate having electrode attached thereto and method for preparation thereof
EP1295327A1 (en) * 2000-06-12 2003-03-26 Ultratech Stepper Inc. Thermally induced reflectivity switch for laser thermal processing
JP2003197378A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Electroluminescent display element and manufacturing method for it
US6794277B2 (en) * 2000-12-18 2004-09-21 Sony Corporation Method of doping semiconductor layer, method of manufacturing thin film semiconductor device, and thin film semiconductor device
CN1317735C (en) * 2003-01-23 2007-05-23 友达光电股份有限公司 Buffer layer capable of promoting electron mobility raising and thin film transistor containing the buffer layer
KR100989257B1 (en) * 2003-06-30 2010-10-20 엘지디스플레이 주식회사 crystallizing method and the array substrate and the fabrication method for LCD
JP2012060188A (en) * 2011-12-26 2012-03-22 Toshiba Corp Semiconductor light-emitting element
CN111149230A (en) * 2017-08-04 2020-05-12 维特罗平板玻璃有限责任公司 Flash annealing of transparent conductive oxide and semiconductor coatings

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503938A (en) * 2000-06-12 2004-02-05 ウルトラテック インク Heat-induced reflectance switch for laser heat treatment
EP1295327A1 (en) * 2000-06-12 2003-03-26 Ultratech Stepper Inc. Thermally induced reflectivity switch for laser thermal processing
EP1295327A4 (en) * 2000-06-12 2009-07-08 Ultratech Inc Thermally induced reflectivity switch for laser thermal processing
US6677062B2 (en) 2000-07-19 2004-01-13 Matsushita Electric Industrial Co., Ltd. Substrate with an electrode and method of producing the same
WO2002007171A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Substrate having electrode attached thereto and method for preparation thereof
US7250326B2 (en) 2000-07-19 2007-07-31 Matsushita Electric Industrial Co., Ltd. Substrate with an electrode and method of producing the same
KR100805210B1 (en) * 2000-07-19 2008-02-21 마쯔시다덴기산교 가부시키가이샤 Substrate having electrode attached thereto and method for preparation thereof
US6794277B2 (en) * 2000-12-18 2004-09-21 Sony Corporation Method of doping semiconductor layer, method of manufacturing thin film semiconductor device, and thin film semiconductor device
JP2003197378A (en) * 2001-12-26 2003-07-11 Sanyo Electric Co Ltd Electroluminescent display element and manufacturing method for it
CN1317735C (en) * 2003-01-23 2007-05-23 友达光电股份有限公司 Buffer layer capable of promoting electron mobility raising and thin film transistor containing the buffer layer
KR100989257B1 (en) * 2003-06-30 2010-10-20 엘지디스플레이 주식회사 crystallizing method and the array substrate and the fabrication method for LCD
JP2012060188A (en) * 2011-12-26 2012-03-22 Toshiba Corp Semiconductor light-emitting element
CN111149230A (en) * 2017-08-04 2020-05-12 维特罗平板玻璃有限责任公司 Flash annealing of transparent conductive oxide and semiconductor coatings
CN111149230B (en) * 2017-08-04 2023-09-19 维特罗平板玻璃有限责任公司 Flash annealing of transparent conductive oxides and semiconductive coatings

Also Published As

Publication number Publication date
JP3638055B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP3628018B2 (en) Silicon pixel electrode
JPS62104117A (en) Manufacture of semiconductor thin film
US20070166959A1 (en) Process for producing a photoelectric conversion device
JP2007324425A (en) Thin film semiconductor device, manufacturing method therefor, and display device
JPH0454375B2 (en)
JP3638055B2 (en) Method for manufacturing low-resistance conductive film
JPH1050607A (en) Manufacture of semiconductor device
JPH07120802B2 (en) Method for manufacturing semiconductor device
JPH07326769A (en) Plane display use thin film transistor
JP2735177B2 (en) Thin film transistor and method of manufacturing the same
JPH03159119A (en) Manufacture of semiconductor device
JPH02119122A (en) Manufacture of low resistive polycrystalline semiconductor thin film
JP2809152B2 (en) Method for manufacturing thin film transistor
JPH04226040A (en) Manufacture of polycrystalline silicon thin-film transistor, and active matrix substrate
JPH08148692A (en) Manufacture of thin-film semiconductor device
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
CN100514559C (en) Auxiliary laser crystallization method for making polysilicon
JPH08139331A (en) Method of manufacturing thin film transistor
JPH0851218A (en) Method of forming thin film transistor
JPH0513442A (en) Semiconductor substrate
JPH08139016A (en) Manufacture of thin film integrated circuit
JPS63292682A (en) Manufacture of thin film semiconductor device
JPH1187724A (en) Manufacture of semiconductor device
JPH11121375A (en) Manufacture of semiconductor device
JPH04226039A (en) Manufacture of polycrystalline silicon thin-film transistor, and active matrix substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees